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ABSTRACT To enhance trustworthiness of AI systems, a number of solutions have been proposed to
document how such systems are built and used. A key facet of realizing trust in AI is how to make such
systems accountable - a challenging task, not least due to the lack of an agreed definition of accountability
and differing perspectives on what information should be recorded and how it should be used (e.g., to inform
audit). Information originates across the life cycle stages of an AI system and from a variety of sources
(individuals, organizations, systems), raising numerous challenges around collection, management, and
audit. In our previous work, we argued that semantic Knowledge Graphs (KGs) are ideally suited to
address those challenges and we presented an approach utilizing KGs to aid in the tasks of modelling,
recording, viewing, and auditing accountability information related to the design stage of AI system
development. Moreover, as KGs store data in a structured format understandable by both humans and
machines, we argued that this approach provides new opportunities for building intelligent applications
that facilitate and automate such tasks. In this paper, we expand our earlier work by reporting additional
detailed requirements for knowledge representation and capture in the context of AI accountability;
these extend the scope of our work beyond the design stage, to also include system implementation.
Furthermore, we present the RAInS ontology which has been extended to satisfy these requirements.
We evaluate our approach against three popular baseline frameworks, namely, Datasheets, Model Cards,
and FactSheets, by comparing the range of information that can be captured by our KGs against these
three frameworks. We demonstrate that our approach subsumes and extends the capabilities of the baseline
frameworks and discuss howKGs can be used to integrate and enhance accountability information collection
processes.

INDEX TERMS Accountability, AI systems, machine learning, ontology, provenance.

I. INTRODUCTION
The increasingly widespread adoption of AI systems has been
spurred by their stated advantages and benefits, including
automation of labour, reduction in error rates vs. humans
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performing the same tasks, and always on availability. How-
ever, such systems can also suffer from a range of drawbacks,
including biases which result in perpetuating racism and
sexism [1]–[8], the production of erroneous or unintended
results [9]–[11], and in extreme cases, incidents that result in
direct or indirect harm to humans [12], [13]. Such limitations
remain the subject of an active academic debate [14]–[17],
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and there are emerging efforts to track incidents related to
AI-powered technologies, such as the AI Incident Database.1

A variety of solutions have been proposed to address the
perceived limitations of AI systems; these have originated
from regulators and policy makers [18]–[21], professional
bodies [22], [23], and developers and researchers [24]–[27].
A key facet of realizing trust in AI is how best to make such
systems accountable - a challenging task, not least because of
the lack of a universally agreed definition of accountability.
Despite emerging academic debates about treating AI sys-
tems as self-aware entities and therefore as legal agents [28],
we base the approach outlined in this paper on the assump-
tion that AI systems, algorithms, or machines should not
be treated as legally responsible or liable agents [29], [30],
and that as a result, human agents or organizations that cre-
ated or influenced the behaviors of AI systems should be
accountable. As a consequence, we argue that AI account-
ability must be supported by the ability to inspect, review,
or otherwise interrogate such a system with the goals of (i)
making processes associated with each of its life cycle stages
transparent [19], [22]–[24], [26], [31]; (ii) demonstrating
compliance with hard laws (i.e., laws and regulations) and
soft laws (i.e., standards and guidelines) [19], [26]; and (iii)
aiding investigations into the cause(s) of failure or erroneous
decisions and supporting the identification of responsible
parties [19], [22], [24], [26], [31].

The various technologies that could enable such com-
prehensive inspection, revision, or interrogation are often
explored by the computer science (CS) community and pro-
fessional bodies under separate sub-themes [32], such as
transparency and traceability [23], [33], [34], intelligibil-
ity/interpretability [23], [34], explainability [31], [34], and
auditability/reviewability [35]. But due to the socio-technical
nature of most AI systems, these themes are also explored
by lawyers, regulators, and social sciences researchers [18],
[19]. This often leads to a ‘‘mismatch’’ of expectations and
proposed solutions. For example, proposed laws and regula-
tions may be perceived as technically unfeasible and lacking
in providing clearmeans for implementation, e.g., GDPR [36]
requires the provision of ‘‘meaningful information about the
logic involved’’ without specifying what ‘meaningful infor-
mation’ is. Moreover, technological solutions proposed by
the CS community may be difficult to interpret and may
lack crucial evidence (e.g., information about involved human
actors) in order to be usable in legal proceedings. Further,
there is a stance within the CS community that calls to make
AI systems more transparent by exposing their source code
would, in many cases, hinder rather than help accountability,
as such transparency is often not meaningful, because it
requires significant efforts and skills to interpret as well as
posing other challenges (e.g., those related to the protection
of intellectual property rights) [33], [37].

We argue that solutions which aim to support accountabil-
ity in AI systems which are also enforceable by law must be

1https://incidentdatabase.ai/

comprehensive and cover all life cycle stages of such systems,
and at each stage must identify individual human agents
that bear responsibility for decisions and outcomes (e.g.,
implemented system components) influencing the design,
implementation, deployment, and operation of these systems.
In this paper, we refer to this type of information as account-
ability information. We further argue that this accountability
information must be meaningful, semantically annotated and
ideally understandable by both humans and machines. The
effort needed to collect and to interpret such data in case of
an investigation is likely to be a significant burden on many
stakeholders, and the ability of machines to understand and
process the data is important in order to achieve a certain level
of automation.

