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ABSTRACT To solve the problem that the single robot task execution capability is not enough to meet the
whole handling task demand under complex conditions, the hybrid path planning models such as multi-robot
path planning and formation cooperative control considering obstacle avoidance are studied. Firstly, for the
robot global path finding problem, on the basis of the construction for a robot working environment model
based on the geometricmapmodel buildingmethod, an improved particle swarm algorithm-based global path
planning model is proposed to solve the problems of low robot path planning solution efficiency and easy
to fall into local optimal solutions. Secondly, for the multi-robot cooperative formation control and obstacle
avoidance and inter-robot collision avoidance problems, a multi-robot formation local path planning model
based on the improved artificial potential field method is constructed, a simulated annealing algorithm is
introduced to optimize the traditional artificial potential field method, and a multi-robot formation control
strategy, robot obstacle avoidance, and inter-robot collision avoidance methods are designed in combination
with the pilot-following method to improve the robot formation path exploration The proposed method can
improve the path exploration capability and handling efficiency of robot formation. Finally, the global path
planning model of the robot based on the improved particle swarm algorithm is simulated and analyzed using
Matlab 7.0 to verify the outstanding performance of the model in pathfinding capability. Then the local path
planning model of multi-robot formation based on the improved artificial potential field is simulated and
analyzed to verify the improved algorithm has good path planning as well as obstacle avoidance performance.
The hybrid path planning model is applied to a real case and simulated, and the results show that the
improved algorithm improves the exploration capability of the robot formation, effectively avoids obstacles,
and verifies its reliability and superiority in the hybrid path planning process.

INDEX TERMS Path planning, improved particle swarm algorithm, environment modeling, artificial
potential field algorithm, formation control.

I. INTRODUCTION
Industry 4.0, also known as the fourth industrial revolution,
is a new era in which Cyber-Physical System (CPS), Internet
of Things (IoT), and Artificial Intelligence (AI) are combined
to make smart factories a reality. Since these technologies are
used to connect machines, robots, and physical components,
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they enable the connection of machines with intelligence [1].
Robots have the advantage of being easy to operate and
can be flexibly controlled and dispatched, while robots can
also replace manpower to reduce material handling costs
while reducing the probability of accidental risks, and have
the advantages of flexible operation, reliable operation, and
easy maintenance [2]–[5]. However, the focus is mainly on
automation and precise repetitive tasks in manufacturing and
assembly line factories, where modern robots have two main
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modes of operation compared to the traditional robots used
in manufacturing: autonomous and collaborative, or multiple
hybrids [6]. In the practical application of robots, the ability to
operate efficiently, safely, and stably is a key factor in improv-
ing the efficiency of the entire production system, and the
two most important key technologies for robots are the path
planning module and the autonomous obstacle avoidance
module. The meaning of the path planning problem is the
process of obtaining the optimal path from the starting point
to the endpoint based on the input environmental information
using an efficient path planning algorithm. The meaning of
autonomous obstacle avoidance is that when the robot moves
along the planned path and detects the presence of static
or dynamic obstacles on the route through sensors, it needs
to start the corresponding obstacle avoidance algorithm so
that the robot can safely and smoothly avoid the obstacles
and avoid collisions leading to accidents [7], [8]. Therefore,
an important factor affecting the robot’s path planning and
obstacle avoidance ability is its corresponding algorithm, so it
is a strong necessity to design an efficient path planning and
obstacle avoidance algorithm for the robot to improve its
operation speed and avoid collisions.

With the huge development of the computing power of
modern processors, computer vision technology has become
a major application in robotics, and in [9] vision algorithms
play an important role in detecting obstacles in robotic envi-
ronments. The goal of path planning for mobile robots is
to find collision-free paths from the starting point to the
target point and to optimize them according to certain criteria.
For example, sidewalk sweeping robots operate in dynamic
environments [10] with moving pedestrians and objects, and
the requirement for accurate execution of autonomous tasks
in uncertain environments is crucial for the development of
the next pair of robots [11]. Some methods are based on
statistical optimization strategies such as A∗ [12], ant colony
algorithms, and genetic algorithms. Although these methods
have shown good potential, most of them may fall into an
uncertain polynomial hard (np-hard) problem, which is com-
putationally expensive for optimization methods [13]. Paral-
lel working groups for mobile robots offer a large number
of benefits compared to single robot systems. To perform
a large number of various tasks with sufficient robustness,
teams of robots are used instead of a single highly specialized
robot [14]. In order to improve the autonomy and intelli-
gence of the robot, most algorithms focus on improving the
autonomous learning capability of the robot [15]. However,
these algorithms are not widely used in practice due to several
problems.

Many robotic applications require multiple robots with
multiple degrees of freedom to coordinate their motions in
a shared workspace. The difficulty of motion planning makes
it impractical to explicitly construct such structures in a
composite space of multiple robots [16]. Local path planning
focuses on considering information about the robot’s current
local environment to give the robot good obstacle avoidance
capabilities. Sensors are used to detect the robot’s working

environment and to obtain information about the location and
nature of obstacles [17]. When moving on a planned global
path, unforeseen obstacles are placed on the planned path
and need to be replanned to avoid collision [18] obstacles.
In 2021, Gan proposed an algorithm based on Bézier curve
theory applied to robot obstacle avoidance and established
a motion model for differential drive robots, and introduced
a genetic algorithm to reduce the dimensionality of robot
movement path coding to avoid static obstacles present in the
environment and thus successfully reach the target point [19].
However, this method is not suitable for environments where
many small obstacles exist. In 2021, Yao et al. addressed
the problem of large-scale formation and formation scaling
control by designing the control algorithm of the first fol-
lower based on the obtained relative position information,
which makes the position between the first follower and the
pilot converge to the ideal constrained position to control
the scale of the whole formation in order to form an ideal
formation [20]. However, when there are moving obstacles in
the environment, the followers are prone to the problem of
collision with each other.

In this study, a hybrid path planning model for robot
formation based on an improved particle swarm algorithm
and improved artificial potential field method is proposed,
combining the advantages of an improved particle swarm
algorithm that can quickly find the globally optimal path
and the advantages of improved local obstacle avoidance
method of an artificial potential field method with the robot
formation control method designed in this paper, and the key
contribution is to realize the path planning for cooperative
control of multi-robot formation. The rest of this paper is
structured as follows. First, the problems of robot path plan-
ning in industrial environments and the low transportation
efficiency of robot automatic obstacle avoidance and cooper-
ative formation control are analyzed, and the basic algorithms
applied in this paper are described. The robot global path
planning is modeled in Section 3. In Section 4 the improved
robot local path planning algorithm is presented andmodeled.
In Section 5 simulation analysis is performed to simulate the
robot global and local path planning respectively, showing
how the proposed model is executed under different scenario
maps and applying the algorithm to real cases. The conclu-
sions of this work are drawn in the section 6. The technical
route of the research in this paper is shown in Figure 1 below.

II. PROBLEM ANALYSIS AND THEORETICAL APPROACH
A. PROBLEM ANALYSIS
Transport robots are precisely multi-functional, multi-scene,
multi-purpose intelligent mobile robots based on artificial
intelligence-related technologies. For example, robots can
replace corporate workers in high-risk handling tasks and
can help medical staff transport infected medical waste, etc.
In some complex conditions, the ability of a single robot
to perform a task is not sufficient to meet the needs of the
entire transport task, so multiple robot formations are needed
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FIGURE 1. Technology roadmap.

to cooperate and work together to complete more complex
transport tasks.

As the application of robots in various industries continues
to expand, the transport tasks of single robots are mostly
limited to the transport of small and medium-sized materials,
while for large materials, such as aircraft wings and nacelles,
single robots are no longer able to meet the increasingly
complex work needs, and there are also many limitations of
single robots, so the study of multi-robot formation coop-
erative transport is urgent. In modern intelligent factories,
multi-robot teaming can improve the utilization rate of robots,
reduce operation time, improve productivity, reduce handling
costs for enterprises, and achieve the effect of robot diversi-
fication and flexibility in handling.

In production practice, robot formations may encounter
dynamic or static obstacles in the process of cooperative
control, and the corresponding obstacle avoidance algorithm
has to be activated to avoid the obstacles to ensure the safety
of transportation. In some cases, the robot has an irreplace-
able role in handling large quantities, long production times,
and complex working environments. With the continuous
development of smartmanufacturing, the concept of the smart
factory comes along, and the robot has become one of the
key indispensable equipment in the smart factory, so the
optimization and research of the robot is of great significance
to the smart factory.

In this paper, we improve the particle swarm algorithm for
the shortcomings of robot path planning, propose adaptive

weight change rules to improve the local search ability and
global search ability of the algorithm, improve the posi-
tion update formula of the particle swarm algorithm to
improve the convergence accuracy of the algorithm, intro-
duce a genetic algorithm to expand the population range,
improve the possibility of the algorithm to find the optimal
solution, and provide a reference for the robot global path
planning problem. The algorithm can provide some reference
for the global path planning problem of the robot. The basic
artificial potential field method is improved to optimize the
repulsive field to avoid the problem of the unreachable target,
and the simulated annealing algorithm, the pilot following
method, and the improved artificial potential field method are
introduced to design the multi-robot formation scheme and
cooperative control strategy so that the robot formation can
effectively avoid obstacles and maintain a certain formation
in the process of moving, which provides a theoretical ref-
erence for the cooperative control of multi-robot formation.
Theoretical reference is provided for the cooperative control
of multi-robot formation.

