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ABSTRACT The bijective connection graph encompasses a family of cube-based topologies, and
n-dimensional bijective connection graphs include the hypercube and almost all of its variants with the
order 2n and the degree n. Hence, it is important to design and implement algorithms that work in bijective
connection graphs. The set-to-set disjoint paths problem is as follows: given a set of source nodes S =
{s1, s2, . . . , sp} and a set of destination nodesD = {d1, d2, . . . , dp} in a k-connected graphG = (V ,E) with
p ≤ k , construct p paths Pi: si  d ji (1 ≤ i ≤ p) such that {j1, j2, . . . , jp} = {1, 2, . . . , p} and the paths Pi are
node-disjoint. Finding a solution to this problem is an important issue in parallel and distributed computation
as well as the node-to-node disjoint paths problem and the node-to-set disjoint paths problem. In this paper
we propose an algorithm that constructs p (≤ n) disjoint paths between any pair of node sets in n-dimensional
bijective connection graphs in polynomial-order time of n. We give a proof of correctness of the algorithm as
well as the estimates of the time complexity O(n3p4) and the maximum path length n+ p− 1. According to
a computer experiment in a locally twisted cube as an example of a bijective connection graph to construct
n disjoint paths, the average time complexity of the algorithm is O(n2), and the average maximum path is
0.6333n− 0.266.

INDEX TERMS Dependable computing, interconnection network, hypercube, multicomputer, parallel
processing, performance evaluation supercomputers.

I. INTRODUCTION
For decades, research on parallel processing, especially on
massively parallel systems, has been active. Because a mas-
sively parallel system connects many processing nodes, it is
important to interconnect them efficiently. Therefore, many
new topologies for interconnection networks have been pro-
posed and studied instead of simple interconnection networks
such as the ring, the mesh, the torus and the hypercube [1].
The bijective connection graph [2] provides a family of cube-
based topologies. It is important to design and implement
algorithms that work in a bijective connection graph because
n-dimensional bijective connection graphs include the hyper-
cube and almost all of its variants with the order 2n and the
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degree n, including the twisted cube [3], the crossed cube
[4], the Möbius cube [5], the locally twisted cube [6], the
spined cube [7], and the twisted crossed cube [8]. Hence, such
algorithms are enthusiastically studied [9]–[13].

The unsolved problems in the bijective connection graph
include the set-to-set disjoint paths problem: given a set of
source nodes S = {s1, s2, . . . , sk} and a set of destination
nodes D = {d1, d2, . . . , dk} in a k-connected graph G =
(V ,E), construct k paths Pi: si  d ji (1 ≤ i ≤ n) such
that {j1, j2, . . . , jk} = {1, 2, . . . , k} and the paths Pi are node-
disjoint. The set-to-set disjoint paths problem is an important
issue in parallel and distributed computation [14]–[22] along
with the node-to-node disjoint paths problem [23]–[35] and
the node-to-set disjoint paths problem [36]–[45]. Finding
disjoint paths in a massively parallel system has many appli-
cations. For instance, multiple pairs of nodes can establish
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full-bandwidth high-speed communication over a network by
circuit switching. Circuit switching attains an optimal data
transfer performance because it does not conduct any switch-
ing inside the routers of intermediate nodes. Also, circuit
switching does not allow any interference with other com-
munications, thereby ensuring security and privacy. Another
advantage is that disjoint paths routing prevents deadlocks,
livelocks, and starvations, and does not require any recovery
process, making it suitable for real-time applications. Further-
more, disjoint paths routing significantly increases the system
dependability for the following reason: If multiple paths have
a common node, that node is crucial to their dependability.
However, one faulty node can block at most one constructed
path in the disjoint paths routing. Hence, the disjoint paths
routing drastically improves the robustness of a massively
parallel system. If the set-to-set disjoint paths problem is
solved, its approach can be applied to solve the node-to-node
and node-to-set disjoint paths problems. Hence, the set-to-set
disjoint paths problem is hardest but most important.

For a graph G = (V ,E), the set-to-set disjoint paths can
be constructed in polynomial-order time of |V |, using the
maximum flow algorithm. However, the complexity of the
algorithm is too large for an n-dimensional bijective connec-
tion graph (Bn) because the number of nodes in it is equal
to 2n. In this paper we propose an algorithm called S2S (set-
to-set) that solves the problem in cube-based topologies in a
polynomial-order time of n instead of 2n. We also present the
results of an average performance evaluation by a computer
experiment. Algorithm S2S consists of three cases according
to the relative positions of the source nodes and the destina-
tion nodes. The third case is divided into three sub-cases. The
algorithm constructs p(≤ n) disjoint paths between the set
of source nodes S and the set of destination nodes D where
|S| = |D| = p and n is equal to the connectivity of a Bn.
Because cube-based topologies are popular for interconnec-
tion networks, the generalized disjoint paths routing method
provided by our algorithm is useful as there is no need to
design a specific algorithm for each of the topologies that
belong to the bijective connection graph.

The remainder of this paper is organized as follows:
Section 2 describes the related works regarding the disjoint
paths problems. Section 3 introduces the definition of bijec-
tive connection graphs as well as other requisite definitions
and a routing algorithm R, which can tolerate the existence
of a single faulty node in a bijective connection graph.
Section 4 introduces a fault-tolerant routing algorithm FTR,
which will be used in S2S. Section 5 explains Algorithm S2S
in detail. Section 6 describes a proof of correctness and the
theoretical complexities of S2S. The average performance of
S2S is reported in Section 7. We conclude and give future
work in Section 8.

II. RELATED WORK
In this section we introduce the related works on three dis-
joint paths problems: node-to-node, node-to-set, and set-to-
set in this order regarding the typical topologies proposed

for interconnection networks. The studies for the cube-based
topologies are summarized in Table 1.

There are many studies regarding the node-to-node disjoint
paths problem. The algorithm in [27] solves the problem
in n-burnt pancake graphs in O(n3) time, with a maximum
length of constructed paths of 3n + 4. The algorithm in [34]
solves the problem in an n-bubble-sort graph in O(n4) time,
with a maximum length of constructed paths of n(n + 1)/2.
The algorithm in [23] solves the problem in a hierarchi-
cal dual-net in O((d0 + k)2k ) time, where d0 is the node
degree of the symmetric base network B, and k is the level,
that is, the number of recursive construction. The maximum
length of constructed paths is (3 · 2k−1 + 2)diam(B) −
3

∑k−2
j=0 2jdiam(SN k−1−j) − diam(SN k ) + 3 · 2k + 2k − 2,

where SN i is a super-node of level i. The algorithm in [25]
solves the problem in an n-dimensional hierarchical cubic
network, with a maximum length of constructed paths of
n+ bn/3c + 4. The algorithm in [30] solves the problem in a
recursive dual-net inO((d0+k)2k t) time, where d0 is the node
degree of the symmetric base network B, k is the level, and
O(t) is the time complexity to construct a path in B. The max-
imum length of constructed paths is 2kdiam(B)+ 2k+1 − 2.
The algorithm in [35] solves the problem in a hierarchical
hypercube network with degree n+1, with a maximum length
of constructed paths of max{2n+1 + 2n + 1, 2n+1 + n + 4}.
The algorithm in [29] solves the problem in an (n, k)-star
graph, Sn,k , with 2 ≤ k ≤ n − 2, with a maximum length
of constructed paths of diam(Sn,k )+2 for 2 ≤ k ≤ bn/2c and
diam(Sn,k )+ 1 or diam(Sn,k )+ 2 for bn/2c+ 1 ≤ k ≤ n− 2.
It is proved in [32] that there are c (1 ≤ c ≤ 2n) disjoint paths
between two nodes in a k-ary n-dimensional torus such that
they contain all of the nodes in the torus. The torus with an
even k is bipartite. Hence, the two nodesmust be from distinct
partite sets.