Our proposed approach is compatible with existing solu-
tions such as Datasheets [38], Model Cards [39], and Fact-
Sheets [40]. These frameworks provide guidelines on what
information to record about various aspects of AI systems
(e.g., descriptions of datasets, machine learning (ML) mod-
els, performance evaluations, etc.) to improve transparency of
such systems. Datasheets and FactSheets provide questions
and checklists that users can refer to in order to record free
text and images describing datasets or AI systems. While
examples for different types of systems are provided, it is
ultimately up to the end users of these frameworks to decide
which questions are relevant in the context of their AI systems
and the final result is presented in the form of a visual report
designed for human inspection. While this simplicity pro-
vides certain benefits (e.g., a low barrier to the production and
distribution of such reports), the lack of structured, semanti-
cally annotated datamakes it difficult for computer systems to
assist with creating and querying such reports in an automated
or semi-automated manner. For example, it would be difficult
for software to check if some information that was intended
to be collected (e.g., answer to some critical question) was
indeed provided. Model Cards do provide means to assist
developers with the collection of required information via
their Model Card Toolkit,2 which produces JSON represen-
tations of Model Cards; however, interpretation and querying
of such data again relies on visual inspection by humans.

In our approach, the term AI system refers to software
comprising ‘core AI’ components (e.g., an ML model) and
other supporting functions (e.g., API wrappers) [41] allow-
ing it to function either as a standalone solution, or as a
part of a larger system. We consider the development and
use of an AI system in terms of four high-level life cycle
stages: Design, Implementation, Deployment, and Opera-
tion; this conforms to the recommendation by Amershi et
al. [42] that standard software engineering practices should
apply to such systems. The design stage covers the aspects
associated with designing the AI system; the implementa-
tion stage includes the processes associated with building
and testing the system; the deployment stage includes the
processes related to installing the system and, if applicable,

2https://github.com/tensorflow/model-card-toolkit
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configuring and integrating it with other systems, produc-
ing documentation, and training users. Finally, the operation
stage consists of the actual use of the system and (routine)
monitoring. This provides a broader scope for recording
accountability information, which extends the current state
of the art. Modelling accountability information is supported
through two ontologies, SAO3 and RAInS.4 These ontologies
are built around three main concepts: accountability plans,
accountability traces and accountable agents. Accountability
plans specify information that should be captured throughout
the system’s life cycle and guide the recording of corre-
sponding accountability traces. We argue that the ability to
plan the collection of accountability information is crucial
for scalability of such data capture and to ensure that the
required information is not lost (e.g., in order to save sen-
sor observations in an autonomous vehicle this functionality
must be planned for and implemented prior to an incident).
The actual descriptions of activities that occurred during
the different life cycle stages, their inputs and outputs and
relationships to accountable human agents are captured in
corresponding accountability traces. SAO and RAInS extend
the W3C PROV-O [43] standard for representing provenance
as causal graphs consisting of three core concepts: entities,
which describe any real or imaginary thing; activities, which
represent processes that use and generate entities; and agents,
which represent human, organizational, or software actors
that can bear some responsibility for an activity. The ontolo-
gies are also based on the EP-Plan [44] ontology, which
extends PROV-O with the ability to describe abstract acyclic
plans represented as a series of steps and input and output
variables. The capture and audit of accountability information
is supported by a prototype implementation of the Account-
ability Fabric, a suite of tools demonstrating the feasibility
of a computational solution to support planning, collection,
and inspection of accountability information using SAO and
RAInS. For technical details describing the ontologies and the
Accountability Fabric, we refer the reader to [45], [46], which
demonstrate the application of this approach to documenting
the design stage of an AI system.

In this paper we present the following contributions:

1) A set of competency questions describing types of
accountability information relevant to the design and
implementation stages of an AI system, and which
goes beyond the information recorded by the current
Datasheet, Model Card, and FactSheet frameworks.

2) The extended RAInS ontology for modelling account-
ability information as knowledge graphs (KGs) which
covers the design and implementation stages of the AI
system life cycle.

3) An evaluation of our approach by comparing its capa-
bilities with those of Datasheets, Model Cards, and
FactSheets.

3https://w3id.org/sao
4https://w3id.org/rains

The remainder of this paper is organized as follows: Section II
describes a set of competency questions which define what
accountability information needs to be recorded; Section III
describes our approach for semantically modelling such
accountability information; Section IV describes results from
a comparison of our solution to the three popular non-
semantic frameworks; Section V discusses the results of the
comparison and outlines the benefits of our approach; and
Section VI concludes the paper and discusses future work.

II. ACCOUNTABILITY INFORMATION COVERAGE
Competency questions (CQs) are expressed in natural lan-
guage and are commonly used in semantic modelling to
identify individual ontological concepts (e.g., types of objects
and their relationships) and to evaluate the resulting ontol-
ogy (i.e., the ontology must describe information that can
sufficiently answer CQs) [47]. In this section, we summarize
our approach for creating the CQs relating to accountability
of AI systems, and provide an overview of their thematic
structure. It should be noted that in RAInS we focus on AI
systems built aroundML technologies. The content presented
here includes questions relating to the system design stage
(previously discussed in [45]) and those relating to the imple-
mentation stage of an AI system. While these two stages are
closely coupled and hencemanyCQs overlap, one of themain
differences is that the design stage includes descriptions of
the design specifications of the system components, whereas
the implementation stage includes descriptions of the tangible
system components based on such specifications, as well
as justifications of any deviations from the original design.
For example, the design stage includes the specification of
how an ML model is to be built and evaluated, whereas the
implementation stage includes descriptions of the ML model
after it has been realized, and the CQ ‘What are the limitations
of the ML model?’ can be read in each case as: ‘What are the
limitations of the designed ML model?’ and ‘What are the
limitations of the realized ML model?’.

