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ABSTRACT Continuous-time memristor have been widely used in fields such as chaotic circuits and
neuromorphic computing systems, however, research on the application of discrete memristors haven’t been
noticed yet. In this paper, a new chaotic neuron is firstly designed by applying the discrete memristor to two-
dimensional Rulkov neuron. And then the dynamical behaviors of the discrete memristor-based neuron are
analyzed by experiments including phase diagram, bifurcation, and spectral entropy complexity algorithm.
The results show that the resistance of memristor has an important effect on the system dynamics, which
delays the occurrence of bifurcation, in particular, the bifurcation disappears and the system reaches the fixed
point of the neuron when the resistance is greater than a threshold. It is also found that with the increase of
the current gain, the bursting activity becomes higher in frequency and wider range of high complexity is
obtained. The results of our study show that the performance of Rulkov neuron is improved by applying
the discrete memristor, and may provide new insights into the mechanism of memory and cognition in the
nervous.

INDEX TERMS Discrete memristor, Rulkov neuron, spectral entropy complexity, bifurcation, phase
diagram.

I. INTRODUCTION
Current, voltage, charge, and magnetic flux are the four basic
variables in the circuit and there is a relationship between two
of them. However, the relationship between electric charge
and magnetic flux has never been discovered until Chua
proposed memristor to describe the relationship between
charge and magnetic flux, about 50 years ago [1]. Because
the resistance of memristor is determined by the electric
charge flowing through it, memristor has the function of
memorizing electric charge. In 2008, a group at Hewlett-
Packard Laboratories found and confirmed the existence of
nanoelectronic memristor when studying TiO2 [2]. Owing to
its nano size, powerful information storage capability, poten-
tial nonvolatility and high integration density, the memristor
has been widely used in the field of nonlinear science, circuit
device design and biological memory behavior simulation.
For instance, [3] identified some unknown neuromorphic
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dynamics of the Chua corsagememristor (CCM), and showed
that the CCM, when biased at the edge of chaos domain, can
exhibit rich dynamics of biological neurons. Reference [4]
investigated the mixed H∞ and passive projective synchro-
nization problem for fractional-order (FO) memristor-based
neural networks. Reference [5] designed a two-dimensional
network of resonators and memristors coupled at the near-
est neighbor connection. By carefully selecting the coupling
strength, the network can be fully synchronized. Refer-
ence [6] proposed a multi-synaptic circuit (MSC) based
on memristor, which realizes the multi-synapse connec-
tion between neurons and the multi-delay transmission of
pulse signals. Reference [7] explored the effect of elec-
tromagnetic induction on a two-layer small-world neuronal
network with electrical intra-layer connections and mem-
ristive inter-layer connections. Reference [8] built a mem-
ristor synapse-coupled neural network, which coupled the
HR and FN neurons with the locally active memristor.
Zhang et al. proposed a chaotic circuit based on a memristor-
capacitor, which has abundant bifurcation paths to chaos,
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various periodic limit cycles and chaotic at-tractors [9]. Ref-
erence [10] proposed a fractional-order memristor compo-
nent for designingmemristor chaotic oscillators implemented
in FPGA. Ma et al. proposed a new 4D HR model with a
threshold flux control memristor to describe effect of the elec-
tromagnetic induction on the synchronization of memristive
Rössler oscillators [11]–[13]. Reference [14], [15] studied
the influence of electromagnetic radiation on the dynam-
ics of spatiotemporal modes in neural networks based on
memristors, which are based on nonlinear continuous-time
mathematical models. The newly presented discrete memris-
tor can also be widely used in the chaotic oscillations and
neuromorphic computations. Existing research is more about
applying discrete memristors to some famous chaotic maps,
for example, Chen and He proposed a discrete integer-order
and fractional-order memristor models, which were applied
into the sine chaotic map and the Hénon map, respec-
tively [16]–[19]. Reference [20] presented a new second-
order discrete memristor-based chaotic map and found that
it has hyper-chaotic behavior. However, these researches of
thememristor-based discrete neuron are still rarely discussed.
On the other hand, in recent years, discrete neurons have
received extensive attention as an effective model for study-
ing neural dynamics, because it shows high computational
efficiency whose model is simple, reliable, numerically
stable [21]–[24]. Currently, the well-known discrete-time
models include Rulkov model [25]–[28], Kinouchi and
Tragtenberg model [29], Courbage-Nekorkin-Vdovin model
[30], etc. Especially, Rulkov neuron has shown very rich non-
linear dynamic behavior and remarkable biological neuron
characteristics, and been widely used in the field of compu-
tational neuroscience. Cao et al. concerned the intermittent
evolution routes to the asymptotic regimes in the Rulkov
map and predicted successfully the evolution path using a
three-layer feedforward neural network [31]. Wang et al.
discussed the triggering mechanism of the chaotic discharge
of the Rulkov neuron model and the mechanism of their
chaotic-rest state transition [32]. Hu et al. studied the sta-
bility and synchronization of two coupled Rulkov neurons
in the presence of electrical and chemical synapses [33].
Tanaka et al. used a map-based model to study the firing
patterns in neural networks, clarifying the difference between
in-phase and anti-phase synchronization patterns [34]. It can
be seen that the Rulkov chaotic neuron is a neuron model
with simple structure and rich dynamics. Therefore, it is of
practical significance to introduce discretememristor into tra-
ditional Rulkov neuron and study the influence of memristor
on dynamics of neuron.

