
Received 3 June 2022, accepted 28 June 2022, date of publication 6 July 2022, date of current version 12 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3188856

Construction of Prioritized T-Way Test Suite
Using Bi-Objective Dragonfly Algorithm
MASHUK AHMED 1, ABDULLAH B. NASSER 2, AND KAMAL Z. ZAMLI 1, (Member, IEEE)
1Faculty of Computing, Universiti Malaysia Pahang, Pekan, Pahang 26600, Malaysia
2School of Technology and Innovation, University of Vaasa, 65200 Vaasa, Finland

Corresponding author: Mashuk Ahmed (mashuk1203095@gmail.com)

The research work undertaken in this paper is supported and funded by Universiti Malaysia Pahang under the Fundamental Research
Grant: FORMULATION OF BI-OBJECTIVE ELITIST DRAGONFLY ALGORITHM (BIDA) FOR CONSTRUCTING PRIORITIZED
T-WAY TEST CASES (FRGS/1/2019/ICT02/UMP/02/13 (RDU1901209)) from the Ministry of Higher Education Malaysia.

ABSTRACT Software testing is important for ensuring the reliability of software systems. In software
testing, effective test case generation is essential as an alternative to exhaustive testing. For improving the
software testing technology, the t-way testing technique combined with metaheuristic algorithm has been
great to analyze a large number of combinations for getting optimal solutions. However, most of the existing
t-way strategies consider test case weights while generating test suites. Priority of test cases hasn’t been fully
considered in previous works, but in practice, it’s frequently necessary to distinguish between high-priority
and low-priority test cases. Therefore, the significance of test case prioritization is quite high. For this
reason, this paper has proposed a t-way strategy that implements an adaptive Dragonfly Algorithm (DA)
to construct prioritized t-way test suites. Both test case weight and test case priority have equal significance
during test suite generation in this strategy. We have designed and implemented a Bi-objective Dragonfly
Algorithm (BDA) for prioritized t-way test suite generation, and the two objectives are test case weight
and test case priority. The test results demonstrate that BDA performs competitively against existing t-way
strategies in terms of test suite size, and in addition, BDA generates prioritized test suites.

INDEX TERMS Bi-objective, dragonfly algorithm, multi-objective optimization, prioritized test suite, test
case priority, t-way testing.

I. INTRODUCTION
Software testing and optimization are essential while evalu-
ating the robustness of software systems. A software system
needs to meet various requirements of the users. In software
testing, the test case generation problem is an essential prob-
lem [1]. Exhaustive testing isn’t so effective due to using
every combination of input values. Therefore, exhaustively
testing all inputs or outputs can cause combinatorial explo-
sion problems. As alternative approaches, random testing is
used to generate random test cases, however, it isn’t also so
effective as it can’t ensure the required optimal test cases.
Another option, parallel testing, has cost issues and often
requires higher resources. There’s also partition testing.

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .

In above-mentioned methods, detecting faults because of
interaction is difficult as there’s no provision. However,
t-way testing provides solutions to many of these mentioned
problems. T-way testing has come into use at present due to its
effective sampling strategy. ‘t’ means the interaction strength
in the term ‘t-way.’ This testing method generates test suites
and caters bugs due to input parameters’ interactions [2].
In test suite construction through t-way testing, the testing
strategy follows special methods (mathematical methods or
computational methods) to keep the test suite size as small
as possible and also covers all interactions which involve
specific combinations of parameters’ values for specified
interaction strength. T-way testing has 2 categories: OTAT
or one-test-at-a-time and OPAT or one parameter-at-a-time.
Recent t-way testing focuses not only on test case weights
but also on test case priorities. Prioritized t-way testing

VOLUME 10, 2022
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 71683

https://orcid.org/0000-0002-2965-4273
https://orcid.org/0000-0002-5377-999X
https://orcid.org/0000-0003-4626-0513
https://orcid.org/0000-0003-3264-185X

M. Ahmed et al.: Construction of Prioritized T-Way Test Suite Using Bi-Objective Dragonfly Algorithm

helps to solve multi-objective optimization problems more
effectively.

In t-way testing, metaheuristic algorithms are effective
for sampling optimized test suite sets from a huge number
of combinatorial values with a specific interaction strength.
There are various metaheuristic algorithms such as Genetic
Algorithm (GA), Ant Colony Algorithm (ACA), Flower Pol-
lination Algorithm (FPA), Cuckoo Search (CS) Algorithm,
Bee Algorithm, Particle Swarm Optimization (PSO), Drag-
onfly Algorithm (DA), Hill Climbing (HC), Harmony Search
(HS), Sine Cosine Algorithm (SCA), Simulated Anneal-
ing (SA), Tabu Search (TS), Teaching Learning Based Algo-
rithm (TLBO), etc. Metaheuristic algorithms have been
proven to be flexible and simple. Also, these algorithms have
mechanisms without deprivation [3]. Metaheuristic algo-
rithms effectively identify optimal test cases from exhaus-
tive test suites. Dragonfly Algorithm (DA), which is based
on swarms, has also been effective in optimal test case
generation.

Different metaheuristic algorithms show different charac-
teristics while implementing for t-way testing, where the
focus remains on test case weights most of the time. The
existing t-way testing methods based on metaheuristic algo-
rithms generate optimal test suites by focusing mostly on test
case weights. These methods consider the t-way interactions
having the same priority. But this isn’t practical in the reality
due to other factors. The testing methods have to distinguish
between high priority combinations and low priority combi-
nations so that we can generate highly prioritized test cases.
However, when there’s the question about prioritized test
suite generation where there are more than one objectives
(test caseweight and test case priority), there aren’t promising
t-way strategies fulfilling the requirement. So, a t-way test
suite generation strategy considering both test case weight
and test case priority is necessary.

DA has been used in various fields and is capable of
producing competitive results. DA has been effective while
obtaining global optima due to its survival of the fittest strat-
egy [4]. Also, in the field of multi-objective problems, there
have been some uses of DA [5]. Therefore, proper implemen-
tation of DA can make multi-objective or bi-objective t-way
testing methods for prioritized test suite generation (where
test case priorities are considered) free of many of the existing
complexities.

Due to the lack of existing works involving prioritized
t-way test suite generation where there are more than
one objectives (test case weight and test case priority),
this paper has proposed a new t-way testing strategy. The
major contributions of this research can be summarized
below:
• We propose a new strategy to generate prioritized
t-way test suites using Bi-objective Dragonfly Algo-
rithm (BDA), and the test suite generation is based on
two objectives: test case weight and test case priority.

• We compare the experimental results of BDA with the
results of other existing t-way strategies. While other

FIGURE 1. Online payment system.

t-way strategies’ performances are based on test case
weights only, BDA’s performance is based on both test
case weight and test case priority. Hence, there’s a supe-
riority in BDA’s performance.

The rest of the paper will discuss how BDA generates
prioritized test suites. Section II will discuss an overview
and theoretical background of t-way testing and test case
prioritization. Section III will discuss the related existing
works. Section IV will discuss the Dragonfly Algorithm.
Section V will explain the methodology of constructing pri-
oritized t-way test suites using BDA. Section VI will discuss
the results obtained from the implementation of BDA in t-way
testing based on both test case weight and priority. Finally,
section VII will present a summary on the overall scenario of
this research.

II. BACKGROUND
A. T-WAY TEST SUITE GENERATION
T-way testing is a special type of sampling technique. This
method tests software or hardware systems by generating
optimal test cases. The advantage of this testing method is
that it’s not necessary to test all combinations of inputs and
outputs. Mainly, based on the interaction strength (t), the
testing method can cover every t-combination of the test
cases.

T-way testing generates a reduced size of test cases for
testing, thus avoiding exhaustive testing. As an example,
we can consider an online payment system, as shown in
Figure 1. It allows the payment or transfer of money through
an electronic system. There’s an online payment form, which
the user has to fill up with necessary information, and then
this information is submitted to the website of the merchant.