B. ENVIRONMENTAL INFORMATION MODELING
Geometric maps, also called geometric feature maps, can be
described as a method of constructing a map of the environ-
ment based on geometric information (e.g., points, lines, and
surfaces) of objects in the environment. The robot collects
the shape, distance, size, and other features of each object
in the environment through the sensors it carries and uses
these features to build a map of the environment. The main
feature is to simplify the objects and obstacles in the space
and to enlarge the irregular objects to form a more regular
figure for the subsequent path planning operation. In addition,
geometric feature maps are more accurate in the local envi-
ronment than topological and raster maps and can describe
the environment in more detail and accurately portray the
real-time environmental information.

Considering that in the actual situation, the shape, volume,
contour and other factors of obstacles in the environment are
not regular, so to simplify the data extraction and analysis of
obstacles, the obstacles are approximately equivalent to rect-
angle, trapezoid, triangle and other regular shapes, as shown
in Figure 2.

C. BASIC PARTICLE SWARM ALGORITHM
Particle SwarmOptimization (PSO) is ameta-heuristic global
optimization algorithm proposed by Kennedy and Eberhart
in 1995. The physical model on which the transition rule is
based is one of the emergent collective behaviors resulting
from the social interaction of a flock of birds or a school
of fish. In PSO, each individual in the flock is called a
particle, which represents a potential solution with two main
characteristics (vectors), position and velocity.

The particle velocity and position update iterations are
shown in the following equations (1)(2);

vk+1id = ωvkid + c1ε
(
pkid − x

k
id

)
+ c2η

(
pkgd − x

k
gd

)
(1)
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FIGURE 2. Geometric map model.

xk+1id = xkid + v
k+1
id (2)

The basic particle swarm algorithm has the feature of
fast convergence when solving practical problems, but there
are still some limitations. Therefore, this paper will make
improvements to address the shortcomings of the particle
swarm algorithm in operation and solve the robot global path
planning problem based on the optimized particle swarm
algorithm.

D. GENETIC ALGORITHM
The Genetic Algorithm was proposed by Bagley. The design
concept of the algorithm simulates Darwin’s evolutionary
theory, and the operating principle of the algorithm is highly
consistent with the natural selection process of animals and
plants in nature, hence the name genetic algorithm. In the
process of iteration, as the number of iterations accumu-
lates, the population quality of the algorithm will continue
to improve until it evolves into the optimal population and
obtains the optimal solution. The above process is similar to
the principle of biological evolution, in which the good genes
will be retained and inherited by the next generation, while
the weakly adapted individuals will be gradually reduced to
extinction. The basic operations of genetic algorithms are
divided into three types, namely selection, crossover, and
mutation.

Selection is the law of survival of the fittest. Individuals
that are unable to adapt to changes in their environment or
are not able to resist natural enemies will perish, while those
that are more adaptable will survive and use these individuals
to reproduce the next generation of populations, so selection
can also be called Regeneration. The crossover operation
refers to the exchange of the same chromosomal position of
two different individuals in the selected next generation after
the selection operation, which can generate new individuals
to expand the population diversity. The mutation operation
simulates the genetic mutation phenomenon caused by the
change of living environment or climate during the repro-
duction process of an organism in nature, and the mutation

operation can obtain new individuals to further expand the
population diversity.

E. BASIC ARTIFICIAL POTENTIAL FIELD METHOD
1) PRINCIPLE OF ARTIFICIAL POTENTIAL FIELD METHOD
The artificial potential field method is a path avoidance
method proposed by foreign scholar Khatib. The principle of
the artificial potential field algorithm comes from the electro-
static potential field theory in physics and is obtained through
the transformation of mathematical models. The principle
is to abstract the process of robot movement in the actual
environment as the process of displacement of an object in
a force field by the action of a force. The smoothness of
the paths planned by the artificial potential field method
is high and safe, but there are still some limitations in the
practical application. In this paper, we will analyze the causes
of the problem and propose solutions to improve the artificial
potential field method, to combine the improved artificial
potential field method with the pilot-following method to
design a cooperative control strategy for multi-robot forma-
tions, so that the robot formations can maintain a certain
formation during the movement and avoid dynamic obstacles
and static obstacles encountered in the movement path.

The core idea of the artificial potential field method is
to abstractly describe the obstacles as well as the working
environment in which the robot is located. Vision sensors are
installed in the robot body to collect environmental informa-
tion and perform data analysis and processing while estab-
lishing the repulsive potential field of the obstacle and the
gravitational potential field of the target point, and since the
robot also has a certain potential energy, the robot will move
toward the target point and avoid the obstacle under the action
of the superimposed potential field. It can be considered as a
mass point in robot path planning. The robot path planning
aims to reach the target point, which is the lowest potential
energy point in the potential field distribution and has a trough
shape, while the potential field generated by the obstacles in
the environment has higher potential energy as the peak of the
potential field distribution.

In the two-dimensional coordinate system, the whole pro-
cess of robot motion in the environment can be reduced to
the motion of a point, so that any position of the robot in the
environment can be represented by X

(
X = [x, y]T

)
.

Meanwhile, the direction of robot motion is determined by
the direction of the combined field strength of the superposi-
tion of the repulsive field and the gravitational field.

The gravitational field function is obtained from
equation (3).

Uatt =
1
2
kρm

(
X ,Xg

)
(3)

According to experience, Where k = 15 in the model
established in this paper, X is the position coordinate of the
robot in the environment, Xg is the position coordinate of
the target point, ρ(X ,Xg) is the distance between the robot
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and the target point, and m is the factor of the gravitational
potential field.

The basic artificial potential field method gravitational
field potential distribution is shown in Figure 3.

FIGURE 3. Force diagram of gravitational field.

The corresponding gravitational force Fatt can be
expressed as Equation (4).

Fatt = −∇ [Uatt(X )] = k(X − Xg) (4)

The repulsive field function is Equation (5).

Urep(X ) =

 0.5η
(

1
ρ(X ,Xi)

−
1
ρ0

)2

0
(5)

where η is the enhancement coefficient of proportional repul-
sion force. According to experience, in this paper, η is 3.7;
X is the coordinate of the robot’s position in the environ-
ment; Xi is the coordinate of the obstacle’s position in the
environment; ρ(X ,Xi) is the distance between the robot and
the obstacle; ρ0 is the influence distance of the obstacle in the
environment; in this paper, ρ0 = 20.
The repulsive potential field distribution of the basic arti-

ficial potential field method is shown in Figure 4.
Its corresponding repulsive force is Equation (6).

Frep = −∇
[
Urep (X)

]
=

 η
(

1
ρ(X ,Xi)

−
1
ρ0

)
1

ρ2(X ,Xi)
0

ρ (X ,Xi) ≤ ρ0
ρ (X ,Xi) > ρ0 (6)

The combined force on the robot is Equation (7).

Ft = Fatt + Frep (7)

The distribution of the combined potential field is shown
in Figure 5.

FIGURE 4. Repulsive potential field diagram.

FIGURE 5. Resultant force potential field diagram.

2) DIRECTIONAL CONTROL BASED ON ARTIFICIAL
POTENTIAL FIELD METHOD
In the environment, let the coordinates of the target point of
the robot be Xg = [xg, yg]T the angle between the robot and
the target point can be expressed as Equation (8).

α = arctan
yg − y
xg − x

(8)

In addition, the attraction component of the target point to
which the robot is subjected in the x and y coordinate axes
directions can be expressed as Equation (9).

Fatt (x) = Fatt × cos(α)

Fatt (y) = Fatt × sin(α) (9)

Suppose, there is an obstacle in the environment that
affects the path planning of the robot, denoted by X01 =
[x01, y01]T ,X02 = [x02, y02]T , . . .X0n = [x0n, y0n]T . n
Then the angle formed by the robot and the obstacle can be
expressed as Equation (10).

βn = arctan
y0n − y
x0n − x

(10)
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The repulsive force component of the robot subjected to
the n obstacle in the x and y coordinate axis directions can be
expressed as Equation (11).

Fatt(x)n = Frep × cos(βn)

Fatt(y)n = Frep × sin(βn) (11)

From this, it can be seen that the angle between the direc-
tion of motion of the robot and the x-axis during the move-
ment can be expressed as Equation (12).

γ = arctan
(
F(y)
F(x)

)
=

Fatt (y)+ Fatt (y)1 + Fatt (y)2 + · · · + Fatt (y)n
Fatt (x)+ Fatt (x)1 + Fatt (x)2 + · · · + Fatt (x)n

(12)

The next moving position of the robot can be expressed as
Equation (13).

xk+1 = xk + l × cos γ

yk+1 = yk + l × sin γ (13)

where l is the moving step of the robot, xk is the horizontal
and vertical coordinate of the robot’s current position, and yk
is the horizontal and vertical coordinate of the robot’s next
position.