There are also many studies regarding the node-to-set dis-
joint paths problem. The algorithm in [36] solves the problem
in a (k, n)-torus connected cycles network inO(n3+kn2) time,
with a maximum length of constructed paths of bk/2cn2 +
(bk/2c + 5)n − 4. The algorithm in [37] solves the problem
in an n-star graph in O(n2) time, with a maximum length of
constructed paths of b3(n− 1)/2c + 2. The algorithm in [41]
solves the problem in an n-dimensional folded hypercube in
O(n3) time, with a maximum length of constructed paths of
dn/2e + 1. The algorithm in [42] solves the problem in an
n-dimensional folded hypercube in O(n3) time, with a max-
imum length of constructed paths of the maximum distance
between the source node and the (n + 1) destination nodes
plus 2. The algorithm in [43] solves the problem in a (2n, n)-
hyper-star network in O(n5) time, with a maximum length
of constructed paths of the maximum distance between the
source node and the destination nodes plus 4. The algorithm
in [44] solves the problem in a recursive dual-net in O(((d0+
k)diam(B)/ log n0) logN ) time, where d0 is the node degree
of the base network B, k is the level, n0 is the number of nodes
in B, and N is the number of the nodes in the recursive dual-
net (N = (2n0)2

k
/2). The maximum length of constructed
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TABLE 1. Comparison of n-dimensional cube-based topologies regarding node-disjoint path routing algorithms in constructing n disjoint paths.

paths is 3(diam(B)/2 + 1)(log2 N + 1)/(log2 n0 + 1). The
algorithm in [45] solves the problem in an (n, k)-star graph in
O(k2n2) time, with a maximum length of constructed paths
of 6k − 7.
There are several studies on the set-to-set disjoint paths

problem. The algorithm in [21] solves the problem in a k-ary
n-dimensional torus in O(kn3 + n3 log n) time, with a maxi-
mum length of constructed paths of 2(k+ 1)n. The algorithm
in [15] solves the problem in a (2n + n)-dimensional perfect
hierarchical hypercube in O(n222n) time, with a maximum
length of constructed paths of (n + 1)(2n + n + 4) + 3. The
algorithm in [16] solves the problem in an n-dimensional hier-
archical cubic network in O(n2 log n) time, with a maximum
length of constructed paths of 6n + 3. The algorithm in [22]
solves the problem in an n-dimensional hypercube with f
faulty nodes. The algorithm can construct k disjoint paths
between two node sets that include at least (2n− 2f ) nodes if
f ≤ 2n − 2f − 2 and each non-faulty node has at least two
non-faulty neighbor nodes. The algorithm in [17] solves the
problem in an n-dimensional hypercube with fn faulty nodes
and fe faulty edges. The algorithm can construct p disjoint
paths between two node sets that include at least (2n − 2fvn)
nodes if fn+ fe ≤ n− p− 1. The algorithm in [18] solves the
problem in an n-dimensional hypercube with at most (n− p)
faulty nodes to construct p disjoint paths between two node
sets in O(pn log p) time. The maximum length of constructed
paths is n+ p.

As mentioned above, there have been many studies on the
disjoint paths problems, producing many important results.
However, there are still many topologies for which these
problems are unsolved. Table 1 shows a restricted list of
typical cube-based topologies, indicating the disjoint paths
problems that have not yet been solved.

III. PRELIMINARIES
In this section we first give a definition of bijective connec-
tion (BC) graphs.
Definition 1: A class of n-dimensional BC graphs Ln is

recursively defined as follows: L0 = {B0} where |V (B0)| = 1
and E(B0) = ∅. Note that B0 consists of a single node.
Bn ∈ Ln if and only if there are two node-disjoint BC graphs
B0n−1 and B1n−1 in Ln−1 such that V (Bn) = V (B0n−1) ∪

FIGURE 1. Example of a 4-dimensional hypercube, which belongs to L4.

FIGURE 2. Example of a 4-dimensional twisted cube, which belongs to
L4.

FIGURE 3. Example of a 4-dimensional locally twisted cube, which
belongs to L4.

V (B1n−1), and E(Bn) = E(B0n−1) ∪ E(B1n−1) ∪ En where
En = {(x, φn(x)) | x ∈ V (B0n−1} with a bijection φn :
V (B0n−1)→ V (B1n−1).
Figures 1, 2, and 3 show the 4-dimensional hypercube, the

4-dimensional twisted cube, and the 4-dimensional locally
twisted cube, respectively. They all belong to L4. Figure 4
shows the cube-connected cycles [52], which do not belong
to BC graphs.
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FIGURE 4. Example of cube-connected cycles, which do not belong to BC
graphs.

Because we evaluate our algorithm based on the locally
twisted cube in a later section, we formally define it here.
Definition 2: An n-dimensional locally twisted cube is an

undirected graph whose node set is {0, 1}n. For each node
a = (a1, a2, . . . , an), it has n adjacent nodes: (a1, a2,
. . . , an−1, an), (a1, a2, . . . , an−2, an−1, an), and (a1, a2, . . . ,
ai−1, ai, ai+1 ⊕ an, ai+2, . . . , an) (1 ≤ i ≤ n − 2) where a
(a ∈ {0, 1}) represents 1 − a and ⊕ represents the bitwise
exclusive-or operation with 0⊕ 0 = 1⊕ 1 = 0 and 0⊕ 1 =
1⊕ 0 = 1.

In the rest of this paper, for a node x ∈ V (Bn), we use
x(j) and x(j1,j2) to represent φj(x) and φj2 (φj1 (x)), respectively.
In addition, we assume that Bn consists of B0n−1 and B

1
n−1, and

Bin−1 (i ∈ {0, 1}) consists of B
i0
n−2 and B

i1
n−2.

For two nodes x, y ∈ V (Bn), we assume that we can check
if x = y in O(1) time. We also assume that we can check if
x ∈ B0n−1 or x ∈ B

1
n−1 in O(1) time.