In the payment option, the user needs to submit four
inputs or parameters in the merchant’s website. These
inputs are accepted card selection, card number, expiration
date, and CVV. The system supports four payment meth-
ods: PayPal, American Express, MasterCard, and VISA.
‘Card Number’ option supports one string value. ‘Expiration
Date’ usually supports two input values: month and year
(for example, ranging from 2016 to 2031). ‘CVV’ accepts
an input value. There will be 720 (4 × 1 × 12 × 15 × 1)

71684 VOLUME 10, 2022

M. Ahmed et al.: Construction of Prioritized T-Way Test Suite Using Bi-Objective Dragonfly Algorithm

test cases for exhaustively testing all the test cases for this
online payment system. But exhaustively testing all the test
cases for this complex system isn’t practical. Therefore, t-way
testing can be a great solution for this problem. There can be
a reduction of 80% test cases through two-way or pairwise
testing, so it can save a lot of time and effort. For two-way
testing, where interaction coverage is 2, around 93% bugs or
software failures can be detected [6]. Again, fault detection
becomes 98% for three-way testing [7] and 100% for 4-way
to 6-way testing [8].

B. THEORETICAL BACKGROUND OF T-WAY TESTING
For t-way testing, the test suite (T) is usually an n × m array,
where there are test cases in n rows. With the combination of
each input parameter, the formation of every test case takes
place. The test suite contains all combinations of input param-
eter values. One test case can contain multiple combinations
of input parameter values.

Suppose, there’s a set containing N parameters. These
parameters are p1, p2, p3, p4, . . . , pn. Here, each parameter
contains vi possible values, such as v1, v2, v3, v4, . . . , vm.
For interaction strength t, the t-way test suite is an array in
the form of N × n, ensuring that every column gets elements
from vi. Also, at least once, each N × t sub-array has every
combination of size t.

For describing the test suite of t-way, a great way is to
use covering array (CA), which is a mathematical nota-
tion. The uniform covering array is represented by the
notation CA (N, t, vp). Here, p is the number of parameters,
v denotes the parameters’ values, and t is the interaction
strength level. For instance, CA(12; 2, 316) has 12 rows of
test cases, and these are constructed from 16 columns of
parameters with 3 values for every parameter. In case it’s not a
uniform covering array, and the parameters’ values aren’t the
same, we can represent it byMCA(N, t, v1p1 v2p2 vkpk).
As an instance, MCA (14, 3, 24, 31) has 14 final test
cases, 4 parameters with 2 values and 1 parameter with
3 values.

C. PRIORITIZATION OF TEST CASES
In prioritized t-way test suite generation, it’s necessary to
determine the priority score of the test cases. The priority
score of a test case depends on whether a test case contains at
least one prioritized element or not. However, the conditions
of a t-way test suite generation process decidewhich elements
will be prioritized andwhich elements will be non-prioritized.

Suppose, in a t-way test suite generation, a generated
test suite have 4 test cases: (a1,b1,c1), (a2,b2,c2), (a3,b3,c3),
(a4,b4,c4). Here, only b1 and c2 are prioritized elements.
Other elements are non-prioritized.

In this case, (a1,b1,c1) and (a2,b2,c2) are prioritized test
cases because (a1,b1,c1) contains the prioritized element b1,
and (a2,b2,c2) contains the prioritized element c2. So, each of
these test cases will have a higher priority score.

However, (a3,b3,c3) and (a4,b4,c4) are non-prioritized test
cases because each of these test cases doesn’t contain any of

the prioritized elements b1 or c2. So, each of these test cases
will have a normal priority score.

III. RELATED WORK
T-way testing has 2 approaches; one is the algebraic approach,
and the other is the computational approach [9]. The algebraic
approach has some limitations. Usually, it’s for small config-
urations. However, the computational approach uses greedy
algorithms to generate test suites. As a result, this approach
can cover a great number of interaction combinations.

In combinatorial testing, there has been adaptation and
implementation of DA. Implementations of DA in the com-
binatorial testing has shown proofs for the efficiency of DA
in test suite generation mainly in terms of test suite size [10].

Hybrid FPA has also been very effective in t-way testing.
FPA’s hybrid variants have been successful in overcoming
the complexities due to slow convergence. In terms of test
suite size, the hybrid FPA variants have shown superior per-
formance against many existing t-way strategies [11]. How-
ever, an Elitist FPA (eFPA) was implemented in test suite
generation for both sequence-less and sequence t-way testing.
eFPA performed competitively against existing t-way strate-
gies in terms of test suite size [12].

T-way strategies based on the Whale Optimization Algo-
rithm (WOA) has also been effective in t-way testing. WOA
is a modern AI-based and nature-inspired algorithm [13].
A WOA based strategy with the support of constraint has
performed well in t-way test suite generation [14]. WOA is
also good for t-way testing with higher interaction strength.
Variants of WOA has successfully avoided local optima and
conquered premature convergence to ensure good perfor-
mance in t-way testing with higher interaction strength [15].

However, GA, an evolutionary search-based algorithm, has
been implemented successfully in t-way testing. A t-way
strategy based on a modified GA has shown high efficiency
in variable and uniform t-way test suite generation. By the bit
structuremodification and quick access to test cases, there has
been an upgrade in GA’s performance [16]. The strategy has
competed well against existing computational and AI-based
t-way strategies. Also, the strategy has performed well in
t-way with higher interaction strengths.

In pairwise testing, Harmony Search (HS) Algorithm has
also been effective. HS gets inspired from harmony impro-
visation [17]. There have been developments of HS based
strategies for generating pairwise test cases. The HS based
t-way strategy also shows competitive results against existing
pairwise test case generation tools [18]. HS has potential for
further improvement in t-way testing.

ACA mimics an ant colony moving from its nest to dis-
cover food source using the shortest possible path [19].
ACA based t-way strategies are good enough in generating
test suites with smaller sizes, and ACA based strategies have
dominated many existing strategies while generating smaller
test suites. [20].

SCA, a recent metaheuristic algorithm, has also
shown promising results in t-way test suite generation.

VOLUME 10, 2022 71685

M. Ahmed et al.: Construction of Prioritized T-Way Test Suite Using Bi-Objective Dragonfly Algorithm

In combinatorial test suite generation, SCA has been suc-
cessful in minimizing test suite sizes. SCA has been superior
compared to many t-way strategies in generating minimized
combinatorial test suites [21].

Gravitational Search Algorithm (GSA) maintains two pop-
ular Issac Newton’s laws: the universal gravitation law and
the motion interaction law. GSA is also great in producing
optimal t-way test suites. The performance of a GSA based
t-way strategy was benchmarked against the currently estab-
lished t-way strategies, and the GSA based t-way strategy
produced competitive results against other strategies [22].
However, another t-way strategy based on the African Buffalo
Optimization (ABO) algorithm ensured greater effectiveness
and faster convergence in t-way testing [23].

CS gets inspired from some cuckoos’ brood parasitic
behaviours. CS based t-way strategies can perform well in
t-way testing by tuning parameters like the nest size, the rep-
etition, and the elitism probability. CS based t-way strategies
have been able to outperform many existing t-way strategies
in t-way testing [24].

Jaya Algorithm (JA) based strategies are also effective
in t-way testing. JA is a simple but robust algorithm [25].
JA based strategies have overcome the complexities due to
slow convergence and performed well in t-way testing [26].

T-way testing based on the Bee Colony algorithm is also
efficient in generating optimal test cases; it can even out-
perform many existing computational and AI-based t-way
strategies in terms of constructing optimum test cases [27].
Bee Algorithm based t-way strategies are also implemented
in sequence-based testing [28]. However, Hybrid Artificial
Bee Colony (HABC) Algorithm has been effective for a
hamming based t-way strategy targeting variable strength test
set generation [29]. This strategy has performed very well
compared to its counterparts.