From the above analysis, it is clear that the artificial poten-
tial field method has the following two advantages.

a: THE MOVING PATH IS SMOOTH
The artificial potential field method performs well in path
planning for local obstacle avoidance. When the robot is
moving, its surrounding environment and obstacle position
information keep changing, so the size or direction of the
artificial potential field force on the robot is constantly chang-
ing, which prevents the robot from suddenly changing its
movement direction and moving speed, so the planned route
is smoother.

b: STREAMLINED MODEL AND HIGH REAL-TIME
PERFORMANCE
From the artificial potential field model, it can be seen that
the model structure is concise, the robot is expressed in the
form of mass points, and in the process of moving, all that is
considered is the coordinates of the target point and the obsta-
cles. In addition, there is no need for more operations, as the
sensor constantly updates the detected obstacle information
according to the robot’s position change, and the magnitude
and direction of the artificial potential field force to which
the robot is subjected is also continuously updated, so the
artificial potential field model can be Therefore, the artificial
potential field method has high real-time performance and is
well suited for local obstacle avoidance and path planning
applications.

F. SIMULATED ANNEALING ALGORITHM
The simulated annealing algorithm is a metaheuristic method
and is considered to be one of the first algorithms used to find
the global optimum. The characteristic and advantage of this
algorithm are that it accepts worse solutions than the current
one with a certain probability to skip the local extremes and
thus the global optimum can be searched. In this process, the
residual stresses inside the material are eliminated to further
stabilize the size of the material, and the grain arrangement is
refined to reduce internal defects and thus improve the quality
of the metal. The solution vector is randomly accepted with
a certain probability, as shown in Equation (14).

x ′i = xi + r · vi ·
t
T

(14)

where T is the similar temperature, xi is the vector of the
current solution, x ′i is the solution when generating a small
random disturbance, r is the random number on [−1, 1], vi
is the step size vector with the same length as x, and t is the
initial temperature.

The magnitude of the acceptance probability of the new
solution is temperature dependent, as shown in equation (15).

P(1E) =

 1, if 1E < 0

exp−
1E
T
, 1E > 0

(15)

where E is the corresponding value of the target function, and
∇E is the change in the solution of the target value.
When the algorithm has performed a certain number of

iterations, the quenching temperature will gradually decrease
from high to low, and this process is called the cooling phase,
and the value of T is shown in equation (16).

TK+1 = TK×θ (16)

where TK is the similarity temperature of iteration K , TK+1 is
the similarity temperature of iteration K +1, θ is the constant
controlling T decline, and θ ∈ [0.95, 0.99].

The simulated annealing algorithm is considered as one of
the optimization methods for solving problems with multiple
local extrema, so in this paper, the simulated annealing algo-
rithm is referred to as the artificial potential field algorithm to
solve the problem of falling into local extrema in robot path
planning by the artificial potential field algorithm.

G. PILOT FOLLOWING METHOD THEORY
The basic principle of the pilot-following method is to set a
pilot in the formation, the rest of the members as followers,
in the formation movement process the pilot controls the
entire formation route, followers and the pilot to maintain a
certain angle and distance between the formation can control
the formation.

The application of the pilot-follower method for multi-
robot formation control has great advantages in terms of its
simplicity and ease of implementation. Since there is only one
navigator in the formation and the rest are followers, only
one navigator robot needs to plan the movement route, and
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the other following robots can generate their own movement
paths according to the navigator robot. In the multi-robot for-
mation system, the communication topology between robots
through a computer network can realize the information
exchange and transmission between individual robots, and
then achieve the control effect of the whole formation through
mutual cooperation.

Pilot-following method according to the mutual position
relationship between the pilot robot and the follower robot
can be specifically divided into two categories, one is the rel-
ative distance and relative declination (L − ϕ) Its principle is
similar to the polar coordinates in a coordinate point through
a specific distance and angle, it can determine its unique posi-
tion. The second is the relative distance and relative distance
(L−L), similar to the plane right angle coordinate system, the
distance of two directions can determine a unique point in the
plane. The substantial feature of the pilot-followingmethod is
to establish a relative position relationship between the pilot
and the follower to achieve the effect of controlling the whole
formation, which is easy to operate in practice.

III. GLOBAL PATH PLANNING FOR ROBOTS BASED ON
IMPROVED PARTICLE SWARM ALGORITHM
A. ANALYSIS OF GLOBAL PATH PLANNING
PROBLEM OF ROBOT
In this paper, we will use the geometric model method
to model the robot working environment as well as make
improvements to the basic particle swarm algorithm. Based
on the fact that the basic particle swarm algorithm is easy
to fall into local minima in the process of robot pathfinding,
resulting in the final searched robot movement path is not
the shortest, therefore, the adaptive change strategy of inertia
weight is proposed to balance the local and global seeking
ability of the algorithm, and then avoid the algorithm to
fall into the local optimal solution. In addition, the particle
position update formula of the basic particle swarm algo-
rithm is improved to improve the solution accuracy of the
algorithm in response to the problem that the optimization
accuracy of the basic particle swarm algorithm is not high.
The genetic algorithm is again introduced to expand the range
of feasible solutions to improve the solution quality. Finally,
the improved particle swarm algorithm is applied to the
global path planning of the robot and the performance of the
improved particle swarm algorithm applied to the global path
planning of the robot is verified by simulation experiments.

B. IMPROVED PARTICLE SWARM ALGORITHM FOR
ROBOT PATH PLANNING
1) ADAPTIVE CHANGE INERTIA WEIGHTS
The size of the inertia weight ω of a particle swarm algorithm
can have a strong impact on the algorithm’s ability to find an
optimal value and the performance of the algorithm. If the
size of the ω value is reduced according to the general linear
rule, it cannot be guaranteed to maintain a high level in the
initial stage of the algorithm operation, which will make the

algorithm easily fall into local minima. Therefore, in this
paper, we design the adaptive method of ω-value to achieve
the purpose of controlling the process of the algorithm, and
then improve the global and local search ability of the algo-
rithm and ωmax = 0.9, ωmin = 0.2. The specific steps are
shown in Equation (17)-(21) below.

ω(k) =
1

1+ exp (α1ω(k − 1))
(17)

α = ln
1− ωmax

ωmax
(18)

1ω = δ × β (19)

δ =
ωmax − ωmin

kmax
(20)

β =
Vk−1 + Vk
2Vk−1

(21)

In equation (17), when the scale factor is introduced, the
particle velocity at the last moment of flight can be adjusted
adaptively;

If ‖Vk−1‖ < ‖Vk‖, then β > 1, 1ω > δ, which will lead
to a higher reduction of ω;

If ‖Vk−1‖ > ‖Vk‖, then β < 1, 1ω < δ, which will lead
to a weaker reduction of ω;

If 1ω = δ, the value of ω(k) decreases linearly.
In the initial stage of the iteration, if the value of ω is

maintained at a high level, the search area of the algorithm
can be expanded, and in the later stage of the iteration, when
the value of ω decreases, the local search capability of the
algorithm is improved.

Therefore, the particle velocity update equation (22) after
the introduction of adaptively varying inertia weights.

vk+1id = ω (k) v
k
id + c1ε

(
pkid − x

k
id

)
+ c2η

(
pkgd − x

k
gd

)
(22)

2) IMPROVEMENT OF PARTICLE POSITION
UPDATE FORMULA
In the particle swarm algorithm, the particles have a bet-
ter self-learning effect in the earlier stage, so the algorithm
should have a larger search iteration step in the process
of searching for the optimal solution at this stage, and the
solution spacewill gradually change from large to small as the
search time accumulates, so the search iteration step should
be appropriately reduced to further improve the accuracy of
the obtained solution. Therefore, from the above analysis,
the adaptive adjustment coefficient of the tangent function
is introduced into the position update formula of the basic
particle swarm algorithm as shown in expression (23), and
the random search factor R ∈(0, 1) is introduced for the better
random search of particles.

ψ (k) = 1− tanh
k

kmax + 1
(23)

The basic particle swarm algorithm particle position update
formula (24) after the introduction of the adaptive adjustment
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factor ψ of the tangent function.

xk+1id = ψ (k)× R× xkid + v
k+1
id (24)

3) INTRODUCTION OF GENETIC ALGORITHMS
The improved particle swarm optimization algorithm in this
paper will introduce the basic operations of the genetic algo-
rithm to further expand the range of population as well as the
population diversity to obtain the new solution set population
in order to improve the solution quality.

a: SELECTION AND CROSSOVER OPERATION
Firstly, we calculate the fitness value of each individual
according to the fitness formula, then we arrange the indi-
viduals in order according to the fitness value from highest
to lowest, select A individuals (A is an even number), and
perform the operation of two pairs of selected individuals,
intercept the locally identical path information in two par-
ticles of the same pair, and perform the crossover behavior
of swapping each other if there is no identical path fragment
in the pair, then we will not perform the crossover behavior.
However, for the offspring generation of particles obtained
by the crossover operation, the position and velocity of the
offspring are updated according to Equation (25)-(28) as
follows.

childk1 (x) = pc · parentk1 (x)+ (1− pc) · parent
k
2 (x) (25)

childk2 (x) = (1− pc) · parent
k
1 (x)+ pc · parent

k
2 (x) (26)

childk1 (v) = pc · parentk1 (v)+ (1− pc) · parent
k
2 (v) (27)

childk2 (v) = (1− pc) · parent
k
1 (v)+ pc · parent

k
2 (v) (28)

where pc is the random numbers on the interval [0, 1], and
k is the number of iterations, parentk1 (x) is the parent gen-
eration 1 position vector, parentk2 (x) is the parent generation
of 2 position vector, parentk1 (v) velocity vector is the parent
generation 1, parentk2 (v) is the parent generation 2 velocity
vector, childk1 (x) is 1 position vector offspring, childk2 (x) is
children 2 position vector, childk1 (v) is children 1 velocity
vector, childk2 (v) is children 2 velocity vector.

