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ABSTRACT Synergetic trajectory planning of flights is one of the important goals of trajectory-based
operation (TBO), and it is also a method to further improve the utilization of airspace resources with the
increasing number of flights in recent years. In order to plan the four-dimensional trajectory (4DT) pre-
tactically and comprehensively, match the flight traffic with airspace capacity, reduce congestion, potential
conflicts, and fuel consumption thus improving the efficiency of flights, this paper conducts a method for
synergetic trajectory planning in the en-route phase from the perspective of airlines. Firstly, the aircraft
performance model, aircraft fuel consumption model, and atmospheric model are constructed according to
the base of aircraft data (BADA3.11), and an airspace congestion prediction model is constructed based on
the historical flow data of airspace. Secondly, a multi-objective synergetic trajectory planningmodel is estab-
lished, and a solution method based on the non-dominated sorting genetic algorithm and simulated annealing
algorithm (NSGA3-SA) for the problem of synergetic trajectory planning is designed. The simulation shows
that the optimization model and the solution algorithm of NSGA3-SA can reduce fuel consumption by about
4.5% compared to the original flight plans and has a good effect on reducing congestion and avoiding
conflicts. The running time of the NSGA3-SA can meet the operational requirements of the pre-tactical
trajectory planning. The multi-objective optimization model and the solution algorithm proposed in this
paper have great value for the research of flight plan optimization.

INDEX TERMS Air trafficmanagement, trajectory-based operation, multi-objective optimization, trajectory
planning.

I. INTRODUCTION
Due to the new challenges such as air traffic jams and delays
created by the rapid growth of air traffic in recent years, the
United States proposed the project Next Generation Trans-
portation System (NextGen) in 2004, and Europe proposed
the project Single European Sky ATM Research (SESAR)
in 2005. The capacity of information exchange between dif-
ferent aviation departments has improved significantly since
then, which also benefits from the improvement of aircraft
communication, navigation, surveillance capabilities, and the
increasing popularity of trajectory-based operation (TBO).

The associate editor coordinating the review of this manuscript and

approving it for publication was Kathiravan Srinivasan .

In 2016, China proposed the plan of Civil Aviation ATM
Modernization strategy (CAAMS), which aims to promote
the development of the TBO. TBO is not only the direction
of civil aviation but also one of the most important goals
for the synergetic and refined management of the global air
transportation system [1], [2]. Therefore, the synergetic 4-D
trajectory planning of aircraft under the TBO environment
has become an important research topic in ATM.

According to the different phases of flight procedure per-
formed by the aircraft, the trajectory of the aircraft can
be mainly divided into three parts: departure, cruise, and
approach. Therefore, the current research on the 4D trajectory
optimization of aircraft can be divided into climb trajec-
tory optimization, cruise trajectory optimization, and descent
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trajectory optimization according to the differences in the
operating stages [3], [4].

The state of aircraft departure is mainly climbing, this
phase generally refers to the aircraft starting from the depar-
ture end of the runway (DER) to the approved minimum
altitude of the air route. The trajectory optimization in the
aircraft departure phase usually aims to reduce the consump-
tion of fuel, impact of noise, and control the required time
of arrival (RTA) [5]. Wan et al. [6] used the new technology
of continuous climbing operation (CCO), and the genetic
algorithm to optimize the climb path of the aircraft, then
carried out an experimental analysis on the parameters of
the trajectory optimization model. Prats et al. [7] analyzed
the influence of noise when the aircraft took off and estab-
lished amulti-objective trajectory planningmodel to solve the
optimal trajectory. Torres et al. [8] adopted a method based
on flight procedure design, then combined the performance
of different aircraft to design an environmentally friendly
departure trajectory with lower emissions and lower noise.
Ho-Huu et al. [9] adopted a novel climb trajectory optimiza-
tion method based on the MOEA/D algorithm and also took
reducing the influence of take-off noise as the main optimize
function to solve the optimal trajectory of climbing, whose
conclusion shows that the technology of CCO can reduce the
impact of noise significantly.

The cruise phase of an aircraft generally refers to the
aircraft starting from the initial cruising waypoint to the
initial approach fix (IAF) before the procedure of approach,
and the aircraft’s state in this phase is mainly level flight.
The objectives of trajectory optimization in the cruise
phase are usually to reduce the flight distance, balance the
airspace capacity, reduce fuel consumption and control the
required time of arrival (RTA) of the aircraft [10]–[12].
Seenivasan et al. [13] designed a thundercloud circumnavi-
gation method for randomweather, which method can realize
the rapid trajectory planning of aircraft in the environment
of multi-core cumulonimbus and has good real-time perfor-
mance. Gardi et al. [14] combined the task of aircraft tra-
jectory planning with the air traffic management system and
proposed a new theory and method of collaborative trajectory
planning. Chaimatanan et al. [15] combined the network
theory with trajectory planning and carried out a model to
finish the task of cruise waypoint assignment and design the
control time of arrival (CTA) for intercontinental flights. This
method has obvious advantages in solving the problem of
long-haul flight trajectory planning. Scholars such as Xu and
Prats, Tian et al., and Visser [16]–[18] optimized trajectories
with the constraints of aircraft performance, and considered
both environmental protection and traffic efficiency. Their
method of model construction and some conclusions have
great significance in the field of trajectory optimization, espe-
cially in the cruise phase of aircraft.

The approach phase of the aircraft generally starts from
the IAF and ends at the missed approach point (MAPt) or the
endpoint of the runway, and the aircraft state in this phase
is mainly descending. Trajectory optimization in this phase

usually aims to reduce fuel consumption, and noise impact,
control the RTA of aircraft and ensure fairness between air-
craft [19], [20]. Yang et al. [21] considered the airspace struc-
ture and the corresponding navigation facilities, then used
the NSGA-II algorithm to solve the problem of synergetic
flight sequencing and trajectory planning, which obtained
good Pareto-optimal front solutions for approach trajectories.
Since sustainable transportation is a very important issue for
aircraft flight [22], Lim et al. [23] takes reducing aircraft
fuel consumption as the objective and solves the trajectory of
the aircraft in the terminal area, then gives the optimal flight
profile for the approaching aircraft theoretically. Sang and
John [24] used the new technology of continuous descending
operation (CDO) to plan the trajectory of the approaching
aircraft, which has positive significance for the promotion of
CDO. Cai et al. [25] constructed a multi-objective optimiza-
tion model of approach trajectory, which combined network
theory and conflict resolution theory for trajectory planning,
and the obtained trajectories have the advantages of no con-
flict with high efficiency.

Aircraft trajectory prediction is an important basis for air-
craft trajectory planning. It cannot only be used for conflict
detection between aircraft, but also a key component of flow
prediction, and congestion prediction in the airspace. Trajec-
tory prediction methods for civil aviation flights can be clas-
sified into three main categories [26]: based on the dynamic
model, machine learning model, and flight plan. Deep learn-
ing methods have achieved good results in the field of mid-
to-long-term prediction trajectory recently, and the dynamic
usually has good performance in the short term of trajectory
prediction. Ma and Tian [27] proposed a convolution-circular
neural network trajectory prediction model which is based
on the reconstruction of a convolution neural network and
long short-term memory (LSTM). Shi et al. [28] proposed
a trajectory prediction model based on LSTM that considers
the correlation between adjacent trajectory points for long-
time trajectory prediction. Wu et al. [29] used generative
adversarial networks to predict the long-term 4D trajectory
of aircraft, which shows the great prospect of deep learning
in the field of trajectory prediction. The airspace congestion
prediction model in this paper is also based on the framework
of deep learning.