A. METHODOLOGY
We gathered CQs relating to accountability of AI systems
from publications by regulatory bodies [19], [48], statements
and guidelines released by professional bodies [22], [31],
[49], and the academic literature [24], [26], [38]–[40], [50]
up to the year 2020. The questions included documentation
requirements for AI system components (e.g., MLmodels) as
well as explanations of how automated decisions were made.
While the literature offers a comprehensive set of questions,
these often focus on technological details of AI systems,
their individual components (e.g., ML models) and resources
used in the development process (e.g., datasets), oftenwithout
explicit links to human agents who could be held accountable
for their existence. The initial set of CQs was analyzed and
similar questions (such as those addressing the same issue but
worded differently) were grouped under overarching thematic
CQs which represented those questions. For example, the two
requirements to indicate ‘‘whether the model was developed
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with general or specific tasks in mind’’ [39] or ‘‘What are
the goals, purposes and intended applications of the product
or service?’’ [49] were translated to the CQ: ‘What are the
intended use cases of the MLmodel?’ Each thematic CQ was
then analyzed to determine the ontological concepts needed
to represent that information. For example, IntendedUse-
Case was one of the concepts that emerged from this CQ.
Having completed the initial CQ analysis exercise, we next
turned our attention to a number of AI application use cases
(autonomous vehicles, image classifiers for cancer detection,
and loan application approval systems), with the objective of
identifying any missing knowledge requirements. We created
additional CQs in response to these use cases which extended
the discussion of AI accountability in the current literature;
we then determined the ontological concepts necessary to
represent the information in the new CQs.

The CQs identified through this exercise that were not
included in the initial set of questions were as follows:

• Whether the implementation or evaluation followed the
design specification, and if not, what the justification
was for the deviation from the specification.

• Who performed each accountable action and was there-
fore responsible for the generated accountable result(s).

• What were the compliance requirements for the compo-
nents of the AI system.

• Who checked that the components of the AI system
comply with relevant hard and soft laws.

• Who checked that the components of the AI system are
fit for purpose, i.e., its intended use case(s).

• Who approved, i.e., signed off on, the components of the
AI system.

• What were the guidelines for deploying and operat-
ing the AI systems (to be disseminated to the persons
responsible for deploying the AI system).

B. COMPETENCY QUESTIONS TOPICS
The final set of CQs that framed the scope of our knowledge
representationmodels contained 127 questions.We organized
and grouped these CQs under a number of high-level topics as
shown below. Where a topic relates to the Design stage, it is
indicated by the letter (D), to the Implementation stage by the
letter (I), and to bothDesign and Implementation stages by the
letters (D&I). References are provided if questions relating to
particular aspects of a topic came from a third-party resource.
Where no reference is provided, these were created by our
team as outlined in the previous section.

1) System-level information (D): the intended purpose of
the system [19], [39], [40], [50]; the intended users
of the system [31], [39], [40], [48]; the compliance
specifications which apply to the system, i.e., the hard
laws that must be followed and soft laws that should be
followed [19], [48], [49]; and who is accountable for
the creation of the specifications of the system purpose
and the system compliance requirements.

2) Dataset information (D&I): characteristics of the
dataset (e.g., size, composition of instances, number
of features) [19], [31], [38], [39], [48], [50]; collection
method [38], [40], [49]; any associated pre-processing
(e.g., sampling, aggregation) [19], [38]–[40], [48];
tasks for which it should be used [38], [48] and those for
which it should not be used [38]; its known or expected
limitations [19], [40], [48], [49] its known or expected
risks, including biases [19], [24], [26], [31], [38], [40],
[48], [49]; and who is accountable for the creation of
the design specification and the subsequent realization
of the dataset [38], [51].

3) ML model information (D&I): characteristics of the
ML model (e.g., decision threshold, excluded dataset
features) [24], [39], [40], [51]; details related to its
implementation (e.g., algorithm used) [19], [24], [39],
[40]; tasks for which it should be used [19], [39], [49]
and those for which it should not be used [39], [40]; its
known or expected limitations [19], [39], [40], [48] its
known or expected risks, including biases [19], [24],
[31], [39], [40], [48], [49]; any associated evaluation
procedures [19], [24], [39], [40]; and who is account-
able for the creation of the design specification and the
subsequent realization of the ML model [39] as well as
the design of the ML model evaluation and subsequent
performance of the evaluation [51].

4) Supporting infrastructure information (D&I): the sys-
tem components which are not ‘core AI’ but may
still be the source of erroneous behaviour of an AI
system (e.g., user interface, API wrappers); the char-
acteristics of the supporting infrastructure relevant
to the accountability of AI systems such as human
agency and oversight mechanisms (e.g., human-in-the-
loop or human-in-command [19], [40]), audit mecha-
nisms [19], [40], [49], security mechanisms [40], and
the level of explanation provided by the system [19],
[40], [48], [49]; its known or expected limitations; its
known or expected risks, including biases [40]; and
who is accountable for the creation of the design spec-
ification and the subsequent realization of the support-
ing infrastructure.

5) System evaluation information (D&I): information
related to how the AI system as a whole is
evaluated [40], including if any third-party evaluations
were performed [40]; and who is accountable
for the creation of the specification of the sys-
tem evaluation and subsequent performance of the
evaluation.

6) Certification information (I): certificates granted to the
AI system [40] and by whom.

7) Guidelines information (I): deployment guidelines,
including what the instructions are for installing and
integrating the system, and what the instructions are
for training users and updating manuals; operational
guidelines including what the instructions are for sys-
tem usage [40] and system maintenance [40]; and who
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is accountable for the creation of the deployment and
operational guidelines.