(2) Mutation operation
When the above crossover operation is completed, the

mutation operation is performed for all childki (x) individuals.

childk+1i (x) =

{
childki (x)+ Ck
childki (x)

(29)

where, if it is concluded by comparison that the fitness value
of (a) is higher than that of (b), the result of childk+1i (x) is
(a) and the opposite is (b).

4) FITNESS FUNCTION
The length of the robot’s movement path affects its working
transportation time, so in order to complete the transportation
task faster and save cost, its movement path should be as
short as possible. Therefore the first objective function is
established to make the robot’s working moving distance
the shortest, then in any iteration of the algorithm, if the

distance f1 between point pj (t) and the target point pj (N ) is
the minimum value, then the point is the best point.

f1 = d
(
pj(t), pj(N )

)
(30)

where d (·) is the Euclidean Metric.
The length of the shortest path traversed by the robot can

be expressed as the sum of all points between the starting
point p (1) and the target point p (N ). f1 can be expressed as
Equation (31).

f1 =
N−1∑
t=1

√(
xpj(t+1) − xpj(t)

)2
+
(
ypj(t+1) − ypj(t)

)2 (31)

The robot cannot collide and scrape with objects in the
environment during its movement, so it needs to establish a
penalty function to avoid collisions and establish a second
objective function f2 as equation (32).

f2 =
Mmax∑
i=1

δαi (32)

where Mmax is the total number of line segments of the
robot’s moving path when it is working, αi is the number of
intersection between i moving path segments and obstacles,
and δ is the penalty factor.

The total fitness function can be expressed as
equation (33).

fit = f1 + f2 (33)

The flow of path planning for the robot using the improved
particle swarm algorithm in this paper is shown in Figure 6.

IV. LOCAL PATH PLANNING FOR MULTI-ROBOT
FORMATIONS BASED ON IMPROVED ARTIFICIAL
POTENTIAL FIELD METHOD
A. IMPROVEMENT OF ARTIFICIAL POTENTIAL
FIELD METHOD
In this section, we analyze the target unreachability problem
and the local minima problem in the basic artificial potential
field method for robot path planning and make improvement
methods for them respectively.

1) OPTIMIZATION OF A BASIC ARTIFICIAL POTENTIAL FIELD
METHOD FOR TARGET UNREACHABLE PROBLEMS
In a complex environment, dynamic or static unknown obsta-
cles may temporarily appear around the target point, and the
robot gradually moves toward the target point, approaching
both the target point and the obstacles, while the magnitude
of the attraction force on the robot decreases as the distance
between the robot and the target point shortens according
to the definition of the potential field function model, and
the repulsive force on the robot gradually increases as it
approaches the obstacles near the target point. This causes a
deflection at the minimum of the full potential energy point,
which makes the robot unable to reach the target point.

When using the artificial potential field method for path
planning, information about obstacles in the environment is

VOLUME 10, 2022 71921



T. Zhang et al.: Hybrid Path Planning Model for Multiple Robots Considering Obstacle Avoidance

FIGURE 6. Improved particle swarm optimization robot path planning
process.

collected by the sensors carried by the robot, which are used
to calculate the magnitude and direction of the attractive and
repulsive forces on the robot to determine the robot’s next
path of movement, so both play a decisive role in robot path
planning.

2) REPULSION FIELD IMPROVEMENT
This paper addresses the limitations of the repulsive field
function model of the basic artificial potential field method
and improves it by introducing a distance factor A between
the target point and the robot while adding a regulation
factor B to A. The advantage of this is that the repulsive
field function consists of the distance between the robot and
the target point and the distance between the robot and the
obstacle, and as the distance between the robot and the target
point shortens, the repulsive force on the robot will gradually
weaken. In turn, it solves the problem that the robot cannot
approach the target point because of the obstacles around the
target point. The improved repulsive potential field function
is equation (34).

Urep(X ) =

 0.5η
(

1
ρ(X ,Xi)

−
1
ρ0

)2

× ρn
(
X ,Xg

)
0

ρ (X ,Xi) ≤ ρ0
ρ (X ,Xi) > ρ0 (34)

where, according to experience, η in the model built in this
paper η = 3.7, X is the coordinate of the robot’s position
in the environment, Xi is the coordinate of the obstacle’s
position in the environment, ρ (X ,Xi) is the distance between
the robot and the obstacle, ρ0 is the distance of the obsta-
cle’s influence in the environment, according to experience,
ρ0 = 20, ρ

(
X ,Xg

)
is the distance factor between the target

point and the robot, and n is the regulating factor greater
than 0.

From the modified repulsive potential field function, the
negative gradient can be found as equation (35).

F rep (X) = −∇
[
Urep (X)

]
=

{
−
(
F rep1 + F rep2

)
0

ρ (X ,X0) ≤ ρ0

ρ (X ,X0) > ρ0 (35)

When the obstacle is far away from the robot and does not
affect its movement path that is ρ (X ,X0) > ρ0, then the
robot is subjected to the repulsive force of the obstacle is 0.
If ρ (X ,X0) ≤ ρ0, then the robot will be subjected to the
repulsive force generated by the obstacle, which is composed
of the following two repulsive forces as (36)-(37).

F rep1 = η
(

1
ρ (X ,Xi)

−
1
ρ0

)
×
ρn
(
X ,Xg

)
ρ2 (X ,Xi)

(36)

F rep2 =
n
2
η

(
1

ρ (X ,Xi)
−

1
ρ0

)2

× ρn−1
(
X ,Xg

)
(37)

Repulsion F̄rep1 is directed from the obstacle to the robot,
and repulsion F̄rep2 is directed from the robot to the target
point. In order to verify that the optimized repulsive potential
field function model is superior to the one before optimiza-
tion, the combined forces of the two and gravity are calculated
respectively. The combined force F̄total after optimization is
more inclined to the target point than the combined force
F̄total before optimization.
The adjusting factor n has an important influence on the

improved repulsive function, which can be divided into the
following four cases according to the value range of n,
as shown in Table 1 below.

According to the above analysis, introducing the distance
factor

(
X ,Xg

)
between the target point and the robot and

adding the adjusting factor n can effectively adjust the size
of the repulsive force generated by the obstacles around the
target point, and at the same time, the target point can always
be the lowest global potential energy, thus solving the target
unreachable problem.

B. BASIC ARTIFICIAL POTENTIAL FIELD METHOD FOR
LOCAL MINIMUM PROBLEM OPTIMIZATION
Another limitation of the robot using the artificial potential
fieldmethod for obstacle avoidance is that it is easy to fall into
local minima, which is caused by the distribution of obstacles
in the environment. From the above analysis of the robot into

71922 VOLUME 10, 2022



T. Zhang et al.: Hybrid Path Planning Model for Multiple Robots Considering Obstacle Avoidance

TABLE 1. Effects of regulatory factors.

the target unreachable problem, it can be seen that the robot in
the process of moving by the force of attraction and repulsion,
in the potential field always move towards the low poten-
tial energy, but when the robot work environment is more
complex, there may be some locations in the environment
where the potential energy is lower than the target point, if the
robot happens to move to this location, it will cause the local
minima problem.

1) LOCAL MINIMUM PROBLEM ANALYSIS
The robot is subjected to the joint action of repulsive and
attractive forces in the potential field and moves from the
starting point to the target point. However, there may be
some special cases in the environment, i.e., the robot is
subjected to zero combined force at the non-target point,
and then the robot will stop moving and cannot move to the
established target point, failing the path planning. A typi-
cal case where the robot falls into a local minimum is as
follows.

a: CASE 1
When the obstacle is located between the robot and the target
point, and the three are at the same level. In this case, if the
distance between the robot and the target point is farther than
the obstacle in the middle, the attraction force on the robot
will be greatly increased, and the robot will likely collide
with the obstacle and fail in path planning. In addition, if this
situation occurs when the robot is about to reach the target
point, the distance between the two is small, and the attractive
force and repulsive force of the robot may be in a straight
line, and the magnitude is equal and the direction is opposite,
then the combined force of the robot is 0, and the robot
will stop moving or make reciprocal oscillation movement,

and it cannot move to the target point smoothly, failing path
planning, as shown in Figure 7.

FIGURE 7. Local minimum problem of obstacles between robot and
target point.

b: CASE 2
When the target point is located between the obstacle and the
robot, and the three are in the same horizontal line. At this
time, the robot by the target point of the gravitational force
size of 0, and by the obstacles of the repulsive force size
is not 0, this situation will lead to the robot towards the
target point, there is the repulsive force and the attraction
of the size of the opposite direction of the zero potential
energy point, and then the robot can not jump out of the
current position, can not reach the target point, as shown in
Figure 8.