The current research on aircraft trajectory planning still
has some weaknesses: Firstly, some trajectory optimization
models do not consider airspace congestion, which may lead
to the implementation of optimized trajectories being affected
due to airspace flow restrictions. Secondly, for the multi-
objective trajectory optimization problem, the NSGA2 algo-
rithm has the defect of too many kinds of non-dominated
optimal solutions when dealing with a problem with more
than three objectives. Finally, the ability to search for the opti-
mum solution of the genetic algorithm for decision variables
with continuous space is weaker compared to some searching
algorithms.

Considering these gaps, this paper constructs a syner-
getic 4D trajectory optimization model for multi-flights and
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FIGURE 1. The modeling and solution process of this paper.

designs an algorithm of non-dominated sorting based on the
reference points and simulated annealing (NSGA3-SA) to
solve this model. The main contributions of this research are:

Firstly, a 4D trajectory optimization model is established
which comprehensively considers airspace structure, aircraft
performance, flight range distance, airspace congestion, fuel
consumption, and aircraft conflict. This model and its algo-
rithm can be used to adjust the original flight plan in the pre-
tactical stage, reduce the fuel consumption of these flights
and improve the operation efficiency while balancing the air
traffic flow.

Secondly, the NSGA3-SA algorithm is designed for
the multi-objective trajectory optimization model, which
has the advantage of solving mixed-integer nonlinear pro-
gram (MINLP) problemswithmore than three objective func-
tions (many-objective optimization). At the same time, the
simulated annealing algorithm is used for searching for the
optimum solutions of continuous variables, which improves
the global search ability of this algorithm. In addition, the
algorithm maintains a low time complexity and space com-
plexity, which can meet the needs of pre-tactical trajectory
planning theoretically.

II. PROBLEM DESCRIPTION AND SYMBOLS
The synergetic 4D trajectory optimization model is based on
the TBO environment and aims to optimize the flight plan of
multiple flights synergetically. The model and its algorithm
are used for selecting the waypoints, determining the required
time of arrival, the flight level, and speed for each flight seg-
ment of multiple flights. The purpose of synergetic trajectory
optimization is to reduce airspace congestion, aircraft fuel

consumption, and the possibility of conflict, as well as ensure
the punctuality of aircraft.

The input parameters of the 4D trajectory synergetic
optimization model in this paper mainly include air traf-
fic flow data, aircraft performance data, meteorological
data, and airspace data. Therefore, the model of 4D tra-
jectory synergetic optimization (Section III) requires the
atmospheric model in Section III-A, the aircraft dynamics
model in Section III-B, the aircraft fuel consumption model
in Section III-C, and the congestion prediction model in
Section III-D as the support. Then the NSGA3-SA algorithm
in Section IV is used to solve the problem of synergetic 4D
trajectory optimization. Thus the Pareto frontier solutions are
obtained for each airline to negotiate, finally obtaining the
optimal 4D trajectory of each flight in Section V. Section VI
analyzes the application and performance of the NSGA3-SA
algorithm in other typical trajectory planning scenarios The
technical route in this paper is shown in Fig. 1:

In this paper, most of the variables that appear in the equa-
tions will have their meaning nearby, but some variables that
appear multiple times or appear in pseudocode are declared
in Table 1. It should be pointed out that all of the subscripts
and variables are written in lowercase italics, matrices or
vectors are written in uppercase bold italics, sets are written in
bold monotype, and functions are written in bold and normal
words in this paper.

III. MODELS FOR SYNERGETIC 4D
TRAJECTORY PLANNING
A. ATMOSPHERE MODEL
The atmospheric environment model is used to calculate the
atmospheric pressure pfn, temperature Tfn and atmospheric
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TABLE 1. Meaning of the main parameters and symbols.

density ρfn of flight fn at different positions. These atmo-
spheric parameters are related to aircraft performance and
fuel consumption closely. The basic atmosphere parameters
are shown in Table 2:

Generally, the atmospheric temperature, pressure, and den-
sity can be calculated as (1)(2)(3):

Tfn =
{
T0 + βT,< · hfn, hfn ≤ htrop
Ttrop, hfn>htrop

(1)

pfn =


p0 ×

(
Tfn−1T

T0

)− g0
βT,<·R , hfn ≤ htrop

p0 ×
(
Ttrop−1T

T0

)− g0
βT,<·R

× e
−

g0
R·Ttrop

×(hfn−htrop)
,

hfn>htrop
(2)

ρfn =
pfn

R · Tfn
(3)

In Equation (1)(2)(3), Tfn is the temperature at the flight
fn’ position. hfn is the altitude(m) of the flight fn. pfn is the air
pressure of the flight fn. ρfn is the air density at the flight fn’
position. And the parameters such as T0, p0, βT,<, htrop, Ttrop,
g0, R, 1 T have been illustrated in Table 2.

TABLE 2. Value of atmosphere parameters.

The speed of the wind and the temperature of different
positions is read from the European Centre forMedium-range
Weather Forecasts (ECMWF), as (4):

Vw,(lon,lat),1T(lon,lat) = dataframe(lon, lat) (4)

In Equation (4), Vw,(lon,lat) is the speed of the wind at the
position whose longitude is lon and latitude is lat. 1T(lon,lat)
is the temperature difference between the international stan-
dard atmosphere (ISA) and the true atmosphere.

B. AIRCRAFT DYNAMICS MODEL
The aircraft aerodynamic model is constructed based on the
base of aircraft data 3.11 (BADA 3.11), and the relevant
performance parameters of B747-400 (as shown in Table 3)
are used as an example to illustrate the aircraft dynamics
model [30], [31].

TABLE 3. Fuel parameters and values of B747-400.

The drag of the aircraft can be calculated by (5).

Drag =
1
2
ρfn · V 2

fn · Swing

×

cd0cr + cd2cr

(
2Mfn · g0

ρfn · Swing · V 2
fn

)2
 (5)

In Equation (5), Drag represents the drag of the aircraft,
Swing is the wing area of the aircraft, Mref is the reference
mass of the aircraft, cd0cr, cd2cr is the performance parameters
in BADA 3.11, Vfn is the true airspeed (TAS) of the aircraft.
And the meaning of some parameters such as ρfn, g0 has been
explained in Table 2.
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The thrust of the aircraft has the constraint of (6).

Thr ≤ CTc,1 ×

(
1−

hfn
CTc,2

+ CTc,3 · h2fn

)
(6)

In Equation (6), Thr represents the thrust of the aircraft,
CTC,1, CTC,2, CTC,3 are both the thrust parameters given by
the BADA3.11, which are used to determine the maximum
thrust of the aircraft in different altitudes. hfn is the alti-
tude (km) of the flight fn.
The rate of climb or descent (ROCD) can be calculated

by (7).

ROCD =
dh
dt
=
Tfn −1T

Tfn
×

[
(Thr − Drag) · Vfn

Mfng0

]
×

[
1+

(
Vfn
g0

)
·
dVfn
dhfn

]−1
(7)

In Equation (7), ROCD represents the rate of climb or
descent. And the pitch angle of the aircraft θ can be calculated
by (8).