8) Human decision making and approvals (D&I): who
assessed the fitness of the dataset design and imple-
mentation [19], [49], ML model design, implementa-
tion, and evaluation, supporting infrastructure design
and implementation, and system evaluation against the
system’s purpose; which hard and soft law require-
ments were included [19], [48] in the dataset design
and implementation, ML model design, implementa-
tion, and evaluation, supporting infrastructure design
and implementation, system evaluation, and guidelines
generation, and who assured the compliance of such
specifications against those requirements; and finally,
who approved the various specifications, system com-
ponent implementations and their evaluations, and
guidelines that influence subsequent life cycle stages.

III. SEMANTIC MODELLING OF ACCOUNTABILITY
INFORMATION
This section provides a high-level overview of our proposed
approach for documenting accountability information as part
of a single Knowledge Graph (KG). For more technical
details on how these ontologies were formalized and how
complete KGs described using SAO and RAInS should be
represented (i.e., using the appropriate relationship links
between different class instances), we refer the reader to [45]
and the ontology documentation. As outlined in Section I,
we use SAO and RAInS ontologies to semantically model
information about the AI system life cycle in the form of
accountability plans and their corresponding accountabil-
ity traces. The ontologies extend the W3C recommendation
PROV-O [43] and its extension EP-Plan [44]. The resulting
KG described using these ontologies is thus expressed as an
acyclic causal provenance graph.

A. ACCOUNTABILITY PLANS
Accountability plans describe information about activities
and their outcomes that are expected to occur during a
system life cycle and should be recorded for accountabil-
ity purposes. Fig. 1 illustrates a portion of an accountabil-
ity plan for the implementation life cycle stage. The plan
captures the expected flow of events describing part of a
standard machine learning pipeline where a dataset is split
into training and evaluation datasets, and then an ML model
is trained on the training dataset and evaluated using the
evaluation dataset. Activities such as dataset splitting andML
model training are described as accountable actions and the
results that they produce are described as accountable results.
This high-level vocabulary is defined by the SAO ontol-
ogy which also provides concepts for linking the individual
plan components to a particular life cycle stage, identifying
which accountable agents may perform certain activities (as
described in the plan), linking the information to a particular
AI system, etc.

B. ACCOUNTABILITY TRACES
Each accountability plan is linked to one or more corre-
sponding accountability traces. These contain the informa-
tion about the events and outputs described in the plan as they
actually happened in the real world. Fig. 2 illustrates part of
an accountability trace capturing information about training
an MLmodel (Training Activitywith start and end times) and
who is accountable for this activity (user Alice). Accountable
results are described in the accountability trace as collections
of information elements, each describing a different aspect
of the result (such as limitations, license). In Fig. 2 Model
Component Information generated by Training Activity has
information element members Performance Limitation and
Gender Bias. To draw an analogy with paper-based records,
the information realization represents a report describing an
outcome of an activity (e.g., an implemented ML model)
and the information elements represent individual sections
of the report. Note that in our approach we do not attempt
to provide a semantic annotation for every concept that may
be used to express ML model limitations. Instead, the KG
would contain human readable text linked to the information
element describing the limitation.

C. EXTENDING THE HIGH-LEVEL ACCOUNTABILITY
VOCABULARY
To maximize the applicability of SAO to different account-
able systems, the ontology only defines high-level concepts
for modelling accountability plans and accountability traces.
This limits the types of queries that can be answered over
a KG and makes interpreting the results of those queries
a challenge for human users. For example, referring to the
example in Fig. 2, we could construct a query that lists all
the information elements describing a particular accountable
result (e.g.,MLModel), but wewould be unable to select only
those elements describing limitations. In other words, we can
retrieve the sections of the report, but do not know what is
described in each section.

As our aim was to model accountability information relat-
ing to AI systems built aroundML technologies, we extended
SAO with the RAInS ontology to define subclasses (i.e., sub-
types) of some of the core classes including accountability
plan, accountable action, accountable result, and information
element. Fig. 3 illustrates the SAO classes (shown in blue-
filled rectangles) which RAInS extends. Third-party classes
which were reused from ML Schema5 [52], Dublin Core6

(DC), and OntoSoft7 [53] have blue borders. For the SAO
and RAInS properties, we refer the reader to the ontology
documentation.
Design Stage Accountability Plan and Implementation

Stage Accountability Plan provide ‘containers’ for plan def-
initions and both the design and implementation life cycle
stages of an AI system are expected to have one of these

5http://ml-schema.github.io/documentation/ML%20Schema.html
6https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
7https://ontosoft.org/ontology/software_20150329/
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FIGURE 1. Part of an example accountability plan for implementing a machine learning system
component described using the SAO ontology.

FIGURE 2. Part of an example accountability trace for implementing a machine learning system component described using the SAO ontology.