In this paper a path is an alternating finite sequence of
nodes and edges, a0, e0, a1, e1, a2, . . . , ak−1, ek−1, ak where
ei = (ai, ai+1) (0 ≤ i ≤ k − 1). The length of a path
is the number of edges included in it. We use the notation
a0 → a1 → · · · → ak or a0  ak as long as it does not
cause confusion. Two paths are node-disjoint if they do not
have any common node. For simplicity, we sometimes use
‘disjoint’ instead of ‘node-disjoint’ in the rest of this paper.
Lemma 1: There is no cycle whose length is 3 in a BC

graph.
Proof: Bn (n ≤ 2) does not contain a cycle whose

length is 3. Assume that there is no cycle whose length is 3 in
Bk−1. Then, if there is a cycle that consists of three nodes
x, y, and z in Bk , we can assume without loss of generality
that x, y ∈ V (Bik−1) and z ∈ V (Bı̄

k−1) for i(∈ {0, 1}), and
(x, y), (x, z), (y, z) ∈ E(Bk ). However, from Definition 1, the
nodes in Bik−1 and B

ı̄
k−1 are connected by a bijection. Hence,

x = y, and it is a contradiction. Therefore, there is no cycle of
length 3 in Bk . By mathematical induction, we can conclude
that there is no cycle of length 3 in Bn (n ≥ 0). �
Lemma 2: For Bn, which consists of two node-disjoint BC

graphs B0n−1 and B
1
n−1, assume a node a is in B

i
n−1 (i ∈

{0, 1}). Then, we can construct n paths from a to Bı̄
n−1: Pj:

a(∈ V (Bin−1))  bj(∈ V (Bı̄
n−1)) (1 ≤ j ≤ n) in O(n) time

FIGURE 5. n disjoint paths from node a(∈ Bi
n−1) to Bı̄

n−1.

such that the paths are disjoint except for a and their lengths
are at most 2.

Proof: For a, we can construct n disjoint paths:

Pj :

{
a→ a(j)→ a(j,n) (1 ≤ j ≤ n− 1),
a→ a(n) (j = n).

In Fig. 5 the length of the path Pn is 1, and the lengths of the
remaining (n− 1) paths Pj (1 ≤ j ≤ n− 1) are all 2. It takes
O(1) time to construct a path. Hence, it takes O(n) time in
total. �
Lemma 3: For two non-faulty nodes s, d(∈ V (Bn)) and at

most one faulty node f (∈ V (Bn)), there is an algorithm, R,
that constructs a fault-free path s d of length at most n in
O(n) time.

Proof: If s = d , R can construct the path of length 0.
Hence, we assume that s 6= d . We also assume that s ∈ Bin−1
(i ∈ {0, 1}). Then, R is given as follows.

Step 1) If n = 1, then since s and d are adjacent in B1, select
the edge s→ d , and terminate.

Step 2) If d ∈ V (Bin−1), then apply R in Bin−1 recursively to
construct a fault-free path between s and d , and terminate.

Step 3) If f ∈ V (Bin−1), select the edge s→ s(n), and apply
R in Bı̄

n−1 recursively to construct a fault-free path between
s(n) and d . Otherwise, select the edge d → d (n), and apply
R in Bin−1 recursively to construct a fault-free path between s
and d (n).

Since each step takes only O(1) time to select at most one
edge and the steps are executed at most n times, Algorithm R
constructs a fault-free path from s to d of length at most n in
O(n) time. �

IV. FAULT-TOLERANT ROUTING
For a source node s and a destination node d in an
n-dimensional BC graph with a set of faulty nodes F such
that |F | = f ≤ n − 1, the following algorithm, FTR, gives a
fault-free path. If f ≤ 1, we can apply R to construct a fault-
free path between s and d , hence, we assume that 2 ≤ f < n.
The algorithm is divided into two cases depending on the
distribution of the source and destination nodes.

A. CASE 1
Assume that s, d ∈ V (Bin−1) (i ∈ {0, 1}).
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FIGURE 6. After Step 4 in Case 1 of FTR.

FIGURE 7. After Step 2 in Case 2 of FTR.

Step 1) If |V (Bin−1) ∩ F | ≤ |V (B
ı̄
n−1) ∩ F |, apply FTR in

Bin−1 recursively to construct a fault-free path between s and
d , and terminate.

Step 2) If s(n) 6∈ F , select an edge s→ s(n)(= s′). Otherwise,
select a fault-free path s→ s(j)→ s(j,n)(= s′) (1 ≤ j ≤ n−1).

Step 3) If d (n) 6∈ F , select an edge d → d (n)(= d ′).
Otherwise, select a fault-free path d → d (j) → d (j,n)(= d ′)
(1 ≤ j ≤ n− 1).
Step 4) Apply FTR in Bı̄

n−1 recursively to construct a
fault-free path between s′ and d ′. See Fig. 6.

B. CASE 2
Assume that s ∈ V (Bin−1) and d ∈ V (Bı̄

n−1) (i ∈ {0, 1}).
Without loss of generality, we can assume that |V (Bin−1) ∩
F | ≤ |V (Bı̄

n−1) ∩ F |.

Step 1) If d (n) 6∈ F , select an edge d → d (n)(= d ′).
Otherwise, select a fault-free path d → d (j) → d (j,n)(= d ′)
(1 ≤ j ≤ n− 1).

Step 2) Apply FTR in Bin−1 recursively to construct a
fault-free path between s and d ′. See Fig. 7.

V. SET-TO-SET DISJOINT PATH ROUTING
For a set of p source nodes S = {s1, s2, . . . , sp} and a set of p
destination nodes D = {d1, d2, . . . , dp} in an n-dimensional
BC graph (p ≤ n), the following algorithm, S2S, gives p
disjoint paths between S and D. If n = 1 or p = 1, we can
use Algorithm R to construct a path between s1 and d1 of
length at most n in O(n) time; hence, we assume that 2 ≤
p ≤ n. The algorithm is divided into three cases depending
on the distribution of the source nodes and the destination
nodes.

FIGURE 8. After Step 2 in Case 1 of S2S.

FIGURE 9. After Step 3 in Case 1 of S2S.

A. CASE 1
Assume that (S ∪ D) ⊂ V (Bin−1) for i(∈ {0, 1}).

Step 1) If p < n, apply S2S recursively in Bin−1 to construct
p disjoint paths, and terminate.

Step 2) Apply S2S recursively in Bin−1 to construct
(p − 1) disjoint paths between {s1, s2, . . . , sp−1} and
{d1, d2, . . . , dp−1}. See Fig. 8.
Step 3) If sp is included in one of the paths constructed in Step
2, say sx  dy, discard the sub path sx  sp, and exchange
the indices of sx and sp. See Fig. 9.
Step 4) If dp is included in one of the paths constructed in
Steps 2 and 3, say sx  dy, discard the sub path dp  dy,
and exchange the indices of dy and dp.

Step 5) If sp = dp, terminate. Otherwise, select the edges
sp→ s(n)p (= s′p) and dp→ d (n)p (= d ′p).

Step 6) Apply R in Bı̄
n−1 to construct a path between s′p and

d ′p.