θ = arcsin
(
ROCD
Vfn

)
(8)

According to the force analysis of the aircraft in the direc-
tion perpendicular to the roll axis and parallel to the roll axis,
the gravity and lift of the aircraft perpendicular to the roll axis
are balanced, and the thrust, drag, and gravity parallel to the
roll axis produce the acceleration of the aircraft, as (9).{

Thr + Drag+Mfn · g0 · sin θ = Mfn · afn
m · g0 · cos θ = 1

2ρfn · V
2
fn · Swing ·

2Mfn·g0
ρfn·Swing·V 2

fn

(9)

Therefore, the displacement of the aircraft can be calcu-
lated by the aircraft speed Vfn, acceleration afn, and ROCD,
as (10)(11).

xt2 = xt1 +
∫ t2

t1

(
Vfn,t1 − Vw,(lon,lat) · cosα

+

∫ t2

t1
afn,t1 · cosθdt

)
dt (10)

ht2 = ht1 +
∫ t2

t1
ROCDdt (11)

In Equation (10)(11), xt2 represents the new position
(longitude, latitude) of the aircraft at time t2, ht2 means the
new position (altitude) of the aircraft at t2, xt1 represents the
original position (longitude, latitude) of the aircraft at t1, ht1
means the original position (altitude) of the aircraft at t1, α
is the component of wind speed parallel to the airway, and
Vw,(lon,lat) is the speed of the wind at the position whose
longitude is lon and latitude is lat.

Finally, the aircraft speed in the cruise phase is mainly
represented by the Mach number. The conversion between
Mach number and Vfn is as follows:

Vfn = Machfn ·
√
κ · R · Tfn (12)

In Equation (12), Machfn is the Mach number of flight fn,
Tfn is the Temperature of flight fn. The parameters such as κ
and R have been explained in Table 2.

C. AIRCRAFT FUEL CONSUMPTION MODEL
The aircraft fuel consumption model is constructed based on
BADA 3.11 too, and the relevant performance parameters of
B747-400 (as shown in Table 4 ) are used as an example to
illustrate the model.

TABLE 4. Value of fuel parameters of B747-400.

Firstly, the drag and the thrust of the aircraft can be calcu-
lated by (13). Thus the fuel flow rate (kg/min) of the aircraft
can be calculated by (14) and the fuel consumption of the
aircraft can be calculated by (15).

Thr =

Drag,Cruise (θ= 0)
Drag+Mfn · g0 · sin θ,Climb (θ > 0)
Drag+Mfn · g0 · sin θ,Descend (θ < 0)

(13)

ff (kg/min)=


cf1 · cfcr ×

(
1+ Vfn

cf2

)
× Thr,Cruise

cf1 ×
(
1+ Vfn

cf2

)
· Thr,Climb

max
(
cf1 ·

(
1+ Vfn

cf2

)
· Thr, cf3 ·

(
1− Hfn

cf4

))
,

Descend
(14)

fc =
∫
ff dt (15)

In Equations (13)(14)(15), some parameters such as Drag,
Thr, Vfn, Hfn have been explained before. Parameters such
as cf1, cfcr, cf2 and cf4 are hyper-parameters given by the
BADA3.11. And ff is the fuel flow rate (kg/min) of the aircraft
and fc is the fuel consumption of the aircraft.

Finally, the mass of the aircraft will change with the fuel
consumption, which is:

Mfn = Mfn − δ ·

∫
ffdt (16)

In Equation (16), Mfn is the mass of flight fn, and δ is the
density of the aviation fuel, we take δ = 780 (kg/m3).

D. CONGESTION PREDICTION MODEL
1) FLOW DENSITY
Flow density is a concept proposed in this paper to evaluate
the congestion of the airspace. The traditional method to
evaluate the congestion of airspace quantitively requires a
critical value of the airspace capacity. But the calculation of
airspace capacity requires other information such as air-route
structure, number of controllers, and navigation facilities.
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Those data are hard to collect and the process of evaluat-
ing the capacity is different between different control zones.
This paper proposes the concept of flow density to evaluate
airspace congestion, calculated by (17):

fd ti =
flowti
Si

(17)

In Equation (17), fdti is the flow density of the i-th airspace
in time t (hour). flowti is the total running time (s) of aircraft
in the i-th airspace in time t (hour). Si is the area (km2) of the
i-th airspace. From the definition of the flow density, it can be
found that this indicator not only considers the flight time in
the airspace (time, hour) but also considers the capacity of the
airspace (area, km2). The concept of flow density is used as
an indicator for measuring the degree of airspace congestion
in this paper.

Although the calculation of the flow density index is
succinct and can reflect the airspace congestion intuitively.
However, there are some problems when measuring airspace
congestion with flow density:

First of all, the flight time of a flight is related to the length
of the airway in the airspace directly, rather than the area of
airspace. The larger the airspace area, the longer the route in
the airspace and the total flight time, but it can be found that
the increase of the area has a quadratic relationship to distance
and flight time. Therefore, the value of flow density will be
smaller than its actual degree of congestion when the airspace
is too large as shown in Fig. 2.

FIGURE 2. Excessive airspace generates an error in flow density.

Secondly, when the distribution of routes in the airspace
is uneven, the value of flow density will be smaller than the
actual airspace congestion, as shown in Fig. 3:

FIGURE 3. Uneven routes in airspace generate an error in flow density.

When the routes in the airspace are concentrated in a
certain part of the airspace, there will be an error in the
flow density. However, due to the environmental needs of the
control work and the limitation of the workload of controllers,
the situation shown in Fig. 2 and 3 does not comply with

the airspace delineation regulations. Here are three airspace
delineation rules used in China that are used to illustrate the
unreasonableness of these airspaces [32]:

1. ‘‘The setting of the control sector should help the con-
troller to control all flight activities in a specific area so that
the controller will not be disturbed too much.’’

2. ‘‘The designation of radar control sectors should help the
controller to focus on the radar screen, reduce the interference
of the video images on the radar screen to the controller, and
reduce the workload by coordination.’’

3. ‘‘Select some busy routes according to the distribution
of conflict points then allocate to the corresponding control
sectors reasonably, which enables the controller to focus on
these main routes and to achieve an even workload.’’

Due to the general rules and regulations followed by
airspace designation, the intersection points are generally
near the center of the airspace. There are usually no such
situations of large airspace containing a large number of
air routes or airspace with a very uneven distribution of air
routes. So it can be considered that when the airspace size
is appropriate and the routes are evenly distributed in the
airspace, flow density is a good indicator to reflect the degree
of airspace congestion.

2) STRUCTURE OF THE LSTM PREDICTION MODEL
LSTM is a type of recurrent neural network (RNN) composed
of LSTM memory units. Due to the structure of the LSTM
unit, the LSTM has the advantage to extract the feature of
time series data.