FIGURE 3. RAInS classes as subclasses of SAO classes (blue-filled rectangles). Third-party classes reused from ML Schema, Dublin Core, and OntoSoft are
shown with blue borders.

plans defined. To provide more detailed descriptions of these
accountability plans, subclasses of SAO’s AccountableAc-
tion were defined to describe planned activities such as:
(1) designing the components and the system’s high-level
specifications (see Produce Specification); (2) creating new
tangible system components/assets (e.g., trained ML mod-
els, datasets) following their design specifications (Realize
Component and Merge and Split Dataset); (3) evaluation of
the individual components, as well as the AI system as a
whole (Evaluate); (4) generating guidelines for deployment
and operation (Generate Guideline); and (5) making deci-
sions (Decide). Furthermore, subclasses of SAO’s Account-
able Result describe: (1) design specifications for the AI
system and its components (Design Specification and its

subclasses); (2) implementations of individual system com-
ponents (Dataset Component - and its subclasses, Model
Component, and Supporting Infrastructure Component);
(3) evaluations of the ML model and the AI system as a
whole (Evaluation); (4) generated guidelines (Guideline and
its subclasses); (5) human decisions (Human Decision and its
subclasses); (6) logs of any deviations from design specifica-
tions (ChangeLog).
RAInS supports richer descriptions of accountable results

in accountability traces through subclasses of SAO’s Infor-
mation Element. These represent different types of account-
ability information such as limitations, references to hard
and soft laws, user groups, use cases, risks, ML model and
dataset characteristics, guidance, data collection procedure,
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FIGURE 4. Part of the example accountability trace depicted in Fig. 2 enhanced with RAInS concepts (labelled with the RAInS prefix; see Fig. 3). Note,
KG elements can be associated with multiple types—i.e., Train ML Model is of type sao:AccountableAction as well as rains:RealizeComponent.

etc. Fig. 4 shows a portion of the example accountability trace
from Fig. 2 enhanced with RAInS concepts.

Finally, the RAInS ontology also defines two types of con-
straints: AutoConstraint and HumanConstraint. The former
represents constraints associated with accountable actions
that can be implemented (e.g., in the form of a rule) and
automatically evaluated against the accountability trace (e.g.,
a constraint to check whether a particular information ele-
ment was created or that the value of an information element
is in a particular range). The latter represents constraints that
would be difficult to automatically evaluate based on the
accountability trace, but instead would need to be evaluated
by human agents (e.g., a constraint to ensure that the agent
performing an action has relevant expertise). Such constraints
were introduced to help manage the quality of accountability
traces and to support the discovery of inconsistencies within
the accountability KG.

D. INCORPORATING USER FEEDBACK IN THE DESIGN
PROCESS
To assess how well our approach addresses the knowledge
capture and modelling requirements identified above, as well
as to understand the potential benefits of our semantic based
approach, two expert workshops were organised to demon-
strate and discuss the Accountability Fabric. This prototype
implementation comprised of a suite of tools demonstrating
the feasibility of a computational solution to support plan-
ning, collection and inspection of accountability information
using SAO and RAInS [45], [46]. Workshop 1 focused on
legal experts (5 in total), whereas Workshop 2 focused on
CS researchers and AI experts (10 in total). Both groups
highlighted similar advantages of the Accountability Fabric
and the resulting ontology concepts, including the fact that
such a standardized, structured approach would be of use to
regulators and investigators whomay be less familiar with the
mechanics of AI systems but are seeking specific information
to determine regulatory compliance and to build a framework
of enforcement. It was also felt that our approach could
help to overcome knowledge gaps, particularly amongst the
legal profession, by introducing a common understanding of
accountability in AI that will allow meaningful information
to be captured. CS researchers and AI experts also indicated
that such a system would be beneficial by bringing structure

to the workflow for new entrants, as such an approach allows
for meaningful communication with customers interested in
deploying AI systems, again by providing a common, struc-
tured language. Participants felt that it could be helpful in
troubleshooting where errors may have occurred in the event
that an AI system behaves unexpectedly at the deployment
stage, particularly given the attention to the life cycle and
the potential for different actors to have been involved at
different stages. The list of CQs was felt to be comprehensive,
but participants suggested that there should be potential to
extend the system if gaps were found. While participants
agreed that there is some potential for the system to become
burdensome, they also felt that the standardized, structured
approach involving both automatically and human generated
information is one that could be efficiently adopted andwould
remove some of the subjectivity present in existing account-
ability frameworks.

IV. COMPARISON WITH POPULAR NON-SEMANTIC
FRAMEWORKS
In this section we assess the ability of our semantic
ontology-based solution to describe accountability informa-
tion, by comparing it with the popular non-semantic frame-
works, Data Sheets, Model Cards, and FactSheets. For the
remainder of this paper, we shall refer to these as baseline
frameworks.

A. METHODOLOGY
The ability of our ontologies and the baseline frameworks
to capture accountability information was evaluated against
96 individual CQs falling under the topics discussed in
Section II. Information relating to Human decisions was
excluded from this comparison, as such information was
beyond the original scope of the baseline frameworks andwill
be discussed separately in Section IV-C.

To decide whether the baseline frameworks are able to cap-
ture accountability information required to support individual
CQs, we first examined the published papers describing these
frameworks ( [38]–[40]), including their appendices. We then
examined the papers’ supplementary materials, which con-
sisted of two examples on theModel Cardwebsite,8 examples

8https://modelcards.withgoogle.com/model-reports
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provided with the Model Card Toolkit,9 and seven examples
listed on the FactSheets website.10 To decide whether our
ontologies are able to capture the information necessary to
answer the CQs, we determined whether relevant classes and
relationships exist that provide the means to generate part of a
corresponding KG (see the Appendix for how our ontologies’
classes and relationships capture the required information).

When analyzing the baseline frameworks, we only consid-
ered aspects relating to the design and implementation stages
of the AI system life cycle - i.e., the current scope of our
ontology. For example, information provided to the FactSheet
question: ‘‘Whenwas the service first released?Whenwas the
last release?’’ relates to the system deployment stage, and the
questions ‘‘When were the models last updated? How much
did the performance change with each update? How often are
the models retrained or updated?’’ relate to the operations
stage.