FIGURE 8. Local minimum problem with target point between obstacle
and robot.

c: CASE 3
When multiple obstacles exist near the target point and con-
stitute a channel, the robot is still in force equilibrium when
the combined forces generated by the attractive force and
multiple repulsive forces are exactly equal in magnitude and
opposite in direction, and the robot cannot obtain the power
to move, leading to a local minimal value problem, as shown
in Figure 9.

FIGURE 9. The local minimum problem of multiple obstacles forming a
channel near the target point.
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d: SITUATION 4
In the process of driving, the robot may encounter obstacles
with a shape similar to the letter ‘‘U’’, at this time, the robot is
subject to the common action of multiple obstacles. The robot
will be surrounded by the ‘‘U’’ shaped obstacles and can not
continue to move, and then fall into the local minimal value,
as shown in Figure 10.

FIGURE 10. Local minimum problem of U-shaped obstacle.

2) PARTIAL MINIMAL VALUE DETECTION
In the process of path planning for robots using the basic
artificial potential field method, the robot may suffer from
the local minima problem, in which the robot stops moving
or wanders and oscillates at a location that is not the target
point.

From the operating principle of the basic artificial potential
field method, it is known that the potential energy at the
current position where the robot is located is used to discern
whether the robot is caught in the local minima region by
comparing it with the area that can be moved per unit time,
in the following steps.

(1) According to the various sensors carried by the robot
body to collect and fit the information of the robot and the
position of obstacles in the environment, and according to
the acquired information to synchronize the calculation of the
potential energy of the robot’s position U (p), p is the robot
coordinate position.

(2) From the robot’s travel speed information data, we cal-
culate the territory R (p) that the robot is capable of reaching
per unit time, and calculate the magnitude of the potential
energy of the robot traveling to each location inside R (p). p∗

represents any location within the region, and U (p∗) is the
potential energy possessed by the robot at this point.

(3) If, when the robot is in position, the following condi-
tions are satisfied.

Uatt (p) 6= 0
Urep(p) 6= 0
U (p) ≤ min

p∗∈R(p)
U
(
p∗
) (38)

The meaning of this function is that at this moment, if the
repulsive potential field and the gravitational potential field

of the robot’s environment are not zero, and in addition, the
potential energy of the robot’s reachable area is greater than
or equal to the current position potential energy per unit time,
then the robot can be considered to be in a local minima
dilemma.

3) LOCAL MINIMAL VALUE PROBLEM OPTIMIZATION
In this paper, we propose to use a simulated annealing algo-
rithm to jump out of the local minima position, so that the
robot can move successfully to the original target point. From
the principle of the artificial potential field method, it is
known that the robot is moved from a high potential energy
position to a low potential energy position by the joint action
of the gravitational potential field and the repulsive potential
field. In some complex environments, the potential energy
distribution may have multiple locations A, B, C, and D,
where D is the lowest potential energy location, and when the
robot is trapped in a local potential energy location, it needs
to use a search algorithm to continue the search to the high
potential energy location to help the robot go over this poten-
tial field rise interval.When the robot is trapped to point C and
cannot escape, a simulated annealing algorithm is introduced
to accept the inferior solution based on a certain probability
to continue the search, and once the search reaches the point,
it will directly accept the superior solution to find the lowest
location of the full potential energy, as shown in Figure 11.

FIGURE 11. Principle of escape from local minimum.

The simulated annealing algorithm is constructed to jump
out of the lowest local potential energy model as follows:

(1) Set an initial temperature T , and the initial position
X for annealing operation, and set an appropriate annealing
speed according to the actual situation.

(2) A uniformly distributed random disturbance term 1X
is introduced to the initial position X to obtain a new position
Xi, Xi = X +1X . Next, the value of1U is calculated, which
means the difference between the potential field intensity
U (Xi) at the new position and the potential field intensity
U (X) at the initial position of the robot. The expression is
1U = U (Xi)− U (X).
(3) Judge the positive and negative values of 1U . If

1U < 0, Xi is directly accepted as the new position; if
1U ≥ 0, Xi is accepted as the new position with probability
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P = exp
(
−1U
kBT

)
, where kB is Boltzmann constant and its

value is 1.380649× 10^− 23 J/K.
(4) Judge whether the robot has successfully jumped out

of the local minimum region in the potential field. If it has
successfully jumped out, the operation of the algorithm can be
terminated and moved to a new position Xi; otherwise, after
lowering the annealing temperature T , return to Step (2) to
continue the cycle of the above steps.

4) IMPROVE THE PROCESS OF ARTIFICIAL POTENTIAL
FIELD METHOD
The above paper addresses the problem of target unreachabil-
ity and the problem of falling into local minima when apply-
ing the basic artificial potential field method to robot path
planning, and the improved artificial potential field method
flow is shown in Figure 12.

FIGURE 12. Improved process of artificial potential field method.

Step 1: The parameters of the improved artificial poten-
tial field method were initialized, including the proportional
gravity enhancement coefficient k , the proportional repulsion
enhancement coefficient η, the obstacle influence distance ρ0,
and the starting and ending positions of the robot were set.
Step 2: The sensor carried by the robot is used to detect the

motion state and position of the robot and obstacles.
Step 3: The potential field function of the improved repul-

sive force field is used to plan the moving path of the robot.
Step 4: Judge whether the robot has fallen into the local

minimum position. If not, return to Step 3 to search for the
moving path. If it has fallen into the local minimum, judge
whether it is the global minimum.
Step 5: Determine whether it is the global minimum. If it

is the global minimum, the robot will reach the established
target point and complete the path planning task. If it is

not the global minimum, the simulated annealing algorithm
introduced in this paper will be used to jump out of the local
minimum and return to Step 3.

C. MULTIROBOT FORMATION CONTROL AND OBSTACLE
AVOIDANCE BASED ON IMPROVED ARTIFICIAL
POTENTIAL FIELD METHOD
1) PILOT ROBOT ARTIFICIAL POTENTIAL FIELD DESIGN
When there is an obstacle in the environment, the pilot
robot gradually moves toward the target point and avoids the
obstacles it encounters along the way under the joint action
of the repulsive potential field generated by the obstacle
and the attractive potential field generated by the target point.
The pilot robot gravitational potential field function can be
defined as follows.

Uatt =
1
2
kρ2

(
X ,Xg

)
(39)

In this paper, k = 15, X is the position of the pilot in the
map, Xg is the position of the target point, and ρ

(
X ,Xg

)
is

the distance between the pilot robot and the target point.
The Navigator robot is subject to attraction Fatt provided

by the target point as follows.

Fatt = −∇ [Uatt (X )] = k
(
X ,Xg

)
(40)

The Pilot robot repulsive field function can be defined as
shown below.

Urep(X ) =

 0.5η(
1

ρ(X , xi)
−

1
ρ0

)2ρn(X ,Xg)

0{
ρ (X ,Xi) ≤ ρ0
ρ (X ,Xi) > ρ0

(41)

where η is the proportional gain coefficient, η = 3.7 in
this paper, X is the coordinate of the robot’s position in the
environment, Xi is the coordinate of the obstacle’s position in
the environment, ρ0 is the influence distance of the obstacle
in the environment, ρ0 = 100 in this model, n is the adjusting
factor greater than 0, n = 3 in this paper.
The repulsive force of the navigator in the potential field

by the obstacle Frep:

Frep(X ) = −∇
[
Urep(X )

]
(42)

∇
[
Urep(X )

]
=

{
−(Frep1 + Frep2)
0{
ρ (X ,Xi) ≤ ρ0
ρ (X ,Xi) > ρ0

(43)

Frep1 = η
(

1
ρ (X ,Xi)

−
1
ρ0

)
×
ρn
(
X ,Xg

)
ρ2 (X ,Xi)

(44)

Frep2 =
n
2
η

(
1

ρ (X ,Xi)
−

1
ρ0

)2

× ρn−1
(
X ,Xg

)
(45)
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2) DESIGN OF ROBOT FORMATION CONTROL BASED ON
ARTIFICIAL POTENTIAL FIELD METHOD
Each following robot will be affected by the potential field
generated by the pilot robot, and maintain a certain range of
relative distance l and angle ϕ. Therefore, the potential field
generated by the pilot robot should be a combination of two
parts, the first part is U l

i,j, the potential field can adjust the
relative distance l between each following robot and the pilot
robot so that it is controlled in a certain range, the second part
is Uϕ

i,j, the role of the potential field is to control the angle
between each following robot and the pilot robot.

Where U l
i,j can be expressed as follows.

U l
i,j = A

((
Ld
)2∥∥rij∥∥2 + log

∥∥rij∥∥2) (46)

where i is the pilot robot, j is the follower robot, rij is the
distance between them, Ld is the expected distance between
them, A is the gain coefficient, A = 0.5 according to experi-
ence in this paper.

The potential field force function for the relative distance l
between the pilot robot and the following robot can be
expressed as follows.

∇U l
ij =

∂U l
ij

∂rij
A

(
−

2Ld∥∥rij∥∥3 + 2∥∥rij∥∥
)

(47)

The potential field function Uϕ
i,j is expressed as the follow-

ing equation.

Uϕ
i,j = B

((
8d
)2∥∥ϕij∥∥2 + log

∥∥ϕij∥∥2) (48)

where ϕij is the actual relative Angle between the pilot
robot and the follower, 8d is the expected Angle between
them, and B is the gain coefficient. According to experience,
B = 0.5.
The potential field force function with respect to the rela-

tive angle ϕ between the pilot robot and the following robot
can be expressed as follows.