PSO has also been proved to be effective in combinatorial
testing. Quantum Particle SwarmOptimization (QPSO) strat-
egy has successfully generated constrained combinatorial test
suites [30]. A synergic QPSO technique called QPIO enriches
QPSO’s application in the context of combinatorial testing.

IV. DRAGONFLY ALGORITHM
Dragonfly algorithm (DA) is a population-based approach.
It has a few parameters to be tuned, which makes the
implementation simple. Also, reasonable convergence time
is ensured during its implementation. Regarding merging
options, DA is very effective. It’s firmer, and it’s easy to
merge this algorithm with other algorithms [31].

The DA operates being inspired by the hunting behav-
ior, which is known as a static swarm (feeding). This
approach follows the migration techniques of idealized drag-
onflies [32]. Dragonflies are small insects; they usually move
in small groups. They search for food while roaming in
small groups. This process of searching for food is known
as the hunting mechanism of dragonflies. There are also
larger groups of dragonflies. These dragonflies move in one
direction while flying with each other, so the swarm migrates

following the migration mechanism. The hunting behavior
and feeding behavior of dragonflies can be of various types.
The swarm can be a static swarm or a dynamic swarm. There
are five operators, which characterize the swarming behavior
of dragonflies. Also, Figure 2 shows the swarming behaviors
of dragonflies.

A. SEPARATION
In the separation mechanism, it’s ensured that the search
agents are away from each other when they are in the neigh-
borhood. The separation behavior has mathematical mod-
elling as shown in equation 1.

Si = −
N∑
j=1

X − Xj (1)

Here, X is the current individual’s position, Xj is the
jth neighbouring individual’s or dragonfly’s position. How-
ever, N indicates howmany individual neighbours are present
in the dragonfly swarm. S is the ith individual’s separation
motion.

B. ALIGNMENT
Alignment is the indicator regarding how a specific search
agent’s velocity becomes similar with other search agents’
velocity in the neighborhood. The alignment behavior has its
mathematical modelling, as shown in equation 2.

Ai =

∑N
j=1 Vj
N

(2)

Here, in equation 2, Vj denotes jth neighbour’s speed.

C. COHESION
Cohesion explains how individuals fly to the center of the
mass from the neighborhood area. It means individuals’ ten-
dency to fly towards the neighborhood mass’s center. The
cohesion behavior has its mathematical modelling as shown
in equation 3.

Ci =

∑N
j=1 Xj
N

− X (3)

D. ATTRACTION
Attraction explains how individuals flying towards the food
source get attracted to that food. Its mathematical modelling
is shown in equation 4.

Fi = Floc − X (4)

Here, Fi indicates food attraction for ith dragonfly.
Floc denotes the food source’s position.

E. DISTRACTION
Distraction explains individuals’ tendency to stay away from
enemies. The enemy and the ith solution will have a distrac-
tion, and it’s shown mathematically in equation 5.

Ei = Eloc + X (5)

71686 VOLUME 10, 2022

M. Ahmed et al.: Construction of Prioritized T-Way Test Suite Using Bi-Objective Dragonfly Algorithm

FIGURE 2. Swarming behaviors of dragonflies.

In equation 5, Ei means the distraction motion of the worst
candidate or enemy for ith dragonfly. Eloc means the position
of the enemy.

F. FINDING OPTIMAL SOLUTION USING THE OPERATORS
When DA operates the search process, it uses the candidate
with the strongest fitness to update the fitness of the loca-
tion and the food source. Also, the worst candidate updates
the enemy’s location and fitness. This mechanism helps to
diverge into favorable search spaces and stay away from
unfavorable search spaces.

DA uses PSO’s generic framework because it updates a
dragonfly’s position by utilizing two vectors. These two vec-
tors are the position vector and the step vector (4X). The
step vector works similarly to the velocity vector of the PSO.
The function of the step vector is to serve for altering the
movement of dragonflies. The step vector is mathematically
modelled in equation 6.

4Xt+1 = w4Xt + (sSi + aAi + cCi + fFi + eEi) (6)

Here in equation 6, s denotes the weights of the separation
(Si) of the ith individual, a denotes the weights of the align-
ment (Ai) of the ith individual, c denotes the weights of the
cohesion (Ci) of the ith individual, f denotes the weights of the
movement speed towards the food source (Fi) of the ith indi-
vidual, and e denotes the weights of the enemy disturbance
level (Ei) of the ith individual. The values of s, a, c, f, e, and w
have been got from the existing works of DA [5], and we have
also modified some of these parameters in order to improve
DA’s performance. In this research work, s = 0.1, a = 0.1,
c = 0.7, f ranges from −1 to 1, e ranges from −1 to 1, and
w ranges from −0.2 to 0.9.

We can update an individual’s position according to
equation 7. It also indicates the position vector calculation.

Xt+1 = 4Xt+1 + Xt (7)

Here, t represents the present step.
We can enhance dragonflies’ random behaviors using the

levy flight in the search area [33]. For that, we modify

equation 7, and get equation 8.

Xt+1 = Xt + Xt × Levy(d) (8)

Here, d denotes dimension search space’s dimension, and
t represents the current iteration. We can explain levy flight
by equation 9:

Levy(d) =
r1 × σ

|r2|
1
β

× 0.01 (9)

Here, r1 and r2 represent the random numbers, and usually
0 ≤ r1 ≤ 1 and 0 ≤ r2 ≤ 1. For the adaptation purpose,
for r1, we have used the range −1 ≤ r1 ≤ 1. β is a constant,
and its value is 1.5. However, the explanation of σ is possible
by the equation 10:

σ = (
0(β + 1)× sin(πβ2)

0(β+12)× β × 2
β−1
2

)
1
β (10)

Using these ideas and equations, we can run the iterations
for t-way testing.

Algorithm 1 gives DA’s pseudo-code. When DA starts its
operation, there’s a random initialization of a population of
solutions from a given problem of optimization. The vari-
ables’ upper and lower bounds define the random values
which initialize the dragonflies’ step and position vectors.
Each iteration updates the step vector and position vec-
tor. For updating vectors X and 4X, the process chooses
each dragonfly’s neighborhood by calculating all dragonflies’
Euclidean distance and selecting N of these. Unless the cri-
terion is satisfied, DA keeps updating the position iteratively.
DA’s convergence rate is controllable by tuning the swarming
weights [34].

V. THE DESIGN OF BI-OBJECTIVE DRAGONFLY
ALGORITHM BASED T-WAY STRATEGY FOR
PRIORITIZED TEST SUITE CONSTRUCTION
The developed and proposed t-way testing strategy gen-
erates the final test suite in several steps. It generates
the search space with all available t-way combinations,
updates the smallest number of test cases by covering all
the t-way combinations while evaluating the test cases using

VOLUME 10, 2022 71687

M. Ahmed et al.: Construction of Prioritized T-Way Test Suite Using Bi-Objective Dragonfly Algorithm

Algorithm 1 Dragonfly Algorithm’s Pseudo-Code
Randomly generate population of dragonfly Xi
(i=1,2,3,. . . , n)
Initializing step vectors 1Xi (i=1,2,3,. . . , n)
while the end condition isn’t met, do

Determine the dragonflies’ objective values
Update enemy and food source
Update swarming weights (s, a, c, f, e, w)
Determine S, A, C, F, E
Update radius at neighborhood
if a dragonfly has at least one dragonfly at its neighbor-

hood then
Update position vector and velocity vector

else
Update position vector

end if
Check the new positions and correct these based on the

variables’ boundaries
end while

the DA and Pareto optimality concept, and updates the final
test suite. Figure 3 displays the process flow of the proposed
testing strategy.

A. USER INPUT TO THE SYSTEM AND GENERATING THE
LIST OF INTERACTION ELEMENTS
Firstly, the proposed strategy obtains the user inputs for the
testing. The input values are analyzed. For input values, there
are a set of parameters, and each parameter has one or more
values. Figure 4 shows the developed t-way testing tool where
inputs are provided by the user.