It should be noted that the evaluation of the baseline frame-
works’ ability to answer individual CQs was based on the
understanding of their functionalities by the two authors of
this paper who conducted the comparison. This understand-
ing was gained from the associated papers and existing exam-
ples as it was not the frameworks’ goal to provide semantic
realizations. This poses a potential risk in terms of misin-
terpretation of the materials by the authors and, therefore,
we note this as a potential limitation of our approach.

B. RESULTS OF COMPARISONS BETWEEN OUR
APPROACH AND THE BASELINE FRAMEWORKS
Tables 1 - 7 report the results of our evaluation. The notation
used in each of the tables to indicate whether the frameworks
are able to answer the CQs is as follows:

‘Y’ indicates that the framework does capture the informa-
tion necessary to answer the CQ ; ‘S’ indicates that the frame-
work captures some of the information needed to answer
the CQ ; and ‘N’ indicates that the framework does not
capture the necessary information. As previously mentioned,
a detailed overview of the semantic concepts introduced in
SAO and RAInS is included in the Appendix.
We now discuss the commonalities between the three

baseline frameworks and our approach. As shown in
Tables 1, 4, 5, 6, and 7 both our approach and FactSheets cap-
ture information about the whole system, supporting infras-
tructure, evaluation of the whole system, certifications, and
operational guidelines. Datasheets and Model Cards do not,
as they are fundamentally concerned with capturing infor-
mation about datasets and ML models respectively. Also as
expected, Table 2 shows that while Model Cards do capture
some information about datasets, the Datasheets framework
capturesmuchmore, with FactSheets somewhere between the
two in terms of coverage. Finally, Table 3 shows that both
FactSheets and Model Cards capture a considerable amount
of information about ML models and their evaluation.

9https://github.com/tensorflow/model-card-toolkit
10https://aifs360.mybluemix.net/examples

C. ACCOUNTABILITY INFORMATION COVERAGE BEYOND
THE SCOPE OF THE BASELINE FRAMEWORKS
We now summarize how our approach captures accountabil-
ity information beyond the scope of the baseline frameworks.
First, because SAO and RAInS extend PROV, they can model
the dates and time frames when the accountable actions were
performed and when the accountable results were produced.
For example, when theMLmodel was designed, realized, and
evaluated, and also when it was approved. Second, RAInS
can model the compliance requirements, i.e., the hard and
soft laws, that individual AI system components complywith.
This is in addition to modelling the compliance requirements
applying to the system as a whole, which none of the base-
line frameworks model. Third, RAInS models the different
human decisions and approvals (corresponding to item 8 in
Section II-B) that are integral to the life cycle of an AI
system. This includes: who confirmed the fitness of each
of the components to the system’s specified purpose; who
checked the compliance of each of the components with the
system’s compliance requirements; and who approved design
specifications, system component implementations and their
evaluations, and generated guidelines. Fourth, RAInS mod-
els the agents within the organizations who were account-
able for the different actions. This is important for internal
and external auditing. Finally, RAInS models whether the
realizations of system components or their evaluation fol-
lowed the design specification, as well as the justification
for any deviations from the design specification. Typically,
the accountable agent performing the realization has access
to the design specification and is expected to document how
it was performed. However, if for some reason, the agent
decides to deviate from the design specification, then they
must document their actions along with the change log and
their justification for the change. This is crucial in associating
accountability with the correct human agent. For example,
if an agent,Bob, followed a faulty design produced by another
agent, Alice, then the accountability falls on Alice or possibly
on both Alice and Bob. If, however, Bob deviated from a
design specification, which contained no errors, resulting in
an AI system that produced unacceptable errors, then they are
solely accountable.

V. DISCUSSION
A. BENEFITS OF SEMANTIC REPRESENTATION OF
ACCOUNTABILITY INFORMATION
KGs model accountability information in a structured inter-
operable format that is understandable by both humans and
machines.While in our approach a portion of the accountabil-
ity information is stored in human-readable formats (e.g., text
describing information elements, or images depicting eval-
uation results), many aspects of the accountability KGs are
described using semantic concepts following the three core
PROV concepts, namely: agents, entities and activities. This
approach to modelling data makes it easier to integrate addi-
tional accountability information into the KG. For example,
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TABLE 1. Information about the AI system (corresponds to item 1 in Section II-B).

TABLE 2. Information about the dataset (corresponds to item 2 in Section II-B).

the descriptions of agentsmay be expanded using the FOAF11

vocabulary to list their contact information, which can then be
retrieved when querying the accountability KG. Furthermore,
accountability plans provide the means to guide and assess
the collection of accountability trace information that goes
beyond simple template documents, where users are only

11http://xmlns.com/foaf/spec/

guided by different questions split over a number of sections
as is the case with Datasheets and FactSheets. We do how-
ever acknowledge that the SMACTR framework,12 which
builds on Datasheets and Model Cards, does provide doc-
ument checklists that guide users but split over different
sections. As we demonstrate in [45], [46], it is possible to use

12https://edwinwenink.github.io/ai-ethics-tool-landscape/tools/smactr/
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TABLE 3. Information about the ML model (corresponds to item 3 in Section II-B).

TABLE 4. Information about the supporting infrastructure (corresponds to item 4 in Section II-B).
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TABLE 5. Information about the evaluation of the whole system (corresponds to item 5 in Section II-B).

TABLE 6. Information about the certifications (corresponds to item 6 in Section II-B).