∇Uϕ
ij =

∂Uϕ
ij

∂ϕij
B

(
−

28d∥∥ϕij∥∥3 + 2∥∥ϕij∥∥
)

(49)

It follows that the total potential field function that can
control the entire multi-robot formation is modeled by the
following equation.

U lϕ
ij = U l

i,j + U
ϕ
ij

= A

((
Ld
)2∥∥rij∥∥2 + log

∥∥rij∥∥2)+B((8d
)2∥∥ϕij∥∥2+log

∥∥ϕij∥∥2)
(50)

Then the total potential field force function for the whole
multi-robot formation is modeled by the following equation.

F lϕij = ∇U
lϕ
ij

= A

(
−

2Ld∥∥rij∥∥3 + 2∥∥rij∥∥
)
+ B

(
−

28d∥∥ϕij∥∥3 + 2∥∥ϕij∥∥
)
(51)

According to the artificial potential field function model
constructed above for the pilot robot and its following robots,
the relative distance A and relative angle B can be adjusted
according to the requirements of the actual task to prevent
the robots in the robot formation from being too scattered
during the movement and thus maintain a certain formation,
as shown in Figure 13.

FIGURE 13. Schematic diagram of robot formation control.

3) DESIGN OF OBSTACLE AVOIDANCE STRATEGY FOR
FOLLOWED ROBOTS
When the robot formation encounters an obstacle during the
movement, the follower robot will recognize the obstacle
within the visual range, and then adjust the relative angle
between itself and the pilot robot and keep the relative dis-
tance constant to avoid the obstacle, as shown in Figure 14.

FIGURE 14. Follower robots obstacle avoidance process diagram.

Due to the active obstacle avoidance strategy, the length
of the distance between the follower robot and the obstacles
it can recognize has an impact on the relative angle between
the follower robot and the navigator robot and is therefore
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defined as follows.

ϕ =

8
d ρ ≥ ρ0

8d
×

log(20ρ)
log (20ρ0)

ρ < ρ0
(52)

As the value of ρ gradually increases, the size of ϕ also
gradually expands. When ρ increases to ρ0, the expected
Angle8d between the follower robot and the pilot robot will
be maintained. On the contrary, when ρ gradually shrinks
from ρ0, the follower robot will gradually narrow its relative
angle with the pilot robot, thus avoiding obstacles.

V. HYBRID PATH PLANNING DESIGN FOR MULTI-ROBOT
FORMATIONS CONSIDERING OBSTACLE AVOIDANCE
The improved particle swarm optimization (IPSO) algorithm
proposed in this paper has good performance in the global
path planning of robots with known environmental informa-
tion and can find the best moving path for a robot in a short
time. However, in the actual working environment, since the
working environment is not all known, there may be some
temporary stacked obstacles blocking the robot’s moving
path, resulting in the failure of path planning or even the
possibility of collision with obstacles. Therefore, when using
a single IPSO algorithm to plan the robot’s moving path, there
are certain limitations in a complex working environment,
and it may not be able to complete the assigned moving task.

The improved artificial potential field method proposed
in this paper has good application effects in the local path
planning of the robot, so that the robot can avoid static or
moving obstacles in the process of moving. However, the arti-
ficial potential field method is a kind of local path planning
algorithm. In the local obstacle avoidance range, it has unique
advantages, but also some limitations. The artificial potential
field method cannot efficiently control the overall working
environment, resulting in low efficiency in path planning and
the easy failure of path planning. At present, robots are widely
used in enterprise storage or logistics workshops, where they
can replace manpower to carry goods efficiently. However,
in the process of performing some complex handling tasks,
the handling capacity of a single robot cannot meet the task
needs, and multiple robots must be relied on to cooperate
to complete the handling task. Therefore, it is necessary to
study the formation of multi-robot formation and cooperative
control technology.

Analysis by the above knowable, single algorithm in the
complex environment is unable to play its some advantages,
and multi-robot cooperation can meet the demand for higher
handling. Therefore, this paper proposes a multi-robot forma-
tion work environment information known to the global path
planning and the environment of the unknown local path plan-
ning mixed path planning method of combining. In addition,
the formation of multiple robots can keep a certain formation,
avoid temporary obstacles in the environment during driving,
and ensure that there is no collision between each robot.

The hybrid path planning for robot formation can be
divided into two parts, firstly, the robot formation control

method proposed in this paper is used to construct a multi-
robot formation, and secondly, the IPSO algorithm proposed
in this paper is used to plan a moving path for the navigator
robot from the starting point to the endpoint, based on this
path, a local path is obtained by using the improved artificial
potential field method proposed in this paper to Avoid static
or dynamic obstacles that appear in the process, the follower
robot will follow the path of the pilot robot to move, and
will adjust the angle between each other to avoid obstacles
encountered, as well as to avoid collision between each other,
until the movement to the endpoint, to complete the task of
handling, the algorithms and methods mentioned above are
described and studied in detail in the previous paper, so we
will study how to design a The hybrid path planning algorithm
for robot formation will be investigated in the following steps,
The flow of hybrid path planning algorithm is shown in
Figure 15.

FIGURE 15. Hybrid path planning algorithm flow.

Step 1: Global static environmental information is col-
lected using sensors and radar devices carried by the robot
formations themselves and human-aided measurements, and
a geometric model is applied to construct an environmental
map.
Step 2: Formation control of multiple robots using the

robot formation control method based on the pilot-following
method and the artificial potential field method proposed in
this paper.
Step 3: Use the improved particle swarm algorithm for

global path planning to find an optimal path from the starting
point to the target point.
Step 4: Iterate through the global optimal path generated by

Step 3 and identify each inflection point in the global optimal
path.
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Step 5: At the same time, from the beginning of each
inflection point, the pilot robot will apply the improved pos-
terior potential field method for local path planning, while
the follower robot will follow the path of the pilot robot and
maintain a certain distance and angle with it, and the whole
multi-robot formation will maintain a certain formation, and
in the process of moving the whole robot formation, it will
actively avoid the encountered The entire multi-robot forma-
tion will maintain a certain formation, and during the move-
ment of the entire formation, it will actively avoid obstacles
and avoid collision between robots.
Step 6: Judge whether the current local path planning sub-

target point is the original target point, if not then the robot
formation reaches the sub-target point, return to step 4, the
next sub-target point is the original target point continue to
apply the improved artificial potential field method for path
planning if the sub-target point is the original target point then
complete the robot formation path planning task.

VI. SIMULATION ANALYSIS
A. SIMULATION ANALYSIS OF ROBOT GLOBAL PATH
PLANNING BASED ON IMPROVED PARTICLE SWARM
ALGORITHM
To verify that the improved particle swarm algorithm pro-
posed in this paper has strong optimization performance, the
basic particle swarm algorithm (Particle Swarm Optimiza-
tion, PSO), the population variation-based particle swarm
algorithm (Mutation Particle Swarm Optimization, MPSO)
and the improved particle swarm algorithm (Improved Par-
ticle Swarm Optimization, IPSO) in this paper are selected
to conduct simulation comparison experiments and analysis
in two maps with different complexity. Improved Particle
Swarm Optimization (IPSO) in two maps with different com-
plexity to carry out simulation comparison experiments and
analysis.

Keeping the population size and the number of iterations
of the above algorithm the same, n = 50; kmax = 200. In the
standard PSO algorithm, c1 and c2 affect the importance
of individual particle experience and population experience,
respectively, both of which have an important influence on the
particle search process, so the values of both are generally set
to the same value i.e., c1 = c2 = 1.5. In the standard PSO
algorithm with MPSO ω = 0.5, while In this paper, we will
use the proposed adaptive variation weights to automatically
adjust the value of ω. The refined search coefficient δ in
MPSO is 0.056 and the variation threshold pt is taken as 0.8.
Figure 16, Figure 17, and Figure 18 show the search results

of the movement path planning for the robot using the PSO
algorithm, MPSO algorithm, and IPSO algorithm proposed
in this paper in Environment Map.

From Figure 16, Figure 17, and Figure 18, it can be seen
that when the basic PSO algorithm is applied to the robot for
path planning in map environment 1, the length of the moving
path is longer than the other two algorithms, which proves that
the PSO algorithm is caught in local extremes in the process

FIGURE 16. PSO algorithm path planning in 500 × 500 map
environment 1.

FIGURE 17. MPSO algorithm path planning in 500 × 500 map
environment.

FIGURE 18. IPSO algorithm path planning in 500 × 500 map environment.

of pathfinding and does not search for the global optimal
solution or a solution closer to the global optimal solution,
and the moving path is too long, causing The robot’s travel
time and energy consumption are too long, which indicates
that the basic PSO algorithm is not outstanding in terms
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of its ability to find the optimal solution and needs to be
improved and optimized. When the MPSO algorithm is used
to plan the robot’s path, the length of the path is slightly
shorter than that of the basic PSO algorithm, and the overall
pathfinding ability of this algorithm is stronger than that of
the basic PSO algorithm.When the IPSO algorithm is applied
to pathfinding, the quality of the paths obtained is much better
than the other two algorithms, and the paths obtained using
the IPSO algorithm are much smaller than those obtained by
the basic PSO algorithm in terms of the length of the moving
paths. It shows that the IPSO algorithm proposed in this paper
has good performance in robot pathfinding.