B. CASE 2
Assume that 0 < |S ∩ V (Bin−1)|, 0 < |D ∩ V (B

i
n−1)|, and

0 < |(S ∪ D) ∩ V (Bı̄
n−1)| for i(∈ {0, 1}). Without loss of

generality, we can assume that S∩V (Bin−1) = {s1, s2, . . . , sl},
D ∩ V (Bin−1) = {d1, d2, . . . , dm}, and l ≤ m ≤ p.

Step 1) Apply S2S recursively in Bin−1 to construct l disjoint
paths between {s1, s2, . . . , sl} and {d1, d2, . . . , d l}.

Step 2) For each of dk (l + 1 ≤ k ≤ m), if dk is included in
one of the paths constructed in Step 1, say sx  dy, discard
the sub path dk  dy, and exchange the indices of dy and dk .

Step 3) For each of dk (l + 1 ≤ k ≤ m), if d (n)k 6∈ D,
select the edge dk → d (n)k (= d ′k ). Otherwise, if there is a path
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FIGURE 10. Exchanging dy and dk in Step 3 in Case 2 of S2S.

dk → d (j)k → d (j,n)k (1 ≤ j ≤ n−1) that is disjoint from other
destination nodes and the paths from them, select it and let d ′k
be d (j,n)k . Otherwise, there is a path, say sx  dy constructed
in Steps 1 and 2 that includes at least two neighbor nodes d (j1)k
and d (j2)k of the node dk . Without loss of generality, we can
assume that d (j1)k is located closer to sx on the path than d

(j2)
k ,

that is, sx  d (j1)k  d (j2)k  dy. Then, discard the sub path
d (j1)k  d (j2)k  dy, add the edge d (j1)k → dk to construct the
path sx  d (j1)k → dk , exchange the indices of dy and dk ,
and try to find a disjoint path from dk again. See Fig. 10.
Step 4) Apply S2S recursively in Bı̄

n−1 to construct
(p − l) disjoint paths between {sl+1, sl+2, . . . , sp} and
{d ′l+1, d

′

l+2, . . . , d
′
m, dm+1, dm+2, . . . , dp}.

C. CASE 3
Assume that S ⊂ V (Bi1n−1) andD ⊂ V (Bı̄1

n−1) for i1(∈ {0, 1}).
If p < n, we can select the edges dk → d (n)k (1 ≤ k ≤ p) and
apply S2S recursively to construct p disjoint paths in Bi1n−1;
hence, we assume that p = n.

1) CASE 3-1
Assume that |S ∩ V (Bi1i2n−2)| ≥ p− 1 for i2(∈ {0, 1}). Without
loss of generality, we can assume that {s1, s2, . . . , sp−1} ⊂
V (Bi1i2n−2).

Step 1) For each sk (1 ≤ k ≤ p − 1), select the edge
sk → s(n)k (= s′k ).

Step 2) Apply S2S recursively in Bı̄1
n−1 to construct

(p − 1) disjoint paths between {s′1, s
′

2, . . . , s
′

p−1} and
{d1, d2, . . . , dp−1}.

Step 3) If dp is included in one of the paths constructed in
Step 2, say s′x  dy, discard the sub path dp  dy, and
exchange the indices of dy and dp.

Step 4) Select the edge dp→ d (n)p . If d (n)p = sp, terminate.

Step 5) If sp ∈ V (B
i1i2
n−2), select the edge sp → s(n−1)p (= s′p).

Otherwise, let s′p be sp.

Step 6) If d (n)p ∈ Bi1i2n−2, select the edge d (n)p → d (n,n−1)p (=
d ′p). Otherwise, let d

′
p be d

(n)
p .

Step 7) Apply R in Bi1 ı̄2
n−2 to construct a path between s′p and

d ′p. See Fig. 11.

FIGURE 11. After Step 7 in Case 3-1 of S2S with sp, d(n)
p ∈ B

i1i2
n−2.

FIGURE 12. After Step 6 in Case 3-2 of S2S with d(n)
p ∈ V (B

i1 ı̄2
n−2) and

s(n−1)
p 6∈ S.

2) CASE 3-2
Assume that 2 ≤ |S∩V (Bi1i2n−2)| ≤ p−2 for i2(∈ {0, 1}).With-
out loss of generality, we can assume that |S ∩ V (Bi1 ı̄2

n−2)| ≤
|S ∩ V (Bi1i2n−2)| and sp ∈ V (Bi1i2n−2). If n = p = 4, bn/2c =
n− 2 = 2. Hence, from |S ∩V (Bi1 ı̄2

n−2)| = |S ∩V (B
i1i2
n−2)| = 2,

two neighbor nodes of s(n−1)p in Bi1 ı̄2
n−2 may be both source

nodes, and it is not possible to construct a disjoint path from
s(n−1)p to d (n) by applying FTR in Bi1 ı̄2

n−2 in Step 6 of Case 3-2.
Therefore, if n = p = 4, we apply Case 3-3.

Step 1) If there is a source node sx(∈ V (Bi1i2n−2)) such that
s(n−1)x 6∈ S, exchange the indices of sx and sp.

Step 2) For each sk (1 ≤ k ≤ p − 1), select the edge
sk → s(n)k (= s′k ).

Step 3) Apply S2S recursively in Bı̄1
n−1 to construct

(p − 1) disjoint paths between {s′1, s
′

2, . . . , s
′

p−1} and
{d1, d2, . . . , dp−1}.

Step 4) If dp is included in one of the paths constructed in
Step 3, say s′x  dy, discard the sub path dp  dy, and
exchange the indices of dy and dp.

Step 5) Select the edge dp→ d (n)p . If d (n)p = sp, terminate.

Step 6) If d (n)p ∈ V (Bi1 ı̄2
n−2) and s

(n−1)
p 6∈ S, select the edge

sp→ s(n−1)p , apply FTR in Bi1 ı̄2
n−2 to construct a fault-free path

between s(n−1)p and d (n)p by regarding the nodes in S∩V (Bi1 ı̄2
n−2)

as faulty, and terminate. See Fig. 12.

72736 VOLUME 10, 2022



K. Kaneko et al.: Set-to-Set Disjoint Path Routing in Bijective Connection Graphs

FIGURE 13. After Step 8 in Case 3-2 of S2S with d(n)
p ∈ V (B

i1 ı̄2
n−2) and

s(n−1)
p ∈ S.

FIGURE 14. In Step 3 in Case 3-3 of S2S with d ′3 ∈ V (B
i1i2
n−2) and

d ′(n−1)
3 = d ′4.

Step 7) If d (n)p ∈ V (B
i1 ı̄2
n−2), select the edge d

(n)
p → d (n,n−1)p (=

d ′p). Otherwise, let d
′
p be d

(n)
p .

Step 8) Apply FTR in Bi1i2n−1 to construct a fault-free path
between sp and d ′p by regarding the nodes in (S \ {sp}) ∩
V (Bi1i2n−2) as faulty. See Fig. 13.

3) CASE 3-3
Assume that n = p = 4 and |S∩V (Bi1 ı̄2

n−2)| = |S∩V (B
i1i2
n−2)| =

2 for i2(∈ {0, 1}). We can assume without loss of generality
that S ∩ V (Bi1i2n−2) = {s1, s2} and S ∩ V (B

i1 ı̄2
n−2) = {s3, s4}.