The model of LSTM is used to predict the flow density
of different airspace at different times. The objective of the
model is minimum the mean absolute error (MAE), and the
loss function is (18):

minMAE =
N∑
i=1

23∑
t=0

∣∣∣fd ti − fd ′ti ∣∣∣, fd ti = 8i(t;W ) (18)

In Equation (18), fd ti is the flow density of the i-th airspace
at time t , which is predicted by the LSTM model 8 with
the weight matrixW. fd’ti is the actual historical value of the
flow density of the i-th airspace at time t . The structure of the
LSTM model can be described by (19a-19f).

it = sigmoid
(
WT
xi ⊗ xt +W

T
hi ⊗ ht−1 + bi

)
(19a)

ft = sigmoid
(
WT
xf ⊗ xt +W

T
hf ⊗ ht−1 + bf

)
(19b)

ot = sigmoid
(
WT
xo ⊗ xt +W

T
ho ⊗ ht−1 + bo

)
(19c)

c′t = tanh
(
WT
xc ⊗ xt +W

T
hc ⊗ ht−1 + bc

)
(19d)

ct = ft ⊗ ct−1 + it ⊗ c′t (19e)

Yt = ht = ot ⊗ tanh (ct) (19f)

In Equations (19a-19f), Wxi, Wxf , Wxo, Wxc are weight
matrices of the corresponding gate which connected to the
input matrix xt .Whi,Whf ,Who,Whc are weight matrices that
are connected to the short-term state ht−1, bi, bf , bo, bc are
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FIGURE 4. The structure of the LSTM model.

bias corresponds to each gate.σ is the activation function of
Sigmoid (which is f (x) = (1+e−x)−1), tanh is the activation
function of tanh (which is g(x) = (e2x-1) / (e2x+1)). ft is the
forget gate of the LSTM model, it and ot are the input gate
and output gate of the LSTM model, ct and c’t are the gates
used to memorize the characteristics of the input samples.⊗

represents the dot product between two matrices, and T
represents the transpose operation of a matrix. The structure
of the LSTM prediction model is shown in Fig. 4 [33], [34]:

E. FOUR-DIMENSIONAL TRAJECTORY SYNERGETIC
OPTIMIZATION MODEL
1) DECISION VARIABLES
For every flight in this 4-D trajectory optimization prob-
lem, three main variables need to be determined by the
model and its algorithm. The vector Pfn consists of air-way
points selected by the n-th flight, the vector Hfn consists
of flight altitudes selected by the n-th flight, and the vector
Vfn consists of speeds selected by the n-th flight. For every
flight, the length of its solution vector has the equation that
||Pfn||0 = ||Hfn||0+1= ||Vfn||0+1. The solution vector xfn of
flight fn is:

xfn =
[
Pfn,Hfn,Vfn

]T (20a)

J =
∥∥Hfn∥∥0 = ∥∥Vfn∥∥0 (20b)

Pfn = [p1, p2, . . . pJ+1] ,Hfn = [h1, h2, . . . , hJ ] ,

Vfn = [v1, v2, . . . vJ ] (20c)

So the solution matrix composed of all of the flights is X,
as (21):

X =
[
xf 1, xf 2, . . . , xfn

]T (21)

It should be pointed out that the optimized flight plan is
only for the cruising phase of the aircraft, which excludes the
phase of departure and the approach.

2) OBJECTIVE FUNCTIONS
a: MINIMUM TOTAL FLIGHT RANGE
The flight range is closely related to fuel consumption and
flight time. Therefore, a smaller flight range of the aircraft
is pursued to obtain more benefits in general flight planning.
This objective can be calculated as (22):

minZ1 =
N∑
n=1

J∑
j=0

∥∥pj, pj+1∥∥2, pj ∈ Pfn (22)

b: MINIMUM TOTAL FUEL CONSUMPTION
Aircraft fuel consumption directly affects airline efficiency
and environmental protection-related issues. Generally, fuel
consumption is closely related to aircraft altitude selection
and cruising speed. This objective can be calculated as (23):

minZ2 =
N∑
n=1

J∑
j=0

fc(
∥∥pj, pj+1∥∥), pj ∈ Pfn (23)

In Equation (23), fc represents the fuel consumption func-
tion from waypoint pj to pj+1, and the process of calculating
the fuel consumption has been described in Section III-C.

c: MINIMUM POTENTIAL CONFLICTS
Conflicts can be avoided by adjusting the vertical separation
between aircraft usually. However, if conflicts can be avoided
by ensuring the horizontal and lateral separation between
aircraft in the pre-tactical trajectory planning stage, it is
very beneficial to reduce the control workload and airspace
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congestion [3]. This objective can be calculated as (24)
and (25):

minZ3 =
N∑

n1=1

N∑
n2=n1+1

23∑
t=0

∑
p(lon,lat)∈Pfn1∪Pfn2

×conflict
(
p(lon,lat), pfn1,t , pfn2,t

)
(24)

conflict(p(lon,lat), pfn1,t , pfn2,t )

=


1, if

∣∣∥∥p(lon,lat)−pfn1,t∥∥2−∥∥p(lon,lat) − pfn2,t∥∥2∣∣
≤ 10km
0,Else

(25)

d: MINIMUM THE CONGESTION
This objective function aims to balance the airspace flow
by making the aircraft avoid the most congested airspace
moments as much as possible. This objective can be
calculated as:

minZ4 =
N∑
n=1

I∑
i=1

fd ti (26)

In Equation (26), fdti is the flow density of the i-th airspace
in time t (hour), N is the number of the flight, and I is the
number of airspaces crossed by flights.

e: MINIMUM THE DIFFERENCE BETWEEN THE REQUIRED
TIME OF ARRIVAL (RTA) AND CONTROLLED TIME OF
ARRIVAL (ATA)
In this paper, the RTA represents the time schedule of the
flight in the original flight plan, and the CTA is the time
schedule of the flight in the flight after optimization. This
objective function is designed to ensure the punctuality of the
aircraft [36]. This objective can be calculated as:

minZ5 =
∑

p∈arr∪dep

N∑
n=1

∣∣∣RTApfn − CTApfn∣∣∣ (27)

In Equation (27), RTApfn is the required time of arrival for
the waypoint p in the original flight plan of fn. CTA

p
fn is the

controlled time of arrival for the waypoint p in the optimized
flight plan of fn. The waypoints p belong to the set of app
and dep, which is composed of the last waypoints before the
approach and the first waypoints after the departure of the
flights in setFFF .

3) CONSTRAINTS
a: CONSTRAINTS OF WAYPOINT SELECTION
Firstly, all flights start from their first waypoint after depar-
ture and end at their last waypoint before approach, thus the
first element of the list Pfn should be the first cruise waypoint
of the flight, and the last element of the list Pfn should be the
approach waypoint of the flight, as (28):

Pfn[0] = depfn;Pfn[−1] = appfn (28)

Secondly, the next waypoint selected by the flight should
be adjacent to the current waypoint, as (29)(30):

A(j, k) =
{
1, ∃rpj,pk ≤ ∞
0,∀rpj,pk = ∞

(29)

pk=j+1 ∈ PPP,∀A(j, k) = 1 (30)

b: CONSTRAINTS OF FLIGHT LEVEL SELECTION
Firstly, the flight level should be higher than the minimum
safe altitude of the airspace (MSA), and lower than the max-
imum altitude allowed by the airspace hc_max and ceiling of
the certain aircraft hMO, as (31):

MSAi ≤ H r
fn ≤ min

{
hMO, hc_max

}
(31)

Secondly, the flight level selected by the aircraft should be
compliant with the principle of airspace management. This
paper chooses levels of odd-numbered for eastbound flights
and even-numbered for westbound, as (32)(33).