In this tool, the option ‘‘Input’’ asks the input parameters
for t-way test suite generation. The next option ‘‘Select pri-
oritized elements’’ is for mentioning the prioritized elements.
The user has to mention the prioritized elements before run-
ning the test. When the test is running, the tool will consider
higher priority scores for test cases having prioritized ele-
ments. According to this strategy’s priority rule, interaction
elements with one or more prioritized elements have higher
priority scores. A test case’s priority score is the summation of
its all interaction elements’ priority scores. In the tool, there
are other options like ‘‘Interaction strength’’, ‘‘Population
size’’, ‘‘No. of updates of population in each iteration’’, etc.

Through t-way testing with a specific interaction
strength (t), the interaction elements are generated, which
represent the search space. The t-way parameter combina-
tions depend on the number of parameters, the interaction
strength, and the number of values of each parameter. Every
possible combination of inputs is taken to construct the
complete search space of interaction elements.

Suppose, for the t-way testing’s search space, there are
combinations of p input parameters. In the search space, each
element is an integer value’s factor. A t-way combination
can be a1, a2. . . , at, where t denotes interaction strength.

From t-combinations of the input parameters, test cases can
be generated.

Figure 5 shows how t-way interaction elements can be
generated. Suppose there are 4 inputs (such as, A, B, C, D).
If interaction coverage or strength (t) is 3, the 3-way combi-
nations for the four inputs will be ABC, ABD, ACD, BDC.
If interaction strength (t) is 2, then the 2-way combinations
for the four inputs will be AB, AC, AD, CD, BC, BD. Then,
based on the number of values of each parameter, all t-way
combinations can be obtained.

B. GENERATE TEST POPULATION
As the strategy has the interaction elements now, the next step
is the generation of the test population. Initially, a population
is generated based on random selection from the input. The
size of the population of test cases may vary depending on
the input size and required optimality of the final test suite.
In every iteration, the strategy selects one optimal test case.
Every iteration goes through a fixed number of updates of
the population. As an example, if the population size of the
test is 20 and the number of updates of the population in
each iteration is 100, then in every iteration, the strategy will
update the population of 20 test cases 100 times based on
BDA, and in each update, the strategy randomly selects one
test case from the population. Thus, a list of 100 test cases
is generated at the end of each iteration, and the strategy
selects the best test case from that list. This list of 100 test
cases generated in an iteration is deleted after the end of that
iteration.

Usually, the test cases are an array of elements. These
array elements come from the interaction elements that are
parameter values; each parameter has one or more values
within a specific range. As an example, there can be four
parameters, where each parameter has i number of values.
The parameters can be a, b, c and d. Here, the values of
parameter ‘a’ are: a1, a2, . . . , ai. In the same way, for ‘b’:
b1, b2, , bi; for ‘c’: c1, c2,, ci; and for ‘d’: d1,
d2,, di. The parameters can have different numbers
of values. From these parameter values, various test cases
can be generated. As an example, one of the test cases is
(a1, b1, c1, d1). Each population has such test cases.

C. PERFORM SEARCH USING BDA AND PARETO
OPTIMALITY CONCEPT
The strategy targets to generate the smallest number of test
cases covering all t-way combinations at least once in the
search space. The test case covering the highest number of
uncovered t-way combinations has the highest weight. Sup-
pose, if a system has a specific number of inputs, all the
t-way combinations of the inputs will be taken. Then while
generating test cases, each test case will cover a specific
number of uncovered t-combinations. The number of covered
t-combination elements represents the weight and priority of
the test case.

In equation 11, f(x) is the objective function, n is
the number of combinations, t is the interaction strength.

71688 VOLUME 10, 2022

M. Ahmed et al.: Construction of Prioritized T-Way Test Suite Using Bi-Objective Dragonfly Algorithm

FIGURE 3. The process flow of prioritized t-way test suite construction utilizing BDA.

This function is optimized so that the test case’s weight can
be captured in terms of the number of covered interactions.

f (x) =
t∑
i=0

n∑
j=0

(xi,j, . . . , xt,n) (11)

1) IMPLEMENT BDA
BDA helps to determine the test case’s weight and priority
scores. Each interaction element’s weight is either 0 or 1.
Suppose, if a previously uncovered interaction element is
present in a test case, it adds a weight score of 1. But a covered
interaction element adds a weight score of 0 to a test case.

In the case of priority, the score of an interaction element
can be anything. Depending on priority conditions, the range
of priority scores may vary. In our strategy, each prioritized
interaction element has a priority score of 2, and for the rest
of the interaction elements, each has a priority score of 1.

For the priority score of a specific test case, the testing
strategy adds the priority scores of all interaction elements
of the test case.

2) IMPLEMENT PARETO OPTIMALITY
The strategy evaluates the test cases based on both test case
weight and priority. The test cases are evaluated according to
their fitness scores based on both weight and priority. For the
implementation of this strategy, we combine BDA and Pareto
optimality concept.

Comparison of two test cases in a bi-objective search space
is possible using the Pareto dominance concept. According to
Pareto dominance, if there are two vectors such as −→x = (x1,
x2, x3,, xk),

−→y = (y1, y2, y3,, yk), and
−→x will

dominate −→y if:

∀i ∈ {1, 2, . . . , k}, [f (xi)

≥ f (yi)] ∧ [∃i ∈ 1, 2, 3, . . . , k : f (xi)] (12)

VOLUME 10, 2022 71689

M. Ahmed et al.: Construction of Prioritized T-Way Test Suite Using Bi-Objective Dragonfly Algorithm

FIGURE 4. Provided inputs in the BDA based t-way testing tool.

FIGURE 5. 2-way combinations for four inputs.

From equation 12, it can be said that test case ‘a’ can
dominate test case ‘b’ if ‘a’ dominates ‘b’ in more number
of objectives than the number of objectives in which ‘b’
dominates ‘a’. The strategy partially use the Pareto optimality
concept for test case selection in the bi-objective search space.

3) UPDATE FITNESS SCORES OF TEST CASES OF THE
POPULATION AND ADD THE BEST TEST CASE ONTO
THE FINAL TEST SUITE
The strategy updates the fitness score of each test case in the
population by adding the weight score and priority score of
the test case according to BDA.

In every population, we express the weight score of every
single test case as the percentage of the highest weight score
in the population. We do the same with priority scores also.
Then we add the weight score and priority score of every

test case, so we get the fitness score (priority score + weight
score) of every test case.

After implementing BDA, the fitness scores of the popu-
lation are available. After selecting the best test case from
the population by partially using the Pareto optimality con-
cept and using the fitness scores, the strategy removes the
interaction elements of the best test case from all interaction
elements determined from the inputs.

When the iteration ends, the strategy transfers the most
superior test case onto the final test suite. Here, in every iter-
ation, the test cases with lower fitness scores get eliminated,
and the test case with the best fitness score gets included in
the final test suite. BDA, along with the Pareto optimality
concept, evaluates the test cases based on weight and priority
scores. BDA uses its operators characterized by the swarming
behaviors of dragonflies. The complete step finds the test
cases with the most optimal weight and priority.

D. TERMINATION OF THE TEST AND UPDATING THE
FINAL TEST SUITE
In an iteration, after finding the most optimal test case,
that test case is transferred to the final test suite. Here, the
final test suite gets updated based on the weight and priority
of the test cases. While updating the test suite, the iteration
keeps improving until fulfilling the termination condition.
The test suite can be improved using BDA when selected
test case variables don’t provide satisfactory results to the
benchmark functions. The termination condition is fulfilled
when the strategy covers all the interaction elements.