Step 1) Select edges dk → d (n)k (= d ′k ) (1 ≤ k ≤ n). Let
D′ = {d ′k | 1 ≤ k ≤ n}. We can assume without loss of
generality that |D′ ∩ V (Bi1i2n−2)| ≥ |D

′
∩ V (Bi1 ı̄2

n−2)|.

Step 2) Select two disjoint paths of length at most 2 between
{s1, s2} and two distinct nodes in D′ ∩ V (Bi1i2n−2) in Bi1i2n−2.
We can assume without loss of generality that two paths
s1  d ′1 and s2  d ′2 have been constructed.

Step 3) For each node d ′k (k ∈ {3, 4}) such that d ′k ∈
V (Bi1 ı̄2

n−2), let d
′′
k be d

′
k . If for every node d ′k (k ∈ {3, 4}) such

that d ′k ∈ V (Bi1i2n−2) the node d ′(n−1)k is not in D′, select for
each such d ′k the edge d

′
k → d ′(n−1)k (= d ′′k ), and go to Step 4.

Otherwise, we can assume without loss of generality that
there exists k ∈ {3, 4} with d ′k ∈ V (B

i1i2
n−2) and d

′(n−1)
k ∈ D′.

See Fig. 14.

In this configuration, first discard the paths s1  d ′1 and
s2  d ′2 constructed in Step 2. Next, for either one of dk
(k ∈ {3, 4}), find a path dk → d (x)k → d (x,n)k (= d ′k ) (1 ≤
x ≤ n−1) such that the path does not include any destination
nodes other than dk , and select it. We can assumewithout loss
of generality that k = 3. Then, select edges dk → d (n)k (= d ′k )
(k ∈ {1, 2, 4}). Let D′ = {d ′1, d

′

2, d
′

3, d
′

4}, and go back to
Step 2.

Step 4) Select two disjoint paths of lengths at most
2 between {s3, s4} and {d ′′3, d

′′

4} in B
i1 ı̄2
n−2.

VI. CORRECTNESS AND COMPLEXITIES
In this section we prove the correctness and the complexities
of Algorithms FTR and S2S. We assume that each node a
(∈ V (Bn)) is stored in a machine word and construction of
an edge by constructing a neighbor node a(i) (1 ≤ i ≤ n)
requires O(1) time.

A. ALGORITHM FTR
Let T0(f , n) and L0(f , n) represent the time complexity and
the maximum path length of Algorithm FTR, respectively, if
it is applied to construct a fault-free path in Bn with f (≥ 2)
faulty nodes.
Lemma 4: In Case 1 AlgorithmFTR constructs a fault-free

path between s and d of length at most L0(bf /2c, n−1)+4 in
T0(bf /2c, n− 1)+ O(n) time.

Proof: In Step 1 it takes O(n) time to compare
|V (Bin−1)∩F | and |V (B

ı̄
n−1)∩F |. Also, it takes T0(bf /2c, n−

1) time to apply FTR recursively in Bin−1, and the maximum
length of the path constructed by FTR is L0(bf /2c, n − 1).
In Step 2 it takes O(n) time to check if s(n) 6∈ F . Selection
of the path s → s(n) or s → s(j) → s(j,n) takes O(n) time
and the path length is at most 2. In Step 3 it takes O(n) time
to check if d (n) 6∈ F . Selection of the path d → d (n) or
d → d (j) → d (j,n) takes O(n) time and the path length is
at most 2. In Step 4 the recursive application of FTR takes
T0(bf /2c, n − 1) time and the maximum length of the path
constructed is L0(bf /2c, n−1). Therefore, in total, FTR takes
T0(bf /2c, n−1)+O(n) time, and the maximum length of the
constructed path is L0(bf /2c, n− 1)+ 4 in Case 1. �
Lemma 5: In Case 2 AlgorithmFTR constructs a fault-free

path between s and d of length at most L0(bf /2c, n−1)+2 in
T0(bf /2c, n− 1)+ O(n) time.

Proof: It takes O(n) time to compare |V (Bin−1) ∩ F |
and |V (Bı̄

n−1) ∩ F |. In Step 1 it takes O(n) time to check if
d (n) 6∈ F . Selection of the path s→ s(n) or s→ s(j) → s(j,n)

takes O(n) time and the path length is at most 2. In Step 2 the
recursive application of FTR takes T0(bf /2c, n− 1) time and
the maximum length of the constructed path is L0(bf /2c, n−
1). Therefore, in total, FTR takes T0(bf /2c, n−1)+O(n) time,
and the maximum length of the path is L0(bf /2c, n−1)+2 in
Case 2. �
Theorem 1: Algorithm FTR constructs a fault-free path

between s and d of length at most n + 3blog2 f c − 1 in
O(n log f ) time.
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Proof: It takes O(1) time to check if s, d ∈ Bin−1
(i ∈ {0, 1}). After applying FTR blog2 f c times, we can
apply R in an (n − blog2 f c)-dimensional BC graph with
at most one faulty node. In the final application of FTR,
BC ı̄

n−blog2 f c
contains at most one faulty node. Hence, at least

one of the edges s → s(n) and d → d (n) is fault-free in
Case 1. Therefore, from Lemmas 3, 4 and 5, we can have
T0(f , n) = O(n log f ) and L0(f , n) = 4(blog2 f c − 1) + 3 +
(n− blog2 f c) = n+ 3blog2 f c − 1. �

B. ALGORITHM S2S
Let T1(p, n) and L1(p, n) represent the time complexity and
the maximum path length of Algorithm S2S, respectively, if
it is applied to construct p disjoint paths in Bn. The following
lemmas are proved with mathematical induction.
Lemma 6: In Case 1 Algorithm S2S constructs p disjoint

paths between S and D. Their lengths are at most L1(p, n−1)
if p < n, and max{L1(p− 1, p− 1), p+ 1} if p = n. The time
complexity of the algorithm is T1(p, n − 1) + O(1) if p < n,
and T1(p− 1, p− 1)+ L1(p− 1, p− 1)× O(p) if p = n.