Hfn ⊆ HHH2k+1, ifVfn ≥ 0, k ∈ N+ (32)

Hfn ⊆ HHH2k, ifVfn < 0, k ∈ N+

∀ H r
fn ∈ Hfn (33)

c: CONSTRAINTS OF SPEED ADJUSTMENT
The speed of the aircraft should be less than themax operation
Mach number MMO of certain aircraft and more than the
parameter calculated by CVmin ·Vstall (CVmin and Vstall of each
aircraft are announced in BADA), as (34):

CVmin · Vstall ≤ Vfn ≤
√
κ · R · Tfn ·MMO (34)

d: CONSTRAINT OF THE CLIMB OR DESCEND RATE
The absolute value of climb or descend distances in a certain
time t should be less than the maximum rate of climb or
descend (ROCDmax) for a certain aircraft, as (35):∣∣1hfn,t ∣∣ ≤ ROCDmax · Vfn · t (35)

e: CONSTRAINTS OF AIRCRAFT PUNCTUALITY
The difference between the controlled time of arrival and
the required time of arrival should be in the range of the
maximum acceptable advance (MAA) and the maximum
acceptable delay (MAD), as (36):

MAA ≤ ATApfn − CTA
p
fn ≤ MAD, fn ∈ FFF , p ∈ {arr, dep}

(36)

Finally, some parameters used in the constraints of the
model are displayed in Table 5:

4) ANALYSIS OF THE MODEL
In summary, the multi-objective 4D trajectory synergetic
optimization model can be described as follows:

minZ1 =
N∑
n=1

J∑
j=0

∥∥pj, pj+1∥∥, pj ∈ Pfn
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TABLE 5. Some parameters used for the constraints.

minZ2 =
N∑
n=1

J∑
j=0

fc(
∥∥pj, pj+1∥∥), pj ∈ Pfn

minZ3 =
N∑

n1=1

N∑
n2=n1+1

23∑
t=0

∑
p(lon,lat)∈Pfn1∪Pfn2

×conflict
(
p(lon,lat), pfn1,t , pfn2,t

)
minZ4 =

N∑
n=1

I∑
i=1

fd ti

minZ5 =
∑

p∈arr∪dep

N∑
n=1

∣∣∣RTApfn − ATApfn∣∣∣

s.t.



Pfn[0] = depfn;Pfn[−1] = appfn

A(j, k) =
{
1, ∃rpj,pk ≤ ∞
0, ∀rpj,pk = ∞

pk=j+1 ∈ PPP, ∀A(j, k) = 1
MSAi ≤ Hfn ≤ min

{
hMO, hc_max

}
Hfn ⊆HHH2k+1, if Vfn ≥ 0, k ∈ N+

Hfn ⊆HHH2k, if Vfn < 0, k ∈ N+

CVmin · Vstall ≤ Vfn ≤ VMO
∀H(p1,p2) ∈ Hfn, ∀r(p1,p2) ∈AAA∣∣1hfn,t ∣∣ ≤ ROCDmax · Vfn · t

MAA ≤ ATApfn − RTA
p
fn ≤ MAD, fn ∈ FFF ,

p ∈ {arr, dep}

The algorithmic complexity of the aircraft trajectory opti-
mization problem increases exponentiallywith the increase of
decision variables. Therefore, it is very important to design
a suitable heuristic algorithm to solve this mixed-integer
nonlinear problem (MINLP). NSGA2 can solve this kind
of model quite well, but it also has some shortcomings: for
multi-objective optimization, the number of non-dominated
solutions increases exponentially with the increase of the
objective function, resulting in the poor diversity of the final
results obtained by this algorithm. In addition, the search
performance based on the genetic algorithm or its improved
methods for continuous variables, such as the search for the
optimal speed of aircraft (continuous variables) is usually not
accurate and not good enough. Considering these problems,
this paper designs an algorithm of NSGA3-SA to solve this
mixed-integer nonlinear optimization problem better.

IV. ALGORITHMS
A. ADAM WEIGHT UPDATE ALGORITHM FOR LSTM OF
THE CONGESTION PREDICTION MODEL
The optimizer for the training of the LSTM prediction model
is Adam, which is an adaptive weight update method used

TABLE 6. Adam weight update algorithm of LSTM.

widely [37], [38] in the field of deep learning. The pseu-
docode of Adam is shown in Table 6:

In Table 6, β1, β2 are hyperparameters setting for the
weight update iteration, L is the loss function, η is the step
size, W is the weight matrix of the hidden layers for deep
learning, k is the number of iterations, mk , vk , m’k , v’k are
intermediate variables that play the role of passing parame-
ters,1L/1W is the partial derivative of the loss function L to
the weight matrix W.

⊗
represents the dot product between

two matrices. The output of this algorithm is the prediction
model 8(·;W), whose input data is a set of time-series data t.
The time-series data t is composed of the timestamps t and
the congestion data fd, whose configure is [(t1, t2,. . . ,tp),
(fd1, fd2,. . . fdp)]. Finally, the output of the prediction
model is the congestion data, which can be calculated by
fdp+1 = 8(tp;W).

B. NSGA3-SA FOR FOUR-DIMENSIONAL TRAJECTORY
SYNERGETIC OPTIMIZATION MODEL
The NSGA3-SA algorithm consists of two main parts: for the
discrete variables Pfn of the waypoints selection and discrete
variables Hfn of the flight levels selection, the NSGA3 algo-
rithm is used to search for the optimal solution by sorting
based on reference points. For the continuous variables Vfn of
flight speed selection, the SA algorithm is used to search for
the optimal cruise speed of the aircraft based on the Metropo-
lis principle [39]. From the perspective of an algorithm, this
algorithm is suitable for multi-flight synergetic trajectory
planning which has both discrete and continuous decision
variables while it is a many-objective optimization problem.
In other words, the algorithm designed for this problem can be
seen as a combination of two different algorithms of NSGA3
and SA, because each algorithm has its advantage in search-
ing for different scenarios. The general steps of NSGA3-SA
are shown in Fig. 5:

The pseudocode of NSGA3-SA is shown in Table 7:
There are some functions described in Table7 such as

Cross and mutate, Normalize, Associate, etc. These func-
tions will be described in detail in the following tables of
this paper. All of the pseudocode is written in Python’s
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FIGURE 5. The steps of the NSGA3-SA algorithm.

TABLE 7. The algorithm pseudocode of NSGA3-SA.

grammatical structure, in which While, For represent the
loop structure, If, Else represent the judgment structure, and
the symbol # represents the notes in the procedure of the
algorithm.

NSGA3 adopts a rankingmethod based on reference points
instead of the non-dominated ranking between solutions,
which can ensure the diversity of Pareto front solutions for
subsequent negotiation by airlines.

Firstly, generate the set of reference points based on Das
and Dennis’s method [40], which is described in Table 8:

TABLE 8. Algorithm for generating the set of reference points.

The cross and mutate function is used to generate the
new members, which contributes to the population diversity.
Therefore, it is very important to design a mechanism to
generate new solutions with high quality. The pseudocode of
the cross and mutate function is described in Table 9.

TABLE 9. The function of cross and mutate.

The function of Normalize is used to map all objective
functions to the interval of [0,1]. So we can compare the
objective functions of different solutions directly. The pseu-
docode oftheNormalize function is shown in Table 10.

The function ofAssociate is used to pair each solution with
the reference points generated before. Then these solutions
will be ranked and preserved in the following steps. The
pseudocode of the Associate function is shown in Table 11.

The function of Preservation is used to preserve the solu-
tions with good fitness. In order to make the diversity of
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TABLE 10. The function of normalize.