The iterative convergence curves of the algorithms when
using the above three algorithms for path planning of the
robot in the same map environment respectively are shown
in Figure 19.

FIGURE 19. Iterative curves of three algorithms in environment 1.

From Figure 19, it can be seen that the convergence curve
obtained by applying the basic PSO algorithm to the robot
path planning problem has more iterations and the shortest
robot path when the curve converges compared with the
MPSO algorithm and the IPSO algorithm proposed in this
paper, which proves that the basic PSO algorithm has some
limitations in solving the robot path planning problem. The
convergence curve of the MPSO algorithm has a certain
degree of advantage over the basic PSO algorithm, and the
number of iterations used for convergence is less than that of
the basic PSO algorithm, and the length of the shortest robot
path is shorter than that of the basic PSO algorithm, which
proves that the robot path planning performance of theMPSO
algorithm is somewhat improved compared with that of the
basic PSO algorithm. It is proved that the robot path planning
performance of the MPSO algorithm is improved to a certain
extent compared with that of the basic PSO algorithm. The
iteration curve of the algorithm obtained by applying the
IPSO algorithm proposed in this paper to robot path planning
has the least number of algorithm iterations when converging,
and the shortest moving path of the robot is also the shortest

among the three, so the IPSO algorithm proposed in this
paper has a strong robot pathfinding ability. More detailed
comparison results and data of the three algorithm simulation
experiments are shown in Table 2.

TABLE 2. Comparison of simulation results of three PSO in environment
one.

As can be seen from Table 2, the shortest path length,
the running time and the optimal number of iterations for
convergence of the IPSO algorithm are better than those of
the PSO and MPSO algorithms when the IPSO algorithm is
applied to the robot for path planning. In addition, the search
efficiency of the IPSO algorithm is 52.6% and 34.3% higher
than that of the PSO and MPSO algorithms, respectively.
The search time of the IPSO algorithm is 53.7% and 34.2%
shorter than that of the MPSO algorithm and PSO algorithm.
Therefore, the IPSO algorithm proposed in this paper has
strong robot path-finding performance.

To verify the path planning capability of the improved
particle swarm algorithm in more complex situations in this
paper, the PSO algorithm, MPSO algorithm, and the IPSO
algorithm proposed in this paper were used to plan the mobile
path of the robot in the map environment II with higher
complexity, as shown in Figure 20, Figure 21 and Figure 22.

FIGURE 20. PSO algorithm path planning in 500 × 500 map
environment 2.

From Figure 20, Figure 21, and Figure 22, it can be seen
that when the basic PSO algorithm is used for path planning
of the robot inMap 2, the length of themobile path obtained is
still the longest among the three algorithms, and the algorithm
falls into local extremes in the process of finding the optimal
value and does not search for the vicinity of the global optimal
solution, indicating that the pathfinding ability of the basic
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FIGURE 21. MPSO algorithm path planning in 500 × 500 map
environment.

FIGURE 22. IPSO algorithm path planning in 500 × 500 map environment.

PSO algorithm is not outstanding. In addition, when the path
planning is performed using the MPSO algorithm, the mobile
path length of its robot is shorter than that using the basic PSO
algorithm, indicating that its path quality is higher than that
of the mobile path obtained by the MPSO algorithm. How-
ever, the mobile path obtained by using the IPSO algorithm
proposed in this paper is the shortest among the three, which
proves that the IPSO algorithm proposed in this paper has
a stronger path-finding ability compared with the other two
algorithms.

The convergence curves of the algorithm iterations for path
planning using the three algorithms in Environment II are
shown in Figure 23.

It can be seen from Figure 23 that the convergence speed
of the iterative curve of the basic PSO algorithm is the slow-
est, and the shortest moving path of the robot obtained by
the convergence is the longest among the three algorithms.
Although the MPSO algorithm with the shortest path length
in the convergence speed than the basic PSO algorithm was
promoted, the proposed IPSO algorithm has a faster conver-
gence rate compared with that, and the minimum path length
is shorter, showing that the proposed IPSO algorithm for
robot path planning optimization ability is more outstanding.
The comparison results and data of the three algorithms are
shown in Table 3.

FIGURE 23. Iterative curve of three algorithms in environment 2.

TABLE 3. Comparison of simulation results of three PSO in environment
two.

As can be seen from Table 3, the robot pathfinding perfor-
mance of the IPSO algorithm proposed in this paper is the
best among the three algorithms, in which the mobile path
length is 22.2% and 13.9% shorter than that of the applied
PSO and MPSO algorithms, respectively, and the algorithm
running time is 46.7% and 31.0% less than that of the applied
PSO and MPSO algorithms, respectively, and the mobile The
path search efficiency is 50% and 31.3% higher than that of
the PSO and MPSO algorithms, respectively. Therefore, the
IPSO algorithm proposed in this paper has good results when
applied to robot path planning.

B. SIMULATION ANALYSIS OF LOCAL PATH PLANNING
FOR MULTI-ROBOT FORMATIONS BASED ON IMPROVED
ARTIFICIAL POTENTIAL FIELD METHOD
1) SIMULATION ANALYSIS OF SINGLE ROBOT FORMATION
CONTROL AND OBSTACLE AVOIDANCE
Based on the improvement strategy and the process of algo-
rithm simulation proposed for the problems of the basic
artificial potential field method, two different working envi-
ronments are configured under 2.20-GHz PC, 8GB RAM,
Windows 10, 64-bit operating system environment using
MATLAB 2018a software, and dynamic obstacles as well as
static obstacles are added to them at the same time to conduct
simulation comparison tests to verify the effectiveness of the
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FIGURE 24. Path planning of basic artificial potential field method in
environment 1.

improved artificial potential field method proposed in this
paper.

(1) In Environment 1, the basic artificial potential field
method and the improved artificial potential field method of
this paper are used to plan the robot’s moving path respec-
tively, and the simulation results are shown in Figure 24 and
Figure 25.

FIGURE 25. Improved artificial potential field method for path planning
in environment 1.

As can be seen from Figure 24, the basic artificial potential
field method was used to plan the robot movement path in
the environment 1. In the initial stage, the robot success-
fully evaded the moving obstacles when it detected them
and successfully avoided the encountered obstacles, however,
the target unreachability problem occurred at the upcoming
end point and produced an oscillating wandering movement,
resulting in the path planning failure.

FIGURE 26. Path planning of basic artificial potential field method in
environment 2.

In Figure 25, when the improved artificial potential field
method is used to plan the robot’s moving path, it also suc-
cessfully avoids the moving obstacles in the initial stage and
smoothly avoids the obstacles on the moving path, in addi-
tion, no target unreachability problem occurs during this
period, and it successfully moves to the target point, which
proves that the improved artificial potential field method
proposed in this paper has good obstacle avoidance and path
planning performance, and can effectively avoid dynamic and
static obstacles.

(2) To further verify the improvement effect of the basic
artificial potential field method, the results of the robot
path planning by applying the basic artificial potential field
method and the improved artificial potential field method in
Environment 2 are shown in Figure 26 and Figure 27.

FIGURE 27. Improved artificial potential field method for path planning
in environment 2.

As can be seen from Figure 26, in environment 2, the basic
artificial potential field method was used to plan the robot’s
moving path, and when the robot recognized the moving
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obstacle, it successfully avoided it, however, when the robot
continued to move, it fell into the local minima and could
not continue to move toward the target point, leading to the
failure of path planning. As shown in Figure 27, the improved
artificial potential field method introduced by the simulated
annealing algorithm in this paper successfully avoids the
local minima and enables the robot to move smoothly to the
target point. Therefore, the improved artificial potential field
method proposed in this paper has good path planning and
obstacle avoidance performance.

In the environment, the improved particle swarm optimiza-
tion algorithm, the improved artificial potential field method
and the hybrid path planning algorithm proposed in this paper
are respectively applied to conduct path planning simulation
experiments for a single robot. The results are shown in
Figure 28, Figure 29 and Figure 30.

FIGURE 28. Improved particle swarm optimization for path planning in
500 × 500 map.

FIGURE 29. Improved artificial potential field method path planning in
500 × 500 map.

Figure 28 shows that temporary obstacles in the environ-
ment can be ignored by using improved PSO to mobile robot
path planning. The improved particle swarm algorithm can

FIGURE 30. Hybrid algorithm path planning in 500 × 500 map.

search for a very high quality mobile path from start to
finish, and the path to the turning point is relatively smooth,
but if the robot follows this path, there will be a collision
with temporary obstacles in the environment, resulting in the
occurrence of danger.

In Figure 29, adopting the improved artificial potential
field method for robot path planning operation, can effec-
tively avoid the environmental obstacles existing in the
interim, making it to the target, but the overall path length is
compared with using an improved particle swarm algorithm
to get the moving path longer and bending. This increases the
working time and reduces work efficiency.

In Figure 30, this paper designed amixture of path planning
algorithms for robot path planning. Fusion can effectively
improve the particle swarm algorithm and the improved artifi-
cial potential field method. The advantages of the guarantee
of the shorter path from start to finish at the same time can
effectively avoid the environment map’s temporary obstacles.
Therefore, the hybrid path planning algorithm proposed in
this paper has excellent performance.