Proof: In Step 1 it takesO(1) to check if p < n. If p < n,
S2S constructs p disjoint paths of length atmost L1(p, n−1) in
T1(p, n−1)+O(1) time from the hypothesis of the induction.
In Step 2 applying S2S in Bip−1 recursively takes T1(p−1, p−
1) time to construct (p − 1) disjoint paths whose lengths are
at most L1(p−1, p−1) from the hypothesis of the induction.
In Step 3 it takes L1(p− 1, p− 1)× O(p) time to check if sp
is included in one of the paths constructed in Step 2. It takes
O(1) time to discard the sub path sx  sp, and exchange the
indices of sx and sp. In Step 4 it takes L1(p−1, p−1)×O(p)
time to check if dp is included in one of the paths constructed
in Steps 2 and 3. It takes O(1) time to discard the sub path
dp  dy, and exchange the indices of dy and dp. In Step 5 it
takes O(1) time to check if sp = dp. Selection of the edges
sp→ s(n)p and dp→ d (n)p takesO(1) time and the path lengths
are both 1. In Step 6 it takes O(p) time to construct a path
between s′p and d ′p of length at most p − 1 from Lemma 3.
The constructed path sp  dp is outside of Bin−1 except for
sp and dp. Hence, it is disjoint from other constructed paths.
Therefore, in total, S2S construct p disjoint paths in Case 1 by
taking T1(p, n−1)+O(1) time, and the maximum path length
is L1(p, n − 1) if p < n, and by taking T1(p − 1, p − 1) +
L1(p− 1, p− 1)× O(p) time, and the maximum path length
is max{L1(p− 1, p− 1), p+ 1} if p = n. �
Lemma 7: In Case 2 Algorithm S2S constructs p dis-

joint paths between S and D. Their lengths are at most
max{L1(l, n− 1),L1(p− l, n− 1)+ 2}. The time complexity
of the algorithm is T1(l, n−1)+T1(p− l, n−1)+{L1(l, n−
1)}2 × O(np3).

Proof: In Step 1 applying S2S recursively in Bin−1 takes
T1(l, n − 1) time to construct l disjoint paths whose lengths
are at most L1(l, n−1) from the induction hypothesis. In Step
2 it takes L1(l, n−1)×O(l) time to check if each dk (l+1 ≤
k ≤ m) is included in one of the paths constructed in Step
1. It takes O(1) time to discard the sub path dk  dy, and

exchange the indices of dy and dk . Hence, in total, it takes
L1(l, n−1)×O(l)×O(m− l) = L1(l, n−1)×O(p2) time in
Step 2. In Step 3 it takes O(p− m) time to check if d (n)k 6∈ D
for each dk (l+1 ≤ k ≤ m). If d (n)k 6∈ D, it takesO(1) time to
construct the path dk → d (n)k of length 1. Otherwise, it takes
(L1(l, n− 1)×O(l)+O(m− l)+O(p−m))×O(n) time to
check if there is j (1 ≤ j ≤ p−1) such that d (j)k is not included
in D or the paths constructed in Steps 1, 2, and 3 so far, and
d (j,n)k 6∈ D. If such j exists, it takes O(1) time to construct
the path dk → d (j)k → d (j,n)k of length 2. If such j does not
exist, it takes L1(l, n− 1)×O(l)×O(n) time to find the path
sx  dy and d

(j1)
k . It takes O(1) time to discard the sub path

d (j1)k  d (j2)k  dy, add the edge d (j1)k → dk , and exchange
the indices of dy and dk . From Lemma 1, there are at least
two hops between d (j1)k and d (j2)k . Hence, the length of the path
sx  dy is shortened by at least one hop. So, this process will
terminate after at most L1(l, n−1)×O(l) repetitions. Hence,
in total, it takes (L1(l, n − 1) × O(l) + O(m − l) + O(p −
m)) × O(n) × L1(l, n − 1) × O(l) × O(m − l) = {L1(l, n −
1)}2 × O(np3) time to construct the (m − l) disjoint paths of
lengths at most 2 in Step 3. In Step 4 applying S2S recursively
in Bı̄

n−1 to construct (p− l) disjoint paths takes T1(p− l, n−
1) time, and the maximum path length is L1(p − l, n − 1)
from the hypothesis of the induction. Therefore, in total, S2S
constructs p disjoint paths in Case 2 by taking T1(l, n− 1)+
T1(p − l, n − 1) + {L1(l, n − 1)}2 × O(np3) time, and the
maximum path length is max{L1(l, n−1),L1(p−l, n−1)+2}.

�
Lemma 8: In Case 3-1 Algorithm S2S constructs p disjoint

paths between S and D. Their lengths are at most L1(p, n −
1)+1 if p < n, andmax{L1(p−1, p−1)+1, p+1} if p = n.
The time complexity of the algorithm is T1(p, n − 1) + O(p)
if p < n, and T1(p − 1, p − 1) + L1(p − 1, p − 1) × O(p) if
p = n.

Proof: If p < n, selection of edges dk → d (n)k (1 ≤ k ≤
p) takesO(p) time. S2S recursively applied inBı̄1

n−1 constructs
p disjoint paths from the hypothesis of the induction. The path
lengths are at most L1(p, n− 1)+ 1, and the time complexity
is T1(p, n − 1) + O(p). In the rest of this proof, we assume
that p = n. In Step 1 it takes O(p) time to construct the
paths sk → s(n)k (1 ≤ k ≤ p − 1) of length 1. Because
the paths are constructed by a bijection, they are disjoint.
In Step 2 applying S2S recursively in Bı̄1

n−1 to construct
(p − 1) disjoint paths of length at most L1(p − 1, p − 1)
takes T1(p − 1, p − 1) time from the induction hypothesis.
In Step 3 it takes L1(p− 1, p− 1)×O(p) time to check if dp
is included in one of the paths constructed in Step 2. It takes
O(1) time to discard the sub path dp  dy and exchange
the indices of dy and dp if dp is included in the path s′x  dy.
In Step 4 it takesO(1) time to construct the path dp→ d (n)p of
length 1. If d (n)p ∈ (S \ {sp}∩V (B

i1
n−1)), d

(n)
p must be included

in the paths constructed in Step 2, and it is a contradiction.
Hence, d (n)p 6∈ (S \ {sp} ∩ V (B

i1
n−1)), and the path dp → d (n)p

is disjoint from other paths constructed so far. It takes O(1)
time to check if d (n)p = sp. In Step 5 it takes O(1) time to
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check if sp ∈ V (Bi1i2n−2) and construct the path sp → s(n−1)p
of length 1. Because no source or destination node exists
in Bi1 ı̄2

n−2, the path sp → s(n−1)p is disjoint from other paths
constructed in Step 1. In Step 6 it takes O(1) time to check
if d (n)p ∈ V (Bi1i2n−2) and construct the path d (n)p → d (n,n−1)p
of length 1. Because neither a source node, nor a destination
node, nor a path from either exists in Bi1 ı̄2

n−2 except for the
node s′p, the path d (n)p → d (n,n−1)p is disjoint from other
paths constructed in Steps 1 to 4 except for the one from sp.
In Step 7 from Lemma 3, applying R in Bi1 ı̄2

n−2 takes O(p) time
and the length of the constructed path is atmost p−2. The path
from sp to dp is included in B

i1 ı̄2
n−2 except for the nodes sp, d

(n)
p ,

and dp, which are disjoint from other paths. Hence, the path is
disjoint from other paths. Therefore, in total, S2S constructs
p disjoint paths in Case 3-1 by taking T1(p, n−1)+O(p) time,
and the maximum path length is L1(p, n−1)+1 if p < n, and
by taking T1(p−1, p−1)+L1(p−1, p−1)×O(p) time, and
the maximum path length is max{L1(p−1, p−1)+ 1, p+ 1}
if p = n. �
Lemma 9: In Case 3-2 Algorithm S2S constructs p disjoint

paths between S and D. Their lengths are at most L1(p, n −
1)+1 if p < n, andmax{L1(p−1, p−1)+1, p+3blog2(p+
1)c − 4} if p = n. The time complexity of the algorithm is
T1(p, n− 1)+ O(p) if p < n, and T1(p− 1, p− 1)+ L1(p−
1, p− 1)× O(p)+ O(p log p) if p = n.