TABLE 11. The function of associate.

solutions, the preservation operation is based on the rank-
ing of the reference, which is the main difference between
NSGA2 and NSGA3. The pseudocode of the Preservation
function is shown in Table 12:

TABLE 12. The function of preservation.

The function of Anneal is used to optimize the speed of
the flights in different flight segments. This function is based
on the simulated annealing algorithm [39]. The pseudocode
of the Anneal function is shown in Table 13.

V. SIMULATION
A. PREDICTION OF FLOW DENSITY
The experiment in this simulation scenario extracted ADS-
B trajectory data of all flights in China in November 2019,
then counted the hourly flight flow numbers and the total
flight time in each airspace. Then calculate the value of
flow density in 24-hour of different airspace in November
2019 according to their boundary, the value of flow density
obtained in different airspaces in China is shown in Fig. 6 and
Fig. 7 (UTC):

TABLE 13. The function of annealing.

70% of the statistical flow density data is selected ran-
domly as the training data input of the LSTM model, and the
remaining 30% of the data is used as the validation data. The
flow density prediction model of each airspace is obtained
by training the LSTM model in the training data set, and
the generalization performance of the prediction model is
evaluated in the validation data set. The prediction perfor-
mance which is reflected by the mean absolute error (MAE)
changes with training epochs as shown in Fig. 8. Taking the
ZGGGAR05 sector as an example, the comparison between
the actual value of flow density and the predicted value of
flow density by the LSTM model is shown in Fig. 9.

It can be found from Fig. 9 that the generalization perfor-
mance of the trained LSTM flow density prediction model is
acceptable. MAE reflects the prediction error of the model,
and can be calculated by (37):

MAE=
1
T

T∑
t=1

∣∣∣fdpredictt − fd truet

∣∣∣ (37)

In Equation (37), fdpredictt represents the predicted value
of flow density, fdtruet is the true value of flow density in
historical data, and T is the number of timestamps predicted
by the model.

The MAE in the validation data set is about 0.15, and the
prediction percentage error is around 3.5%. To further verify
its performance, classify the value with a flow density greater
than 4 as the peak period, and the value less than or equal to
4 is classified as the normal period. The predicted MAE for
these two categories is shown in Table 14:

It can be found that the model does not have the problem
of large error in the prediction of the flow density during
the peak or trough period (except for some peak values and
trough values). After validation, this flow density prediction
model can be used for subsequent synergetic trajectory opti-
mization as a module of congestion.

B. ORIGINAL FLIGHT PLANS
The simulation extracted 7 flight plans to arrive in China or
depart from China, constructed the optimization model then
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FIGURE 6. The civil airspace structure of China and the distribution of flow density at 00:00, 2019-11-01 (UTC).

FIGURE 7. The distribution of flow density from 00:00 to 23:00, 2019-11-01 (UTC).

TABLE 14. The MSE of the peak and normal period.

use the algorithm of NSGA3-SA to solve this optimization
problem. The original flight plan includes the information
on the aircraft type, air-way points, required time of arrival,
speed, and altitude, as shown in Table 15. And the overview
of the original flight plan is shown in Fig. 10.

Calculate the flight range, fuel consumption, potential con-
flicts, congestion, and the difference between RTA and CTA
of the original flight plan based on the aircraft dynamics
model and the fuel consumption model. The value of these
objectives composed by each flight is shown in Table 16.

C. FLIGHT PLANS AFTER OPTIMIZING (SOLUTIONS
OF PARETO FRONT)
After building the optimization model of the flight plans, use
the algorithm of NSGA3-SA to solve this problem. Because
the optimization model and the algorithm of NSGA3-SA
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FIGURE 8. The distribution of flow density from 00:00 to 23:00 (UTC).

FIGURE 9. The distribution of flow density from 00:00 to 23:00 (UTC).

TABLE 15. One of the original flight plans for optimization.

including the hypermeters setting for the algorithm have been
described in Section III and Section IV, the content in this
section is mainly about the solution analysis of this optimiza-
tion problem.

Firstly, part of the Pareto optimal frontiers solution
obtained by the NSGA3-SA and their normalized objectives
value is given below, which is shown in Fig. 11.

FIGURE 10. The outline of the original flight plan.

FIGURE 11. Part of the solutions in the Pareto front of NSGA3-SA.

In Fig. 11, each line represents the objective value of a
feasible solution in the Pareto front. The lower the normalized
value of each objective (Z1-Z5) is, the better this feasible
solution is. The process of normalization is:

Zi =
Zi −min (Zi)

max (Zi)−min (Zi)
, i ∈ {1, 2, . . . , 5},Zi ∈ Zfront

(38)

In Equation (38), Zi is the value of objectives that repre-
sents the fuel consumption, flight range, and other attributes
of the flights (Section III-E). Zfront represents the solutions
in the Pareto front and Zi is the value of objectives after the
process of normalization, which is the value plotted in Fig. 11.

The authors denote solutions with analogous objective
functions with the same color for visualization. The black
lines in Fig. 11 represent the normalized objective function
values of the original flight plan. This type of figure is
used to show the numerical value of the objective function
corresponding to the optimal solution when the number of
objective functions is more than three.

It can be found in Fig. 11 that the objectives of the flight
range (Z1), fuel consumption (Z2), potential conflicts (Z3),
and congestion (Z4) of the Pareto front solutions could have
a better value compared to the original flight plans. To avoid
the optimized flight plan having changed too much compared
to the original flight plan, the target Z5 is used to limit the
changing extent of the flight plan [41]. It can be found that
as long as the RTA of the flight plans is properly adjusted
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TABLE 16. The objectives’ value of the original flight plans.

TABLE 17. The objectives’ value of the optimized flight plans.

FIGURE 12. The outline of the optimized flight plan.

(even without adjusting the RTA just to adjust the speed of the
flight, as the blue lines in Fig. 11), the flight plan could have
better benefits in the objectives of flight range (Z1), fuel con-
sumption (Z2), potential conflict (Z3), and congestion (Z4).

One of the solution’s objectives in the Pareto front is shown
in Table 17 (one of the solutions in the red line in Fig. 11). And
the overview of the flight plan after optimization is shown
in Fig. 12.

It can be found from Table 17 that the value of the objec-
tives including the flight range, fuel consumption, poten-
tial conflicts, and congestion is better than the original
flight plans. The main difference between the selection of

waypoints before optimized flight plans is in northwest China
(The red box in Fig. 12) compared to Fig. 10. There are lots
of sparse routes in northwest China, which provides extra
waypoint options for flight planning. So it can be considered
that the algorithmmakes a good trajectory optimization effect
by searching the better solutions.

VI. ANALYSIS OF ALGORITHM
A. COMPARISON OF SOLUTIONS BY DIFFERENT
ALGORITHMS IN SIMULATION SCENARIO
In order to analyze the performance of the NSGA3-SA
algorithm furtherly, the NSGA2 [41], NSGA3 [35], and
NSGA2-SA algorithms are used to optimize the flight plans
in the simulation scenario above.

For NSGA2 and NSGA3, the principle of the non-
dominated judgment of solutions, the steps of generating the
reference points, sorting based on the reference points, and
cross-mutating in the population are the same as described
in Section IV. Finally, the NSGA2-SA algorithm has the
same technical route as NSGA3-SA, which search for non-
dominated Pareto fronts for further optimization by using
the simulated annealing algorithm. The pseudo-code of the
NSGA2-SA algorithm is as Table 18.