2) SIMULATION ANALYSIS OF MULTI-ROBOT FORMATION
CONTROL AND OBSTACLE AVOIDANCE
Following the algorithm and parameter settings designed in
the previous section, a rectangular map with a map size of
500 × 500 is created using MATLAB 2018a software in a
2.20-GHz PC, 8 GB RAM, Windows 10, 64-bit operating
system environment. The starting coordinates of the leader
robot 1 are set to (60, 60) and the ending coordinates are set
to (450, 450). The starting coordinates of the follower robot 2
are (0, 60) and the starting coordinates of the follower robot 3
are (60, 0) with Ld = 60m and 8d

= π /4. The simulation
results are shown in Figure 31.

In Figure 31, the three robots start moving from the starting
point and encounter obstacles in motion on the moving path
of robot 2. By adjusting the angle between itself and the
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FIGURE 31. Robot formation obstacle avoidance simulation in
500 × 500 map.

navigator robot 1, the obstacle avoidance operation is com-
pleted, demonstrating the effectiveness of the active obstacle
avoidance strategy of the follower robot. Robot 3 was also
deflected by an angle due to the need to maintain the forma-
tion of the robot formation. After robot 2 successfully avoided
the obstacle, the robot formation re-tended to maintain the
Ld and 8d movements. Subsequently, the robot formation
was driven into a channel with obstacles on both sides of
the moving path, and the follower robot 2 and the follower
robot 3 again adjusted the angle between themselves and the
navigator robot 1, and the three robots successfully drove into
the narrow channel. When the three robots pass the narrow
passage smoothly, the follower robot 2 and the follower
robot 3 adjust the angle between themselves and the navigator
robot 1, and the robot formation re-tends to maintain the
Ld and 8d movements. When pilot robot 1 encountered an
obstacle, its position deviated from the established trajec-
tory and changed significantly when the pilot robot 1 per-
formed the obstacle avoidance operation, and the angle of
the moving direction of the follower robot 2 and the follower
robot 3 was adjusted accordingly to maintain the formation.
When the navigator robot 1 successfully avoided the obstacle,
it continued to move toward the endpoint. Finally, the pilot
robot successfully reached the endpoint, and the two follower
robots reached the designated position with the position state
of Ld = 60m and8d

= π /4, which verified the effectiveness
of the obstacle avoidance strategy.

In the same environment, the simulation experiment and
analysis of the hybrid algorithm for multi-robot formation
control and path planning are carried out. The robot in the
middle is the pilot, and the follower robot 1 and follower
robot 2 are located on the left and right sides of the pilot
respectively. The path planning simulation of the entire robot
formation is shown in Figure 32.

In Figure 32, the hybrid path planning algorithm proposed
in this paper is combined with the cooperative control method
of robot formation based on the improved artificial potential

FIGURE 32. Hybrid algorithm for robot formation path planning in
500 × 500 map.

field method and the piloting and following method. The
robot formation can smoothly travel from the starting point
to the end point and avoid dynamic and static obstacles that
occasionally appear on the road.

In the initial stage, the robot 2 encountered obstacles, so the
robot 2 adjusted itself and the relative angle and distance
between the leading robot and the following robot in order
to achieve the purpose of avoiding obstacles. The robot for-
mation in order to maintain the whole fleet formation, the
follower robot 2 also made the same adjustment, achieving
the goal of keeping the formation relatively stable.

When the formation is successful in avoiding the obstacles,
it will return to the original formationwhen it passes the circle
in front of the pilot robot. The obstacle avoidance robot and
two follower robots, in order to maintain the stability of the
formation, also make the corresponding adjustments when
avoiding the obstacles and tending to the original mobile
robot formation.

When the robot formation moved to the middle of the map,
it adjusted the relative angle and distance between itself and
the pilot robot in order to avoid the obstacle, successfully
avoiding the obstacle, and the follower robot also made a cor-
responding adjustment. Finally, the robot formation success-
fully moved to the target point and kept the same formation
as the starting point, which proved the effectiveness of the
robot formation hybrid path planning algorithm designed in
this paper.

C. CASE VALIDATION ANALYSIS
Company A is a machinery and equipment manufacturer
headquartered in a coastal city in eastern China. The com-
pany’s products include transmission equipment andmechan-
ical components, which are widely used in various machinery
and equipment, such as industrial robots, medical machinery,
industrial machine tools, cranes, and so on. While the com-
pany’s scale and business scope are expanding, company A
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FIGURE 33. Warehouse map modeling of a company in 600 × 600 map.

is also gradually promoting the application of digitalization
and automation technology in all aspects of the company’s
production and logistics, transforming from a traditional
machinery and equipment manufacturer to a fully intelligent
manufacturing enterprise.

CompanyA’s internal warehouse is an important part of the
company’s production and logistics, and there are a lot of pro-
duction materials and finished products transportation. Most
of the products in the warehouse transportation process are
using the manual operation of handling machines to complete
the task, not to achieve intelligent handling resulting in the
handling path is not the shortest and causing a waste of time.
In addition, there are some serious safety hazards in the actual
work of workers, which may cut against other equipment in
the warehouse. Therefore, to improve the efficiency of the
company’s internal warehouse operation and avoid the occur-
rence of danger, the company’s senior management decided
to use intelligent robots to replace manual work.

This section uses the geometric model map modeling
method to model the map of the company’s warehouse, set
obstacles, and configure environmental information accord-
ing to the layout of this warehouse and the location and size
of mechanical equipment, shelves, and other equipment in the
warehouse, as shown in Figure 33.

To verify the practical application performance of the for-
mation control method and path planning method for multi-
robot formations, a robot formation consisting of three robots
is set up and its starting position and end position are set
using the robot formation method proposed in this paper.
The starting position of the pilot robot is (45, 560) and
the ending position is (568, 33), the starting position of the
follower robot 1 is (26, 569), and the starting position of
the follower robot 2 is (36, 579), where the black object is
a known obstacle and the black circular object is a temporary
obstacle. The multi-robot formation control and hybrid path
planning method proposed in this chapter is used to construct
multi-robot formations and perform path planning, and the
simulation results are shown in Figure 34.

FIGURE 34. Hybrid algorithm robot formation path planning in
600 × 600 map.

As can be seen from Figure 34, when the hybrid path
planning algorithm proposed in this paper is applied to the
robot for path planning in the warehouse of company A,
it moves smoothly from the starting point to the target point,
and can effectively avoid the static obstacles and dynamic
obstacles encountered in the driving process, and ensures that
the moving path is shorter and the moving path is smoother,
which fully reflects the superiority of the hybrid path plan-
ning algorithm and ensures the, Therefore, the hybrid path
planning algorithm proposed in this paper has certain feasi-
bility and effectiveness when applied to the path planning of
multi-robot formation.

VII. CONCLUSION
Based on the in-depth analysis of the current situation of
robot, autonomous obstacle avoidance, formation and coop-
erative control and path planning research at home and
abroad, this paper designs a hybrid path planning model of
robot formation based on improved particle swarm algorithm
and improved artificial potential field method, and shows
through simulation experimental results that while avoiding
obstacles, it can effectively keep the robot formation in a
certain formation and improve transportation efficiency. The
research conclusions are as follows.

(1) To improve the search capability of the basic particle
swarm algorithm applied to robot global path planning, adap-
tive change weight rules are proposed to expand the search
range of the algorithm while improving the local search
capability of the algorithm; in addition, improvements are
made to the particle position update formula of the particle
swarm algorithm, and genetic algorithms are introduced to
expand the population range and improve the possibility of
the algorithm to find the optimal solution. The simulation
results prove the superiority and effectiveness of the improved
particle swarm algorithm.

(2) The repulsive field of the basic artificial potential field
method is optimized for the unreachable target problem of
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the basic artificial potential field method for robot local path
planning, and the simulated annealing algorithm is introduced
for the problem that the basic artificial potential field method
is easy to fall into the local minima in some cases to jump
out of the local minima position and make the robot drive
to the target point smoothly. To verify the superiority of the
improved basic artificial potential field method for robot path
planning, simulation comparison experiments are conducted
in two different maps, and the results show that the improved
artificial potential field method has stronger path planning
performance.

(3) The artificial potential field function of the pilot robot,
the artificial potential field function of the follower robot, the
control scheme of the robot formation, the obstacle avoidance
strategy of the follower robot, and the collision avoidance
strategy among the follower robots are designed based on
the improved artificial potential field method and the pilot-
follower method, so that the robot formation can effectively
avoid the obstacles and maintain a certain formation during
the moving process.

(4) Construct a multi-robot formation using the robot for-
mation control method proposed in this paper, and then use
the improved particle swarm algorithm proposed in this paper
to plan a moving path for the navigator robot from the starting
point to the target point, and the navigator robot applies the
improved artificial potential field method for path planning,
and the followers will move according to the trajectory of the
navigator robot, and the whole robot formation will avoid
the obstacles encountered in the process The whole robot
formation will avoid the obstacles encountered in the process,
and prevent the collision between robots while maintaining a
certain formation. From the simulation results, it can be seen
that the proposed cooperative control path planning algorithm
for robot formation has good performance.
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