Proof: As in the beginning of the previous proof, if p <
n, selection of edges dk → d (n)k (1 ≤ k ≤ p) takes O(p)
time. S2S recursively applied in Bı̄1

n−1 constructs p disjoint
paths from the hypothesis of the induction. The path lengths
are at most L1(p, n − 1) + 1, and the time complexity is
T1(p, n− 1)+O(p). In the rest of this proof, we assume that
p = n. In Step 1 it takesO(p) time to check if there is a source
node sx(∈ V (B

i1i2
n−2)) such that s(n−1)x 6∈ S, and it takes O(1)

time to exchange the indices of sx and sp. In Step 2 it takes
O(p) time to select the paths sk → s(n)k (1 ≤ k ≤ p − 1)
of length 1. Because the paths are constructed by a bijection,
they are disjoint. In Step 3 applying S2S recursively inBı̄1

n−1 to
construct (p−1) disjoint paths of length at most L1(p−1, p−
1) takes T1(p− 1, p− 1) time from the induction hypothesis.
In Step 4 it takes L1(p− 1, p− 1)×O(p) time to check if dp
is included in one of the paths constructed in Step 3. It takes
O(1) time to discard the sub path dp  dy if dp is included
in the path s′x  dy. In Step 5 it takes O(1) time to select the
path dp → d (n)p of length 1. If d (n)p ∈ (S \ {sp} ∩ V (B

i1
n−1)),

d (n)p must be included in the paths constructed in Step 3, and
it is a contradiction. Hence, d (n)p 6∈ (S \ {sp} ∩ V (B

i1
n−1)), and

the path dp→ d (n)p is disjoint from other paths constructed so
far. It takes O(1) time to check if d (n)p = sp. In Step 6 it takes
O(p) time to check if d (n)p ∈ V (Bi1 ı̄2

n−2) and s
(n−1)
p 6∈ S, and

select the path sp→ s(n−1)p of length 1. From the assumption
that |S ∩ V (Bi1 ı̄2

n−2)| ≤ |S ∩ V (B
(i1i2)
n−2 )|, there are at most bp/2c

source nodes in Bi1 ı̄2
n−2. If n ≥ 4, bp/2c < n− 2 holds for any

p ≤ n. If n = p = 3, s(n−1)p = d (n)p . Hence, FTR can construct
a disjoint path from s(n−1)p to d (n)p . From Theorem 1, applying

FTR in Bi1 ı̄2
n−2 to construct a fault-free path s(n−1)p  d (n)p of

length at most p+3blog2 pc−6(≥ p−2+3blog2bp/2cc−1)
takes O(p log p) time. In Step 7 it takes O(1) time to check if
d (n)p ∈ V (Bi1 ı̄2

n−2) and construct the path d (n)p → d (n,n−1)p of
length 1. If d (n)p ∈ V (Bi1 ı̄2

n−2), s
(n−1)
p ∈ S from Step 6. Thus,

|S∩V (Bi1 ı̄2
n−2)| = |S∩V (B

i1i2
n−2)|, and for each source node sx in

V (Bi1i2n−2), s
(n−1)
x ∈ S. Hence, d (n,n−1)p 6∈ S. Therefore, the path

d (n)p → d (n,n−1)p is disjoint from other paths. In Step 8 because
|S ∩ V (Bi1i2n−2)| ≤ p − 2, there are at most (p − 3) source
nodes except for sp in Bi1i2n−2. Hence, FTR can construct a
disjoint path from sp to d ′p. From Theorem 1, applying FTR in
Bi1i2n−2 to construct a fault-free path sp  d ′p of length at most
p+ 3blog2(p+ 1)c − 6(≥ p− 2+ 3blog2dp/2ec − 1) takes
O(p log p) time. Therefore, in total, S2S constructs p disjoint
paths in Case 3-2 by taking T1(p, n− 1)+O(p) time, and the
maximum path length is L1(p, n − 1) + 1 if p < n, and by
taking T1(p−1, p−1)+L1(p−1, p−1)×O(p)+O(p log p)
time, and the maximum path length is max{L1(p−1, p−1)+
1, p+ 3blog2(p+ 1)c − 4} if p = n. �
Lemma 10: In Case 3-3 Algorithm S2S constructs four

disjoint paths between S and D. Their lengths are at most
5. The time complexity of the algorithm is O(1).

Proof: In Step 1 it takes O(1) time to select four paths
dk → d (n)k (1 ≤ k ≤ 4) of length 1. Let D′ = {d (n)k | 1 ≤ k ≤
4}. Then, we can assume without loss of generality that |D′ ∩
V (Bi1 ı̄2

n−2)| ≤ |D
′
∩V (Bi1i2n−2)| and d

(n)
1 , d

(n)
2 ∈ V (B

i1i2
n−2). In Step

2 it takes O(1) time to construct two disjoint paths of lengths
at most 2 between {s1, s2} and two nodes in D′ ∩ V (Bi1i2n−2).
We can assume without loss of generality that s1  d (n)1 and
s2  d (n)2 are constructed. In Step 3 it takes O(1) time to
select at most two paths d (n)k → d (n,n−1)k (k ∈ {3, 4}) of length
1. If the path d (n)k → d (n,n−1)k cannot be selected because
d (n,n−1)k ∈ D′, it takes O(1) time to construct a detour path
dk → d (x)k → d (x,n)k (k ∈ {3, 4}) of length 2. After the detour
path is constructed, the process restarts from Step 2. However,
in this configuration, another detour path is never needed in
Step 3. Hence, Steps 2 and 3 are executed at most twice.
In Step 4 it takes O(1) time to construct two disjoint paths
of lengths at most 2 between {s3, s4} and {d ′′3, d

′′

4}. Therefore,
in Case 3-3, S2S takes O(1) time to construct four disjoint
paths of length at most 5. �
Theorem 2: Algorithm S2S constructs p disjoint paths

between S and D in Bn. Their lengths are at most L1(p, n) =
n+ p− 1, and the time complexity is T1(p, n) = O(n3p4).

Proof: From Lemmas 6 to 10, it is proved that S2S
constructs p disjoint paths between S and D.

First, let us consider the case that p = n. Then, from
Lemmas 6 to 9, L1(p, p) = max{L1(p − 1, p − 1), p + 1} in
Case 1, L1(p, p) = max{L1(l, p− 1),L1(p− l, p− 1)+ 2} in
Case 2, L1(p, p) = max{L1(p−1, p−1)+1, p+1} in Case 3-1,
and L1(p, p) = max{L1(p−1, p−1)+1, p+3blog2(p+1)c−4}
in Case 3-2. Thus, by assigning 1 to l in Case 2, L1(p, p) =
L1(p− 1, p− 1)+ 2 = L1(1, 1)+ 2(p− 1) = 2p− 1 holds.
Also, from Lemmas 6 to 9, T1(p, p) = T1(p − 1, p − 1) +
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FIGURE 15. Time complexity of Algorithm S2S to construct n disjoint
paths in n-dimensional locally twisted cubes.