NSGA2 selects the members based on the non-dominated
sorting rather than sorting based on the reference points,
so there are some differences in algorithm initialization and
the process of member sorting between NSGA2 and NSGA3.
The function of Non-dominated sorting is shown in Table 19.
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TABLE 18. The algorithm pseudocode of NSGA2-SA.

TABLE 19. The function of non-dominated sorting.

1) NSGA2 IN THE SIMULATION SCENARIO
The simulation scenario is the same as Section V, we use
NSGA2 to solve this problem of themulti-flight 4D trajectory
optimization. Part of the Pareto optimal frontiers solution
obtained by theNSGA2 and their normalized objectives value
is given below, which is shown in Fig. 13.

It can be found from Fig. 13 that the solutions in the
Pareto optimal frontier obtained by NSGA2 are more intense
compared with the objectives’ value of the red line in Fig. 11.
The sorting method of non-dominated ranking of the NSGA2
algorithm is more stringent than the reference point-based
ranking, thus leaving the characteristics of the solution indi-
viduals more similar. This phenomenon is unfavorable for
airline synergetic decision-making because the same class
of solutions with similar characteristics are given by the
algorithm leaving less room for choice by airlines.

FIGURE 13. Part of the solutions in the Pareto front of NSGA2.

2) NSGA2-SA IN THE SIMULATION SCENARIO
Part of the Pareto optimal frontiers solution obtained by the
NSGA2 and their normalized objectives value is given below,
which is shown in Fig. 14.

FIGURE 14. Part of the solutions in the Pareto front of NSGA2-SA.

It can be found from Fig. 14 that the solutions in the Pareto
optimal frontier obtained by NSGA2-SA are better (it can be
observed significantly by the value of Z3 and Z4) compared
with the objectives’ value Pareto optimal frontier obtained by
NSGA2 in Fig. 13. The comparison between NSGA2 and
NSGA2-SA can preliminary show the optimization signif-
icance of adding the simulated annealing algorithm in this
simulation scenario.

3) NSGA3 IN THE SIMULATION SCENARIO
A set of Pareto optimal frontiers obtained by the NSGA3
algorithm after normalization is given below (compared with
the objectives’ value of the red line in Fig. 11), which is shown
in Fig. 15.

FIGURE 15. Part of the solutions in the Pareto front of NSGA3.
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It can be found from Fig. 15 that NSGA3 has a good
optimization effect on the flight plan, but the optimization
effect on fuel consumption is not ideal. The reason is that
cross and mutates operations of the genetic algorithm can
reduce the possibility of the population falling into the local
optimum, but at the same time, the searchability for the local
optimum solution is reduced relatively. Therefore, for contin-
uous variables such as aircraft speed, the cross-mutation oper-
ation does not show its advantages. It also explains why the
NSGA3-SA algorithm incorporating the search principle of
the annealing algorithm is better than the NSGA3 algorithm
on the optimal solution frontier.

B. ANALYSIS OF ALGORITHM
1) ANALYSIS OF ALGORITHM SOLUTION PERFORMANCE
To further illustrate the performance of NSGA3-SA and other
algorithms for comparison, we choose the harmonic value of
the optimal solution (HVOS), inverted generational distance
(IGD), and minimum Pareto front error (MPFE) as the per-
formance indicators for these algorithms.

The index of HVOS [42], [43] is used tomeasure the ability
of the algorithm to search for the global optimal solution.
The smaller the value of HVOS, the better the global optimal
solution obtained by the algorithm. HVOS can be calculated
by (39).

HVOS =
R

R∑
i=1

Zi

,Zi ∈ [0, 1],R = 5 (39)

In Equation (39), R represents the number of objectives and
Zi is the normalized value of objective function Zi.

The index of IGD [44] reflects the degree of population
convergence and the diversity of solutions in the population.
The smaller the IGD, the more single type of solutions in the
population. The IGD can be calculated by (40):

IGD =
1
|Zfront|

|Zfront|∑
i=1

|G|
min
j=1

∥∥zi, aj∥∥, zi ∈ Zfront (40)

In Equation (40), Zfront represents the solutions in
the Pareto front, thus | Zfront| is the number of solutions in the
Pareto front obtained by the algorithm.G represents all of the
solutions in the last generation. aj is one of the solutions in
generation G, and zi is one of the solutions in Zfront.
Finally, the index of MPFE [44], [45] is used to reflect

the distance of the non-dominated solution set to the Pareto
frontier. Usually, the smaller the MPFE is, the better the non-
dominated solution is. MPFE can be calculated by (41):

MPFE = min
(∥∥Z(zi),Zopt∥∥2) , zi ∈ Zfront (41)

In Equation (41), zi is one of the solutions in Zfront, Z(zi)
is the function to get the objectives value of zi, and Zopt
is the value of the optimal objectives in all of the feasible
solutions, which is constructed by [Z1min, Z2min,. . . , Z5min]
in the simulation.

TABLE 20. The indicators of different algorithms in simulation.

Table 20 gives the above indicators’ value of different
algorithms in this simulation scenario.

It can be found fromTable 20 that the ability of NSGA2 and
NSGA3 to find the optimum feasible solution is close. But the
algorithm of NSGA3 is inclined to preserve more different
types of solutions compared to NSGA2, which is a good
characteristic because flight plans are required to negotiate
by many departments. Compared NSGA2 with NSGA2-SA,
andNSGA3with NSGA3-SA, it can be found that the process
of simulated annealing plays a role in optimizing the Pareto
front solutions because of the detailed local search of flight
speeds by the simulated annealing algorithm.

2) ANALYSIS OF ALGORITHM COMPUTATIONAL
COMPLEXITY
Take the above simulation experiment scenario as an exam-
ple, the running time of those different algorithms is obtained.
And the Computational time complexity of NSGA3-SA,
NSGA2, and NSGA3 is analyzed in Table 21 [35], [41].

TABLE 21. The complexity of different algorithms.

In Table 19,M is the number of populations in each genera-
tion, R is the number of objective functions, andO represents
the maximum number of operations for a single algorithm
iteration.

Since NSGA3-SA uses the genetic algorithm to complete
the first search and then uses the simulated annealing algo-
rithm to perform the second search, this algorithm with the
process of SA will inevitably have a higher computational
complexity than NSGA2 and NSGA3 (the algorithm com-
plexity of the simulated annealing algorithm is O(M)). But
the running time of this algorithm is still within the acceptable
range.

These simulations experimented on a computer with
Windows 10, a 64-bit operating system with RAM of 8GB
and a CPU of i7-6700. Simulation software is Spyder4
with Python3.8, which mainly concludes the environment of
keras2.3.1, tensorflow2.2.0, matplotlib3.2.2, numpy1.18.5,
pandas1.2.4, basemap1.2.2. The runtime of the collaborative
trajectory planning procedure in Table 21 is obtained in this

VOLUME 10, 2022 72001



J. Zhou et al.: Multiobjective 4DT Synergetic Optimization Based on Congestion Prediction and NSGA3-SA

environment. In addition, since Python is an execution lan-
guage based on interpretation, its program running speed is
lower than that of machine language or other compiled exe-
cution languages. If the program can be executed in machine
language or compiled language, the execution speed of this
algorithm would have great room for improvement.