In every iteration, based on fitness scores, the lower scoring
test cases get eliminated, and the higher scoring test case
gets included in the final test suite. Here, the t-way strat-
egy with BDA combined with the Pareto optimality concept

71690 VOLUME 10, 2022

M. Ahmed et al.: Construction of Prioritized T-Way Test Suite Using Bi-Objective Dragonfly Algorithm

FIGURE 6. Achieved test suite in the BDA based t-way testing tool.

does the final test suite updating process. The final test
suite is obtained after fulfilling the termination condition.
Figure 6 shows the developed t-way testing tool where we
can see the generated test suite.

VI. RESULTS AND DISCUSSIONS
After developing the design and implementation of priori-
tized t-way test suite construction using BDA, this section
will discuss the results achieved from the implementation of
BDA for various configurations. Also, there will be compar-
isons of BDA with other existing strategies.

A. EXPERIMENTAL SETUP
The coding of the tests have been done on Intellij IDEACom-
munity Edition 2020.2.3 using Java. We have used Intel(R)
Core(TM) i5-8250U (1.60 GHz, 3.4 GHz) with 8 GB of
DDR4 RAM on the Windows 10 operating system. Many
comparisons in the experiments used both average values and
the best values of the test results. For determining average
values, each tests were run 10 times.

The population size was 20 in all tests. For average results,
the number of updates of the population in each iteration
was 1000 in most tests. There were some configurations with
larger inputs where some tests were run with lower numbers
of updates (equal to 500) of populations in each iteration.

B. BENCHMARKING BI-OBJECTIVE DRAGONFLY
ALGORITHM BASED STRATEGY WITH OTHER
EXISTING STRATEGIES
From the results of our experiments, we have evaluated the
performance of BDA against other existing metaheuristic
algorithm based t-way testing techniques, and the evaluation
has been on the basis of both test suite size and total prior-
ity score of the final test suite. However, the other existing

strategies considered in this research are PSO, Harmony
Search Strategy (HSS), FPA, All pairs, and Visual Pair-wise
Test Array Generator (VPTag). There have been 6 sets of
comparisons in our experiments. Existing test results of PSO,
HSS, FPA have been collected from existing works [11], [12].

In each of the first 3 experiments (experiments 1 to 3), there
have been 2 steps. Firstly, in weight based tests, there have
been t-way test suite generations using BDA considering only
test case weights, and these results have been compared with
the results of other existing strategies. Secondly, in weight
and priority based tests, there have been prioritized (consider-
ing both test case weight and test case priority) t-way test suite
generations based on the developed strategy using BDA. The
target is generating prioritized test suites using BDA, where
test suite sizes will be competitive to test suite sizes obtained
in the tests considering only test case weight. If the target is
achieved, it will be a very good result because prioritization
adds an extra objective (test case priority) in the t-way test
suite generation, and this objective tends to increase the test
suite size.

In the next 3 experiments (experiments 4 to 6), apart from
BDA, there have also been implementations of the developed
strategy on SCA and TLBO. Then there have been compar-
isons among SCA, TLBO, and BDA in terms of test suite
sizes and priority scores.

1) EXPERIMENT 1: COMPARISON OF BDA WITH EXISTING
STRATEGIES IN TERMS OF WEIGHT AND PRIORITY
FOR 14 CONFIGURATIONS
In this experiment, there has been a comparison of BDA
with other existing strategies in terms of both test suite size
and prioritized test suite generation for 14 configurations.
Table 1 shows the test results. There are 2 types of tests.
Firstly, weight based tests consider only test case weight.

VOLUME 10, 2022 71691

M. Ahmed et al.: Construction of Prioritized T-Way Test Suite Using Bi-Objective Dragonfly Algorithm

TABLE 1. Comparison of BDA with existing strategies in experiment 1.

Secondly, weight and priority based tests consider both test
case weight and test case priority.

In the weight based tests, the tests of BDA and other
existing strategies are based on only test case weight. In the
weight and priority based tests, the tests of BDA are based on
both test case weight and test case priority.

In weight based tests, BDA has shown very good per-
formance as compared to other strategies. BDA has outper-
formed PSO in 4 configurations, and PSO has been stronger
in 4 configurations. BDA has outperformed HSS in 6 con-
figurations, and HSS has outperformed BDA in 4 configura-
tions. However, BDA outperforms FPA in 7 configurations,
and FPA outperforms BDA in 4 configurations. BDA also
heavily dominates All pairs and VPTag. All pairs and VPTag
didn’t support some configurations as these two strategies
only support pairwise testing, and they don’t even work for
some large inputs in pairwise testing. We marked these test
results by ‘NS’ (No support). Also, some test results were
not available (marked by ‘NA’).

Also, in weight and priority based tests, there has been pri-
oritized test suite generation using BDA. Inweight based tests
(where we consider only test suite size for evaluation), it’s
noticeable that BDA performs very well against the existing
strategies. However, in prioritized test case generation, the
test suite size usually becomes a little larger because the test
considers both test case weight and priority while selecting
test cases. Weight based tests consider only test case weight;
that’s why they can maintain a little smaller final test suite
size.

From table 1, it’s noticeable that the performance of BDA
was satisfactory in terms of final test size in the prioritized
test suite generations, where both test case weight and test

case priority are considered. In the second configuration
CA(N;2, 105), BDA produced a test suite with a size
of 123 (best value) in the weight based test, and BDA also
produced a test suite with a size of 128 (best value) in the
weight and priority based test. So, the difference between
the two test suite sizes is only 5. The results are similar
for other configurations also. Apart from maintaining test
suite sizes in weight and priority based tests, BDA also
maintains good priority scores of the test cases, as shown in
table 1. These t-way test results ensure that BDA generates
prioritized test suites along with maintaining satisfactory test
suite sizes. Figure 7 shows the achieved test suite sizes of
BDA in weight based tests and weight and priority based
tests.

From table 1, let’s consider the test result (best value) of
BDA in weight and priority based tests for the configuration
CA(N; 3, 46), where the final test suite size is 90, interaction
elements size (total number of interaction elements in the
final test suite) is 1800, and priority score is 2952. Here, each
test case has 20 interaction elements. A normal interaction
element has a priority score of 1, and a prioritized interaction
element has a priority score of 2. So, the minimum priority
score of a test case can be 20, and the maximum priority score
of a test case can be 40. Here, in the final test suite, the average
priority score per test case = 2952/90 = 32.8.

2) EXPERIMENT 2: COMPARISON OF BDA WITH EXISTING
STRATEGIES IN TERMS OF BOTH WEIGHT AND PRIORITY
FOR CA(N; T, 210), 2≤t≤6
The proposed strategy can function with high interaction
strength, which is up to 6. Table 2 shows the performances
of BDA and other strategies in terms of final test suite

71692 VOLUME 10, 2022

M. Ahmed et al.: Construction of Prioritized T-Way Test Suite Using Bi-Objective Dragonfly Algorithm

FIGURE 7. Sizes of final test suites generated by BDA in experiment 1.

TABLE 2. Evaluation of BDA with other strategies, for the configuration
CA(N; t, 210), 2 ≤ t ≤ 6.

size (weight based tests) and also the performance of BDA
in weight and priority based tests for the configuration
CA(N; t, 210), where 2 ≤ t ≤ 6.
For every strategy, the final test suite size increases with

the increase of interaction strength, t. However, most of the
strategies struggle while generating test suites for interaction
strength t > 6. In weight based tests (where we consider
only test suite size for evaluation), BDA, HSS, and FPA
performed at a similar level. However, BDA outperformed
PSO in weight based tests.

In weight and priority based tests, BDA generates test
suites with sizes not much bigger than the sizes of test suites
generated by BDA in weight based tests. As an example,
for CA(N; t, 210) with t = 5, the test suite generated by
BDA in the weight and priority based test has a size of 83
(best value), and the test suite generated by BDA in the
weight based test has a size of 80 (best value). Here, the
difference between these two test suite sizes is only 3. For
t = 2 and t = 3, there’s no gap between respective test
suite sizes (best values) in weight based tests and prioritized

TABLE 3. Evaluation of BDA against other strategies for the configuration
CA(N; 4, 5P), 5≤P≤10.