TABLE 7. Information about deployment and operational guidelines (corresponds to item 7 in Section II-B).

accountability plans to build intelligent user interfaces that
manage the gathering of accountability information through
manual and also semi-automatic processes (e.g., by inte-
grating with programming applications used to implement
components of the AI system). Plan constraints can be used to
further enrich this process by providing real-time warnings to
users about missing accountability information (in the form
of information elements) so as to avoid liability by omission.
Constraints also allow checking for potential quality issues
in the supplied information (e.g., such as when an agent
claims to have evaluated an ML model before this model
was implemented, or supplies values that fall outside pre-
defined ranges). We envision that this planning mechanism
could be used by regulators and standardization agencies in
future to provide generic plan templates to accompany their
AI regulations or standards. Such generic plans would then
be employed by the respective organizations involved in AI
system development to guide the gathering of accountability
information. Accountability traces would be provided by a
collection of compatible tools capable of understanding rele-
vant portions of these plans.

TABLE 8. List of ontologies with their namespaces and prefixes.

B. INTEGRATION WITH EXISTING FRAMEWORKS
The flexibility of our semantic-based approach does not nec-
essarily mean that users of existing frameworks, such as those
discussed in our comparison evaluation, must migrate to an
entirely new solution. Indeed, even some of the baseline
frameworks such as Model Cards and Datasheets have been
designed with an intention to complement each other [30],
[39]. While collecting accountability information in a text-
based format (such as a Datasheet or FactSheet) would not
be supported by our approach, interactive user interfaces
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FIGURE 5. How entities, activities, and agents relate to each other.

TABLE 9. Information about the AI system.

could be created that resemble the design intentions of these
existing frameworks. We demonstrate this in [46] where we
first integrate the data generated using theModel Card Toolkit
into our accountability KG and later provide an option to
display relevant parts of the KG in the form of a Model Card.
Here, the semantic layer supported by our ontologies serves
as middleware enabling the collection of information from
heterogeneous sources (e.g., via manual input or through

semi-automated frameworks such as the Model Card Toolkit)
and provides a means for the information to be queried and
displayed via a range of user interfaces.

C. THE NEED FOR SMARTER INFORMATION COLLECTION
AND AUDIT MECHANISMS
There is no doubt that gathering good quality accountability
information requires non-trivial effort due to the number of
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TABLE 10. Information about the dataset.
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TABLE 10. (Continued.) Information about the dataset.
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TABLE 10. (Continued.) Information about the dataset.
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TABLE 11. Information about the ML model.
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TABLE 11. (Continued.) Information about the ML model.
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TABLE 11. (Continued.) Information about the ML model.

stakeholders involved in the AI system life cycle, and it
is further complicated by various (sometimes incompatible)
organizational structures and procedures including those pre-
venting the disclosure of sensitive information. While we
do not provide a solution to these organizational challenges,
our approach does remove some of the technological barri-
ers associated with gathering accountability information. For
example, Hind et al. [54] identified several barriers relat-
ing to the adoption of FactSheets during evaluations with
potential users of this framework. These included the need
to reduce the time and effort during data collection; the need
to address the difference between facts that can be captured
automatically and those requiring ‘‘human authoring’’ which
sometimes leads to incomplete and poor-quality results; the
need to enable data capture at the time of creation of system
components rather than having to recall it during later stages;
the need for an open collection API that would support an
unbounded set of tools that AI developers use to build their
systems; and also the ability for the information captured by
such systems to meet the different perspectives of stakehold-
ers (e.g., some users would benefit from simplified views).

As we have outlined previously, our semantic approach
overcomes all of these barriers as it offers a standard and
domain-extendable vocabulary that can be used by external
tools to record the collected accountability information as
parts of the accountability KG, which can then be submitted
to a central semantic middleware layer. In addition, such
tools can provide instant feedback to the users who gen-
erate accountability traces (e.g., when a required piece of
information is missing) based on the constraints defined in
the accountability plans as demonstrated in [46]. The KG
is also capable of supporting a range of visualizations of
the accountability information to users; this is enabled by
the ability to perform structured queries over the types of
information, chronology of the events, and the identification
of missing information (i.e., where a plan expects a piece of
information to be provided, but it is absent from the account-
ability trace). Moreover, our accountability KG associates the

information with individual human agents who can be held
accountable for providing false or insufficient information
or simply contacted for further clarification. This critical
aspect is often limited to organization level (e.g., the company
responsible for developing an AI system) in the baseline
frameworks.

VI. CONCLUSION AND FUTURE WORK
We have presented an approach for recording accountability
information relating to the design and implementation of AI
systems using accountability knowledge graphs. We also pre-
sented a comparison between the capabilities of our approach
and three popular baseline frameworks and have discussed
how our approach offers opportunities to integrate and extend
the information provided by these frameworks. We have also
described how our approach overcomes some of the tech-
nological barriers associated with collecting accountability
information.

In future work, we will focus on extending the semantic
vocabularies to cover the deployment and operation stages of
the AI system life cycle. We will explore further opportuni-
ties to demonstrate the integration of information provided
by external tools, especially for the operation stage, where
we expect the greatest benefit of automated accountability
information capture. As new stakeholders will be captured in
the accountability KG (e.g., subjects of the final AI decisions)
we will build on our initial round table discussions to conduct
a series of user-based evaluations to evaluate the practicality
and usefulness of accountability KGs from both legal and
technological perspectives.

IN MEMORIAM
Dr. Caitlin Doyle Cottrill (1977 - 2022) passed away at the
age of forty-four following a long battle with cancer. She
will always be remembered for her kindness, support, gentle
humour, and commitment to creating a better world for all
people and for the environment in which we all live.

74400 VOLUME 10, 2022



I. Naja et al.: Using Knowledge Graphs to Unlock Practical Collection, Integration, and Audit of AI Accountability Information

TABLE 12. Information about the evaluation of the ML model.