C. ALGORITHM APPLICABILITY AND PERFORMANCE IN
COMMON TRAJECTORY PLANNING PROBLEMS
From the perspective of algorithm initialization and iteration,
the NSGA3-SA algorithm has advantages for many objec-
tives, mixed-integer nonlinear problems (MINLP) with both
discrete and continuous decision variables, such as synergetic
4D trajectory planning for flights. In order to verify the uni-
versality of the NSGA3-SA algorithm in trajectory planning
problems, we add three simpler but universal scenarios as
supplementary experiments to further demonstrate the perfor-
mance of the algorithm.

1) SCENARIO1: SYNERGETIC FLIGHT PLAN
MULTI-OBJECTIVE OPTIMIZATION WITHOUT CONSIDERING
AIRSPACE CONGESTION
Then we discuss the application of the NSGA3-SA algo-
rithm in a relatively simple scenario: synergetic flight plan
multi-objective optimization without considering airspace
congestion. This scenario is generally the same as Section V
(Fig. 10), which does not consider reducing airspace conges-
tion (objective Z4). Scenario1 considers only the flight range
(Z1), fuel consumption (Z2), potential conflicts (Z3), and
aircraft punctuality (Z5) objectives for flight trajectory plan-
ning (Scenario1 is similar to the scenario in Reference [46]).
A set of Pareto optimal frontiers obtained by the NSGA3-SA
algorithm after normalization is given in Fig. 16.

FIGURE 16. Part of the Pareto front solutions of NSGA3-SA in Scenario1.

NSGA2, NSGA3, and NSGA2-SA algorithms are used
for comparative experiments in the Scenario1. The per-
formance indicators of different algorithms are shown in
Table 22 below:

It can be found from Table 22 that NSGA3-SA can
be applied to Scrnario1: Synergetic flight plan multi-
objective optimization without considering airspace conges-
tion. Moreover, compared with several other algorithms, the
NSGA3-SA algorithm still retains the advantages of high

TABLE 22. The indicators of different algorithms in scenario1.

computational efficiency and obvious differences between
the non-dominated optimal solutions.

2) SCENARIO2: MULTI-OBJECTIVE OPTIMIZATION FOR
SINGLE AIRCRAFT TRAJECTORY
We use a flight plan of a B737-800 from Guangzhou to
Urumqi, China as Scenario2. The trajectory of this flight is
shown in Fig. 17. This is a scenario of multi-objective opti-
mization for a single aircraft trajectory. We do not consider
the problem of synergetic optimization of multiple flights and
the resolution of conflicts between flights in Scenario2 but
consider only the objectives of flight range (Z1), fuel con-
sumption (Z2), congestion (Z4), and aircraft punctuality (Z5)
for flight trajectory planning (this scenario is similar to the
scenario in Reference [47]). A set of Pareto optimal frontiers
obtained by the NSGA3-SA algorithm after normalization is
given in Fig. 18.

FIGURE 17. The outline of the flight plan in Scenario2.

FIGURE 18. Part of the Pareto front solutions of NSGA3-SA in Scenario2.

NSGA2, NSGA3, and NSGA2-SA algorithms are used
for comparative experiments in Scenario2. The performance
indicators of different algorithms are shown in Table 23:
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TABLE 23. The indicators of different algorithms in scenario2.

It can be found that NSGA3-SA can be applied to
Scrnario2: multi-objective optimization for a single air-
craft trajectory. However, the algorithmic superiority of
NSGA3-SA does not have much advantage over NSGA2 or
NSGA3 in Scenario2. With the simplification of the problem,
the search space of the decision variables becomes smaller,
and both four algorithms can meet the searching needs well.
The solution results and the running time of NSGA2 and
NSGA3 in Scenario2 are close to the performance shown in
experiments by other scholars [39], [44].

3) SCENARIO3: DUAL-OBJECTIVE TRAJECTORY
OPTIMIZATION CONSIDERING THE FUEL CONSUMPTION
AND CONTROL TIME OF ARRIVAL
We use a flight plan of a B737-800 from Guangzhou to
Urumqi, China as Scenario3, and the trajectory of the flight
is shown in Figure 17 too. Scenario3 is an optimization
problem for a single aircraft trajectory with two objectives:
minimum fuel consumption and the running time of the flight
(this scenario is similar to the scenario in Reference [48]).
A set of Pareto optimal frontiers obtained by the NSGA3-SA
algorithm of this scenario is shown in Fig.19.

FIGURE 19. Part of the Pareto front solutions of NSGA3-SA in scenario3.

NSGA2, NSGA3, and NSGA2-SA algorithms are used
for comparative experiments in Scenario3. The perfor-
mance indicators of different algorithms are shown in
Table 24 below:

It can be found that the NSGA3-SA algorithm is still
applicable in Scenario3, but its solution performance does
not show a great advantage compared with the NSGA2 and
NSGA3 algorithms. NSGA3-SA andNSGA2-SA take a lot of
computing time but do not obtain a non-dominated optimal
solution with obvious quality improvement. If the airline
wants to further optimize the flight plan of a certain flight

TABLE 24. The indicators of different algorithms in scenario3.

or wants to obtain some flight plans relatively novel, then the
NSGA3 and NSGA3-SA algorithms are good choices.

It can be seen from the three scenarios above that the
NSGA3-SA algorithm shows good applicability for the prob-
lem of 4D trajectory optimization. The more decision vari-
ables, the larger the search space, and the more objective
functions in the synergetic trajectory planning problem, the
advantages of NGSA3-SA will be more significant theoreti-
cally. In addition, the NSGA3-SA algorithm can retain some
non-dominated solutions with obvious differences, rather
than retain the similar or same type of optimal solutions in
many-objectives optimization like NSGA2. This attribute of
NSGA3-SA (this feature comes from NSGA3) means air-
lines or related departments can have more kinds of different
choices.

VII. CONCLUSION
The following are the main conclusions and analyses of both
the advantages and disadvantages of this paper:

(1) For the pre-tactical synergetic trajectory planning prob-
lem, the algorithm of NSGA3-SA has the advantage of
searching for the optimal solution for many objectives while
keeping the complexity of this algorithmwithin an acceptable
range. At the same time, the Pareto frontier solutions obtained
by this algorithm have better values of objectives while main-
taining the diversity of solutions.

(2) There is little coordination between different airlines in
the production of flight plans in many countries at present.
Therefore, small-scale synergetic trajectory optimization can
be used to balance airspace conflicts and improve the effi-
ciency of flights. It can be found from the simulations that
there is some room for optimization in the flight plans for
most of the current flights.

(3) With the development of TBO, the information sharing
among airports, air traffic management departments, and air-
lines will be strengthened, and the flight scale of synergetic
trajectory planning will become larger. The synergetic trajec-
tory planning model and its algorithm proposed in this paper
have the characteristics of universal applicability, and good
reproducibility, which can be applied to large-scale synergetic
trajectory planning.

While acknowledging the value of themodel and algorithm
in this paper, we should not neglect two main limitations of
the algorithm in large-scale synergetic trajectory planning:

(1) The more aircraft involved in synergetic trajectory
planning, the more difficult it is to negotiate between airlines,
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and it is difficult to make all users satisfied with the final
selection of the solution in the Pareto frontier given by the
algorithm.

(2) When the number of flights for synergetic trajectory
planning exceeds a certain number, the impact of the planned
aircraft on airspace congestion should not be ignored. Large-
scale synergetic trajectory planningmay cause the congestion
prediction model to lose its good prediction performance
because of the impact of the flights planned by the optimiza-
tion model and algorithm.
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