(weight and priority based) tests. The results with other con-
figurations are also impressive.

3) EXPERIMENT 3: COMPARISON OF BDA WITH EXISTING
STRATEGIES IN TERMS OF BOTH WEIGHT AND PRIORITY
FOR THE CONFIGURATION CA(N;4,5P), 5≤P≤10
Table 3 shows the performances of BDA and other present
t-way techniques on the basis of test suite size (weight based
tests) and also the performance of BDA in prioritized test
suite generation (weight and priority based tests) for the
configuration for CA(N; 4, 5P), 5 ≤ P ≤ 10.

Here, for all strategies, the final test suite size increases
with the increase of P. In weight based tests, BDA has per-
formed well against other strategies in terms of final test suite
size. BDA dominated PSO and HSS in weight based tests.
BDA and FPA performed at a similar level in weight based
tests. However, in the weight and priority based tests, BDA
has generated test suites that are not much bigger as compared
to the test suites generated by BDA in the weight based tests.
Also, BDA has generated highly prioritized test suites.

VOLUME 10, 2022 71693

M. Ahmed et al.: Construction of Prioritized T-Way Test Suite Using Bi-Objective Dragonfly Algorithm

TABLE 4. Comparison of BDA with SCA and TLBO based on weight and priority.

4) EXPERIMENT 4: COMPARISON OF BDA WITH SCA AND
TLBO IN TERMS OF BOTH WEIGHT AND PRIORITY
FOR 14 CONFIGURATIONS
Table 4 displays the test results of BDA against SCA and
TLBO on the basis of test case prioritization and test suite
size.

Apart from BDA, there has also been the implementation
of our proposed strategy of prioritized test suite generation
on SCA and TLBO so that there can be an evaluation on
the performance of BDA against these two metaheuristic
algorithms.

In terms of test suite size (best value), BDA outper-
forms SCA in 4 configurations, and SCA outperforms BDA
in 2 configurations. However, BDA outperforms TLBO in
9 configurations, and TLBO outperforms BDA in 3 config-
urations. So, considering the results in table 4, BDA can
generate prioritized test suites along withmaintaining smaller
final test suite sizes as compared to SCA and TLBO.

BDA also performed well in terms of priority scores. Con-
sidering priority score per test case, BDA outperformed both
SCA and TLBO. BDA heavily dominated SCA. Also, BDA
was better than TLBO in 7 configurations, and TLBO was
better in 6 configurations. Figure 8 also shows the final test
suite sizes for the 14 configurations.

Considering both final test suite sizes and priority scores,
BDA was ahead of both SCA and TLBO. BDA has been
very effective in the prioritized test suite generation as well
as maintaining smaller test suite sizes.

5) EXPERIMENT 5: COMPARISON OF BDA WITH SCA AND
TLBO IN TERMS OF BOTH WEIGHT AND PRIORITY FOR
CA(N; T, 210), 2≤t≤6
Table 5 shows the performance of BDA against SCA and
TLBO in terms of test case weight and priority for the

configuration CA(N; t, 210), 2 ≤ t ≤ 6. We have applied our
developed strategy on SCA and TLBO also so that there can
be an evaluation on these algorithms against BDA in terms
of prioritized test suite generation. In terms of final test suite
size, BDA outperformed both SCA and TLBO.

BDA was also good in prioritized test suite generation
because it produced test suites with a good priority score per
test case as compared to SCA and TLBO. Figure 9 shows
the final test suite sizes for all configurations from this
experiment.

6) EXPERIMENT 6: COMPARISON OF BDA WITH SCA AND
TLBO IN TERMS OF BOTH WEIGHT AND PRIORITY
FOR CA(N; 4, 5P), 5≤P≤10
Table 6 shows the performance of BDA against SCA and
TLBO in terms of test case weight and priority for the con-
figuration CA(N; 4, 5P), 5 ≤ P ≤ 10. Just like experiment 5,
we have applied our developed strategy on SCA and TLBO
also so that there can be an evaluation on these algorithms
against BDA in terms of prioritized test suite generation.

In terms of final test suite size, BDA outperformed both
SCA and TLBO. BDA was also good in prioritized test suite
generation because it produced test suites with a better prior-
ity score per test case as compared to SCA. However, BDA
and TLBO performed at a similar level in terms of priority
score per test case in this experiment.

C. STATISTICAL ANALYSIS (FRIEDMAN AND WILCOXON
SIGNED RANKED TESTS)
There have been statistical analysis andmultiple comparisons
of the test results. Here, the statistical analysis involves the
Friedman test [35] andWilcoxon signed-rank test. These tests
analyze whether a proposed strategy has a statistical differ-
ence as compared to existing strategies. First, the Friedman

71694 VOLUME 10, 2022

M. Ahmed et al.: Construction of Prioritized T-Way Test Suite Using Bi-Objective Dragonfly Algorithm

FIGURE 8. Final test suite sizes for the 14 configurations from experiment 4.

test detects differences among all strategies. Depending on
the result from the Friedman test, there will be the Post-hoc
Wilcoxon Rank-Sum test if required.

In the Friedman test, there can be two results. One result is
rejecting the null hypothesis (H0). Another result is retaining
the null hypothesis, which is also known as the alternative
hypothesis (H1). If the Friedman test results in the rejection of
the null hypothesis, there will be the Post-hocWilcoxon rank-
sum test. Friedman and Wilcoxon signed rank tests follow
some specific formulas [36], [37].

TheWilcoxon signed-rank test is a non-parametric analysis
that compares two ordinal data sets subjected to different con-
ditions. The objective is to investigate if there’s a noticeable
difference between the implementation results of other strate-
gies and the developed strategy. There are two hypotheses.
One is H0, and the other is H1.
Table 7, 8, 9, and 10 present the results of Friedman tests

and Post-hoc Wilcoxon signed-rank tests. In the Post-hoc
Wilcoxon signed-rank tests, there are positive ranks, negative
ranks, and ties. If a p-value is less than 0.005, the compared
results have no significant difference.

Friedman test works with completed samples. That’s why
the test ignores the NA (not available) entries in the test
results. But the test considers the NS (no support) entries
because it’s a strategy’s failure if the strategy can’t support
a configuration and run a test for that configuration.

There has been a set of Friedman test and Post-hoc
Wilcoxon signed-rank test for experiments 1 to 3.
Tables 7 and 8 show the test results. For experiments 1 to 3,
we have taken BDA’s test suite sizes from weight based tests
only because other strategies’ test suite sizes are also from

weight based tests. The Friedman test rejects the null hypoth-
esis, H0, and proceeds to the Post-hoc Wilcoxon signed rank
test. The statistical analysis shows that the performance of
BDA has differences from the performances of other existing
strategies. BDA has been significantly better than VPTag and
All pairs, as shown in the Wilcoxon signed-rank test results
in table 8. However, BDA’s differences with PSO, HSS, and
FPA weren’t significant; the differences were small.

There has been another set of Friedman test and
Post-hoc Wilcoxon signed-rank test for experiments 4 to 6.
Tables 9 and 10 have the test results. Here, the Friedman
test also rejects the null hypothesis, H0, and proceeds to the
Post-hoc Wilcoxon signed rank test. The statistical analysis
shows that the performance of BDA has a significant dif-
ference from the performances of other existing strategies.
BDA has been significantly better than SCA and TLBO,
as shown in the test results in table 10.

Considering the results of both Post-hoc Wilcoxon signed-
rank tests from table 8 and 10, null hypotheses were rejected
in more cases as compared to the number of cases where null
hypotheses were retained. These statistics prove that BDA
has given a favorable result as compared to other existing
strategies.