FIGURE 16. Lengths of n disjoint paths constructed by Algorithm S2S in
n-dimensional locally twisted cubes. Note that the green line is almost
identical to the average maximum and therefore hidden in the graph.

L1(p− 1, p− 1)×O(p) in Case 1, T1(p, p) = T1(l, p− 1)+
T1(p− l, p−1)+{L1(l, p−1)}2×O(p4) in Case 2, T1(p, p) =
T1(p− 1, p− 1)+ L1(p− 1, p− 1)× O(p) in Case 3-1, and
T1(p, p) = T1(p−1, p−1)+L1(p−1, p−1)×O(p)+O(p log p)
in Case 3-2. Because L1(p − 1, p − 1) = O(p), T1(p, p) =
T1(p− 1, p− 1)+ O(p6) = O(p7) holds.
Next, let us consider the case that p < n. Then, from

Lemmas 6 to 9, L1(p, n) = L1(p, n− 1) in Case 1, L1(p, n) =
max{L1(l, n− 1),L1(p− l, n− 1)+ 2} in Case 2, L1(p, n) =
L1(p, n−1)+1 in Case 3-1, and L1(p, n) = L1(p, n−1)+1 in
Case 3-2. Thus, by assigning 1 to l in Case 2, L1(p, n) =
max{L1(p−1, n−1)+2,L1(p, n−1)+1} = max{L1(1, n−
p+1)+2(p−1),L1(p, p)+(n−p)} = max{(n−p+1)+2(p−
1), (2p−1)+(n−p)} = n+p−1 holds. Also, from Lemmas 6
to 9, T1(p, n) = T1(p, n − 1) + O(1) in Case 1, T1(p, n) =
T1(l, n − 1) + T1(p − l, n − 1) + {L1(l, n − 1)}2 × O(np3)
in Case 2, T1(p, n) = T1(p, n − 1) + O(p) in Case 3-1,
and T1(p, n) = T1(p, n − 1) + O(p) in Case 3-2. Because
L1(l, n − 1) = O(n), T1(p, n) = max{T1(l, n − 1) + T1(p −
l, n − 1) + O(n3p3),T1(p, n − 1) + O(p)} = max{O(np) +
O(n3p4),O(np+ p7)} = O(n3p4) holds. Finally, considering
Lemma 10 for the exceptional case, that is, Case 3-3, this
theorem is proved. �

VII. COMPUTER EXPERIMENT
To observe the average behavior of Algorithm S2S, we have
selected the locally twisted cube as an example of a BC graph
and implemented S2S by using the programming language

FIGURE 17. Time complexity of Algorithm FTR to construct a fault-free
path in an n-dimensional locally twisted cube with (n− 1) faulty nodes.

FIGURE 18. Length of the fault-free path constructed by Algorithm FTR in
an n-dimensional locally twisted cube with (n− 1) faulty nodes. Note that
the green line is almost identical to the average and therefore hidden in
the graph.

Racket. The locally twisted cube is selected because any
disjoint paths problem has not been solved for it. Hence,
our algorithm provides the solutions to all of them. We have
conducted an experiment on a computer with the AMD
Ryzen 9 5900HX with Radeon Graphics (3.30 GHz) proces-
sor, 16.0 GB memory, and the Microsoft Windows 11 Home
Edition operating system.

The experiment is carried out in three steps as follows:

Step 1) For each n between 2 to 31, execute Steps 2 and 3 for
10,000 times.

Step 2) In an n-dimensional locally twisted cube, select n dis-
tinct source nodes and n distinct destination nodes randomly.

Step 3) Apply S2S, and measure the maximum path length,
the sum of path lengths, and the sum of execution time.

Figure 15 shows the average execution time, and Figure 16
shows the maximum path lengths and the average maximum
path lengths.

The obtained results regarding the time complexity (see
Fig. 15) clearly show that, as the dimension n of the network
increases, the average time complexity of the proposed algo-
rithm is O(n2). This is to be compared with the theoretical
worst-case time complexity that has been previously estab-
lished (see Theorem 2): the gap between the worst-case time
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complexityO(n3p4) and the experimentally obtained average
time complexity is a good indicator of the performance of the
algorithm.

A similar discussion can be made with respect to the path
length analysis: the experimental results (see Fig. 16) show
that on average, as the dimension n of the network increases,
the maximum path length stays well below n + 1, approx-
imately 0.633n − 0.266. This is to be compared with the
theoretical maximum path length previously calculated (see
Theorem 2) of 2n − 1 (in this experiment, p = n). So, the
difference between the experimentally obtained maximum
path length and the theoretical one is yet another strong
indicator of the performance of our algorithms.

VIII. CONCLUSION
In this paper we proposed a polynomial-order time algorithm
for the set-to-set disjoint paths problem in BC graphs. Its time
complexity is O(n3p4), and the maximum path length is n +
p− 1 if the algorithm is applied to construct p (≤ n) disjoint
paths in an n-dimensional BC graph. We also conducted a
computer experiment with an n-dimensional locally twisted
cube to construct n disjoint paths and showed that the average
execution time is O(n2) and the maximum path lengths on
average are approximately 0.633n− 0.266.
Future works include the theoretical analysis of the maxi-

mum path length of the algorithm as well as its average per-
formance. Also, improvement of the algorithm to construct
shorter paths in smaller execution time is also of interest.
Moreover, we wish to extend our algorithm so that it can
be applied to the k-ary n-cube [53], [54], the hierarchical
topologies such as the hierarchical cubic network [55], [56]
and the cube-connected cycles [52], [57], and the product-
based topologies such as the DQcube [58], [59].

APPENDIX
COMPUTER EXPERIMENT ON ALGORITHM FTR
To evaluate the average performance of Algorithm FTR, we
have conducted a computer experiment as follows:

Step 1) For each n between 3 to 31, execute Steps 2 to 4 for
100,000 times.

Step 2) In an n-dimensional locally twisted cube, select (n−1)
distinct faulty nodes randomly.

Step 3) Select a source node and a destination node from non
faulty nodes randomly.

Step 4) Apply FTR, and measure the maximum path length,
the sum of path lengths, and the sum of execution time.

Figure 17 shows the average execution time, and Figure 18
shows the maximum and average path lengths.

Figure 17 shows that the average execution time of Algo-
rithm FTR in an n-dimensional locally twisted cube with
(n−1) faulty nodes isO(n) time. From Figure 18, the lengths
of paths constructed by Algorithm FTR have not attained the
theoretical upper bound n+3blog2(n−1)c−1 except for the

case n = 4. Also, the maximum and average lengths of paths
constructed by Algorithm FTR are both almost linear to n.
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