APPENDIX
HOW THE ONTOLOGIES ANSWER THE COMPETENCY
QUESTIONS
In this appendix we present the full list of competency
questions (CQs) and illustrate how our approach models

the corresponding accountability information. Table 8 lists
the ontologies we use, along with their prefixes and
namespaces. Figure 5 showcases how the entities, activ-
ities, and agents relate to each other, and where the
concepts sao:AccountabilityPlan, sao:AccountableAction,
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TABLE 13. Information about the supporting infrastructure.
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TABLE 13. (Continued.) Information about the supporting infrastructure.
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TABLE 14. Information about the evaluation of the whole system.

TABLE 15. Information about certifications.
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TABLE 16. Information relating to the deployment and operational guidelines.

sao:AccountableResult, and sao:InformationElement are
substituted by their appropriate RAInS subclasses. This is
done as follows:

A sao:System is created and attributed to an sao:Agent.
An associated sao:AccountabilityPlan (AP) is created
for the system. The created system would be of type
rains:AI_System. Given the current scope of RAInS, the
accountability plan would be either
rains:DesignStageAccountabilityPlan or rains:Implementa-
tionStageAccountabilityPlan.

A sao:AccountabilityPlan contains some sao:Accountab-
leActions (AA), each having at least one accountable result
output. The first output would be sao:AccountableResult
(AR1), and if there is a second output, this is shown
in Figure 5 as sao:AccountableResult (AR2). For exam-
ple, when the accountable action rains:RealizeComponent

is planned to realize a dataset, it would have as its
outputs the two accountable results rains:DatasetComponent
(AR1) and rains:ChangeLog (AR2). Where applicable,
some sao:AccountableResults can be used as inputs
to subsequent sao:AccountableActions. This is indi-
cated in Figure 5 with IN1-n, where IN1 would be
the first input, IN2 the second input, and INn the
last input. For example, when the accountable action
rains:Evaluate is planned to evaluate the MLmodel, it would
have as its inputs rains:EvaluationSpecification (IN1),
rains:ModelComponent (IN2), and rains:EvaluationDataset
(IN3). Although not shown in Figure 5, when the accountable
actions and accountable results are created in the plan,
accountability information to be recorded in the accountabil-
ity trace is indicated in a human-readable plain text format
using the data property rdfs:comment. Also not shown in the
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TABLE 17. Information about the component-specific compliance requirements.

figure, are the constraints to be satisfied in the accountabil-
ity trace which would be of type rains:AutoConstraint or
rains:HumanConstraint.

At the accountability trace level, an ep-plan:Activity
is created to correspond to each sao:AccountableAction.
This activity is associated with an sao:AccountableAgent
(AG1) and generates one sao:InformationRealization for
each planned sao:AccountableResult output. Thus, the

sao:AccountableAgent (AG1) which is associated with
the ep-plan:Activity is also accountable for the generated
sao:InformationRealization(s). Note that any accountable
agent may act on behalf of another person or organiza-
tion, resulting in them being accountable as well. Account-
ability information about the sao:InformationRealization
is recorded in plain text format using the data prop-
erty rdfs:comment. These comments capture the human
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TABLE 18. Information about human decision making and approvals.
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TABLE 18. (Continued.) Information about human decision making and approvals.

readable accountability information, and where appro-
priate (e.g., with images) also as base64 strings. Each
sao:InformationRealization is a collection of sao:Information

Elements (IE1, IE2, . . .). Some sao:InformationElements
may be attributed to a sao:AccountableAgent (AG2) different
from the one who performed the ep-plan:Activity and thus
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is accountable for this sao:InformationElement. For exam-
ple, if the agent who produces a design specification for a
dataset chooses a third-party off-the-shelf dataset, then the
creator of this third-party dataset is accountable for only the
dataset, but the first agent who chose to use that third-party
dataset is still accountable for their specified design and their
decision to include the dataset. The sao:AccountableAgent
(AG2) is included as a subtype sao:InformationElement in
the sao:InformationRealization collection.

Tables 9 to 16 show how the identified CQs can be
answered using concepts from SAO and RAInS, as well as
those imported from the ontologies listed in Table 8. In order
to visualize how the concepts listed in the righthand columns
of Tables 9 to 18 relate to each other, the reader should take
the concepts listed in the tables and populate the template
in Figure 5. Note that not all sao:InformationRealizations
will have sao:InformationElement members. Also, where
a reference to a sao:InformationRealization corresponding
to the same accountable result is repeated, it is always
the same InformationRealization. For example, the repeated
mentions of sao:InformationRealization corresponding to
rains:DatasetComponent (AR1) all refer to the same Infor-
mation Realization.

Note that properties are either object properties (op)
or data properties (dp). Also note that the inputs we list
in Tables 9 to 18 for accountable actions are what we
consider to be the minimum inputs, and the plan creator
may indicate additional required inputs as they see fit for
their application domain and specific AI system. Moreover,
some CQs were generalized and have been included in
both the design and implementation stages. In the tables,
we show how the modelling is done at the design stage using
rains:DesignStageAccountablityPlan (AP) and at the imple-
mentation stage using rains:ImplementationStageAccounta-
bilityPlan (AP). Where a CQ is to be answered for both
stages, both sets of concepts are included and are sep-
arated in the tables using a dashed line. Finally, recall
that, because the PROV ontology can intrinsically model
the dates and times that activities are performed - using
the properties prov:startedAtTime and prov:EndedAtTime,
and when entities are generated - using the property
prov:wasGeneratedAtTime, we did not create CQs about
when the different accountable actions are performed or when
accountable results are generated.
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