D. DISCUSSION
Developing a robust strategy for the construction of prior-
itized t-way test suites is quite a challenging task because
most existing strategies have generated test suites based on
test case weight. Test case priority has hardly been considered
in the works of existing strategies. Moreover, prioritized test
suite generation means the strategy has to consider both

VOLUME 10, 2022 71695

M. Ahmed et al.: Construction of Prioritized T-Way Test Suite Using Bi-Objective Dragonfly Algorithm

TABLE 5. Comparison of BDA with other algorithms based on both test case weight and priority for CA(N; t, 210), 2 ≤ t ≤ 6.

TABLE 6. Comparison of BDA with other algorithms based on both test case weight and priority for CA(N; 4, 5P), 5 ≤ P ≤ 10.

FIGURE 9. Test suite sizes for CA(N; t, 210), 2≤t≤6 in experiment 5.

test case weight and priority during test case generation.
It’s because, only test case priority based test suite generation
can’t maintain smaller test suite sizes, and only test suite
weight based test suite generation can’t maintain highly prior-
itized test suites. So, a strategy is necessary which is effective
in handling bi-objectives or multi-objectives. That’s why this
research work has selected BDA.

The selection of BDA for this research is worth discussing
here. BDA has performed well in combinatorial test suite
generation. It’s very easy and simple to implement. There are
only a few parameters for tuning, which is a reason for its
simplicity in the implementation. Also, BDA’s convergence
time is reasonable during its implementation. Considering
multi-objective optimization, BDA has shown good perfor-
mance in the existing works. All these characteristics of BDA
have indicated that BDA can be an efficient metaheuris-
tic algorithm for prioritized t-way test suite construction.

TABLE 7. Friedman test for experiment 1 to 3.

TABLE 8. Wilcoxon signed ranked test for experiment 1 to 3.

All these factors have been a reason for the development of
BDA in this research.

Considering the overall performance of BDA against exist-
ing strategies in this research, BDA has performed very well
as compared to existing strategies based on both test case
weight and test case priority. In prioritized test suite genera-
tion, BDA has clearly dominated SCA and TLBO. In weight
based tests, BDA has clearly dominated All pairs and VPTag.
Also, BDA has been competitive against PSO, HSS, FPA
in weight based tests. BDA’s performance was a little better
than PSO in weight based tests, but the domination of BDA
wasn’t much. BDA performed well against HSS and FPA, but
BDA’s performance didn’t have a significant difference with
the performances of HSS and FPA in weight based tests. So,
the overall test results indicate that BDA has performed very
well in prioritized test suite generation, and its performance
has also been good in terms of test suite size in weight based
tests.

71696 VOLUME 10, 2022

M. Ahmed et al.: Construction of Prioritized T-Way Test Suite Using Bi-Objective Dragonfly Algorithm

TABLE 9. Friedman test for experiment 4 to 6.

TABLE 10. Wilcoxon signed ranked test for experiment 4 to 6.

Though the research has achieved its objectives, there are
potentials to improve the work. There can be several future
works, such as improving the performance the BDA, improv-
ing variable strength interaction, adding sequence based test-
ing, considering constraints for BDA, etc.

VII. CONCLUSION
In this paper, we have proposed and implemented a t-way
strategy based on BDA to generate prioritized test suites. The
major objectives of our research work have been to design
and implement the t-way strategy and compare it with the
existing t-way strategies in terms of test suite size and test
suite prioritization. Considering the test results, the research
has achieved its objectives because BDA has performed well
against existing t-way testing strategies in terms of final
test suite size, and at the same time, BDA has generated
prioritized test suites. So, the ability of BDA in generating
prioritized test suites along with maintaining test suite sizes at
accepted levels prove BDA’s efficiency in handling multiple
objectives. Due to handling two objectives (test case weight
and test case priority) at the same time, BDA can be a great
strategy in the field of software testing where more than one
objectives need to be handled.

REFERENCES
[1] V. C. Prakash, S. Tatale, V. Kondhalkar, and L. Bewoor, ‘‘A critical review

on automated test case generation for conducting combinatorial testing
using particle swarm optimization,’’ Int. J. Eng. Technol., vol. 7, nos. 3–8,
pp. 22–28, 2018.

[2] M. Z. Z. Ahmad, R. R. Othman, M. S. A. R. Ali, and N. Ramli,
‘‘A self-adapting ant colony optimization algorithm using fuzzy logic
(ACOF) for combinatorial test suite generation,’’Mater. Sci. Eng. vol. 767,
Dec. 2019, Art. no. 012017.

[3] S. Mirjalili, S. M. Mirjalili, and A. Lewis, ‘‘Grey wolf optimizer,’’ Adv.
Eng. Softw., vol. 69, pp. 46–61, Mar. 2014.

[4] A. I. Hammouri, M. Mafarja, M. A. Al-Betar, M. A. Awadallah, and
I. Abu-Doush, ‘‘An improved dragonfly algorithm for feature selection,’’
Knowl.-Based Syst., vol. 203, Sep. 2020, Art. no. 106131.

[5] S. Mirjalili, ‘‘Dragonfly algorithm: A new meta-heuristic optimization
technique for solving single-objective, discrete, and multi-objective prob-
lems,’’ Neural Comput. Appl., vol. 27, pp. 1053–1076, May 2016.

[6] D. R. Kuhn, R. N. Kacker, and Y. Lei, Practical Combinatorial Testing.
Gaithersburg, MD, USA: NIST, 2010.

[7] K. Z. Bell, Optimizing Effectiveness and Efficiency of Software Testing:
A Hybrid Approach. Raleigh, NC, USA: North Carolina State Univ., 2006.

[8] K. Z. Bell and M. A. Vouk, ‘‘On effectiveness of pairwise methodology
for testing network-centric software,’’ in Proc. Int. Conf. Inf. Commun.
Technol., Cairo, Egypt, 2005, pp. 221–235.

[9] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, ‘‘IPOG/IPOG-D:
Efficient test generation for multi-way combinatorial testing,’’ Softw. Test.,
Verification Rel., vol. 18, no. 3, pp. 125–148, Sep. 2008.

[10] B. S. Ahmed, ‘‘Generating pairwise combinatorial interaction test suites
using single objective dragonfly optimisation algorithm,’’ J. Zankoy
Sulaimani A, vol. 19, no. 1, pp. 69–78, Oct. 2016, doi: 10.17656/jzs.10586.

[11] A. B. Nasser, K. Z. Zamli, A. A. Alsewari, and B. S. Ahmed, ‘‘Hybrid
flower pollination algorithm strategies for t-way test suite generation,’’
PLoS ONE, vol. 13, no. 5, May 2018, Art. no. e0195187.

[12] B. A. Nasser, K. Z. Zamli, A. R. Al-Sewari, and S. B. Ahmed, ‘‘An elitist-
flower pollination based strategy for constructing sequence and sequence-
less t-way test suite,’’ Int. J. BioInspired Comput., vol. 12, no. 2,
pp. 115–127, 2018.

[13] S. Mirjalili and A. Lewis, ‘‘The whale optimization algorithm,’’ Adv. Eng.
Softw., vol. 95, pp. 51–67, May 2016.

[14] A. A. Hassan, S. Abdullah, K. Z. Zamli, and R. Razali, ‘‘Combinatorial
test suites generation strategy utilizing the whale optimization algorithm,’’
IEEE Access, vol. 8, pp. 192288–192303, 2020.

[15] A. A. Hassan, S. Abdullah, K. Z. Zamli, and R. Razali, ‘‘Whale opti-
mization algorithm strategies for higher interaction strength t-way testing,’’
Comput., Mater. Continua, vol. 73, no. 1, pp. 2057–2077, 2022.

[16] S. Esfandyari and V. Rafe, ‘‘A tuned version of genetic algorithm for
efficient test suite generation in interactive t-way testing strategy,’’ Inf.
Softw. Technol., vol. 94, pp. 165–185, 2017.

[17] A. B. Nasser, A. A. Alsewari, A. A. Mu’azu, and K. Z. Zamli, ‘‘Compar-
ative performance analysis of flower pollination algorithm and harmony
search based strategies: A case study of applying interaction testing in the
real world,’’ in Proc. 2nd Int. Conf. New Directions Multidisciplinary Res.
Pract., Istanbul, Turkey, 2016, pp. 12–13.

[18] A. A. Muazu and U. D. Maiwada, ‘‘PWiseHA: Application of harmony
search algorithm for test suites generation using pairwise techniques,’’ Int.
J. Comput. Inf. Technol., vol. 9, no. 4, pp. 91–98, Jul. 2020.

[19] N. Ramli, R. R. Othman, and S. S. M. Fauzi, ‘‘Ant colony optimiza-
tion algorithm parameter tuning for t-way IOR testing,’’ J. Phys. Conf.,
vol. 1019, Jun. 2018, Art. no. 012086.

[20] N. Ramli, R. R. Othman, and R. Hendradi, ‘‘A uniform strength t-way
test suite generator based on ant colony optimization algorithm to produce
minimum test suite size,’’ in Proc. AIP Conf., 2021, Art. no. 020021.

[21] K. Z. Zamli, F. Din, B. S. Ahmed, and M. Bures, ‘‘A hybrid
Q-learning sine-cosine-based strategy for addressing the combinatorial
test suite minimization problem,’’ PLoS ONE, vol. 13, no. 5, May 2018,
Art. no. e0195675.

[22] K. M. Htay, R. R. Othman, A. Amir, H. L. Zakaria, and N. Ramli, ‘‘A pair-
wise t-way test suite generation strategy using gravitational search algo-
rithm,’’ in Proc. Int. Conf. Artif. Intell. Comput. Sci. Technol. (ICAICST),
Jun. 2021, pp. 7–12.

[23] J. B. Odili, A. B. Nasser, A. Noraziah, M. H. A. Wahab, and M. Ahmed,
‘‘African buffalo optimization algorithm based t-way test suite generation
strategy for electronic-payment transactions,’’ in Proc. Int. Conf. Emerg.
Technol. Intell. Syst., 2021, pp. 160–174.

[24] A. B. Nasser, A. R. A. Alsewari, andK. Z. Zamli, ‘‘Tuning of cuckoo search
based strategy for t-way testing,’’ ARPN J. Eng. Appl. Sci., vol. 10, no. 19,
pp. 8948–8953, 2015.

[25] M. Ahmed, A. B. Nasser, K. Z. Zamli, and S. Heripracoyo, ‘‘Comparison
of performances of Jaya algorithm and cuckoo search algorithm using
benchmark functions,’’ in Proc. Int. Conf. Emerg. Technol. Intell. Syst.,
in Lecture Notes in Networks and Systems. Cham, Switzerland: Springer,
2021, pp. 114–125.

[26] A. B. Nasser, F. Hujainah, A. A. Al-Sewari, and K. Z. Zamli, ‘‘An
improved Jaya algorithm-based strategy for t-way test suite generation,’’ in
Emerging Trends in Intelligent Computing and Informatics (Advances in
Intelligent Systems and Computing). Cham, Switzerland: Springer, 2020,
pp. 352–361.

[27] A. K. Alazzawi, H. M. Rais, and S. Basri, ‘‘Artificial bee colony algorithm
for t-way test suite generation,’’ in Proc. 4th Int. Conf. Comput. Inf. Sci.
(ICCOINS), Kuala Lumpur, Malaysia, Aug. 2018, pp. 1–6.

[28] M. M. Zabil, K. Z. Zamli, and K. C. Lim, ‘‘Evaluating Bees algorithm for
sequence-based t-way testing test data generation,’’ Indian J. Sci. Technol.,
vol. 11, no. 4, pp. 1–20, 2018.

[29] A. K. Alazzawi, H. M. Rais, S. Basri, Y. A. Alsariera, L. F. Capretz,
A. A. Imam, and A. O. Balogun, ‘‘HABCSm: A Hamming based t-way
strategy based on hybrid artificial bee colony for variable strength test sets
generation,’’ Int. J. Comput. Commun. Control, vol. 16, no. 5, pp. 1–18,
Oct. 2021.

VOLUME 10, 2022 71697

http://dx.doi.org/10.17656/jzs.10586

M. Ahmed et al.: Construction of Prioritized T-Way Test Suite Using Bi-Objective Dragonfly Algorithm

[30] X. Guo, X. Song, and J.-T. Zhou, ‘‘A synergic quantum particle swarm
optimisation for constrained combinatorial test generation,’’ IET Software,
vol. 16, no. 3, pp. 279–300, 2022.

[31] C.M. Rahman and T. A. Rashid, ‘‘Dragonfly algorithm and its applications
in applied science survey,’’ Comput. Intell. Neurosci., vol. 2019, pp. 1–21,
Dec. 2019.

[32] J. Too and S. Mirjalili, ‘‘A hyper learning binary dragonfly algorithm for
feature selection: A COVID-19 case study,’’ Knowl.-Based Syst., vol. 212,
Jan. 2021, Art. no. 106553.

[33] M. Abedi and F. S. Gharehchopogh, ‘‘An improved opposition based
learning firefly algorithm with dragonfly algorithm for solving continuous
optimization problems,’’ Intell. Data Anal., vol. 24, no. 2, pp. 309–338,
Mar. 2020.

[34] Y. Meraihi, A. Ramdane-Cherif, D. Acheli, and M. Mahseur, ‘‘Dragonfly
algorithm: A comprehensive review and applications,’’ Neural Comput.
Appl., vol. 32, no. 21, pp. 16625–16646, Nov. 2020.

[35] M. Friedman, ‘‘A comparison of alternative tests of significance for the
problem of m rankings,’’ Ann. Math. Statist., vol. 11, no. 1, pp. 86–92,
1940.

[36] D. W. Zimmerman and B. D. Zumbo, ‘‘Relative power of the Wilcoxon
test, the Friedman test, and repeated-measures ANOVA on ranks,’’ J. Exp.
Educ., vol. 62, no. 1, pp. 75–86, Jul. 1993.

[37] D. C. Montgomery and G. C. Runger, Applied Statistics and Probability
for Engineers. Hoboken, NJ, USA: Wiley, 2010.

MASHUK AHMED received the B.Sc. degree
in electrical and electronic engineering from the
Khulna University of Engineering and Technol-
ogy (KUET), Bangladesh, in 2017. He is currently
pursuing the M.Sc. degree in software engineering
with Universiti Malaysia Pahang, Malaysia. He is
doing research on software testing. He has worked
on t-way testing using metaheuristic algorithms.

ABDULLAH B. NASSER received the B.Sc.
degree fromHodeidahUniversity, Yemen, in 2006,
the M.Sc. degree from Universiti Sains Malaysia,
Malaysia, in 2014, and the Ph.D. degree in com-
puter science (software engineering) from Univer-
siti Malaysia Pahang, in 2018. He is currently a
University Lecturer in programming and software
engineering with the University of Vaasa, Finland.
He is also the author of many scientific articles
published in renowned journals and conferences.

His research interests include software engineering and artificial intelligence
software testing and search-based computing, specifically, the use of opti-
mization methods for solving different problems.

KAMAL Z. ZAMLI (Member, IEEE) received
the degree in electrical engineering from
Worcester Polytechnic Institute, USA, in 1992,
the M.Sc. degree in real-time software engineer-
ing from Universiti Teknologi Malaysia, in 2000,
and the Ph.D. degree in software engineering
from the University of Newcastle, Tyne, U.K.,
in 2003. He is currently a Professor with the Fac-
ulty of Computing, Universiti Malaysia Pahang,
Malaysia. His research interests include combina-

torial t-way, software testing, and search-based software engineering.

71698 VOLUME 10, 2022