In this paper, a new chaotic neuron is firstly designed by
applying the discrete memristor to Rulkov neuron. And then
the dynamics of this memristor-based neuron are analyzed by
experiments. The results show that the resistance of memris-
tor can delays the occurrence of bifurcation, in particular, the
bifurcation disappears and the system reaches the fixed point
of the neuron when the resistance parameter is greater than
a threshold. It is also found that with the increase of the cur-

rent gain, the bursting activity becomes higher in frequency
and wider range of high complexity is obtained. The use of
discrete memristor has improved the performance of Rulkov
neuron and may provide new insights for the memory and
cognitive mechanisms of the nervous system.

II. THE DISCRETE HP MEMRISTOR MODEL
The classic HP memristor model is a semiconductor film
sandwiched by two metals [2] with a certain thickness. This
semiconductor film consists of two parts, one is a small
resistance with a high concentration of dopants (RON ), the
remaining part is a large resistance with almost no dopant
concentration (ROFF ). Its expression is as follows

M (r) = ROFF

(
1−

µvRON
D2 q(t)

)
(1)

whereµv is the mobility of doped ions, RA = ROFF and RB =
ROFFuvRON

D2 . Then M (r) can be written as

M (r) = RA − RBq(t) (2)

According to Chua [1], the mathematical expression of
continuous-time memristor is as follows v(t) = Mq(t)i(t)

dq
dt
= ki(t)

(3)

where v(t) is the voltage of the memristor, i(t) is the input
current and k is current gain. The ideal relationship between
the charge and the input current is

q(t) = k
∫ t

−∞

i(t)dt (4)

Supposing the initial state of the memristor is q(t0), Eq. (4)
can be written as,

q(t) = k
∫ t

−∞

i(t)dt = q(t0)+ k
∫ t

t0
i(t)dt (5)

Let qn, in, vn represent the discrete value of q(t), i(t), v(t),
respectively, the discrete memristor equation is written as
follows {

vn = M (qn)in
∇qn = Kin

(6)

where ∇qn = qn − qn−1, n = 0, 1, 2, . . .N specify the
discrete-time series. It can be derived from equation qn-
qn−1 = kin:

kin + kin−1 + kn−2 + . . .+ ki3 + ki2 + ki1 + ki0
= qn − qn−1 + qn−1 − qn−2 + qn−2
− . . .+ q1 − q0 + q0 − q−1

= qn − q−1 (7)

The expression of qn is obtained by shifting term

qn = q−1 + k
n∑
j=0

ij (8)
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FIGURE 1. The phase portraits of Rulkov neuron with considering different values of α, where
Figs.1(a)-(d) correspond to α = 4,2,−1,−4, respectively.

In the discrete domain, q−1 can be regarded as the initial
electric charge of the memristor. According to the [12], the
discrete HP memristor is obtained by

vn = M (r)in (9)

Then Eq. (9) is derived as

vn =

RA − RB(q0 + K n∑
j=0

ij)

 in (10)

III. THE ORIGINAL AND MEMRISTOR-BASED RULKOV
MODEL
The original Rulkov neuron is a two-dimensional discrete
model, and has been fully studied since it was proposed
in 2003 [23]–[25]. We consider the Rulkov model with the
following dynamic equation

x(n+1) =
α

1+ x2(n)
+ y(n) (11)

y(n+1) = y(n) − µ
(
x(n) − σ

)
(12)

where n is the discrete time (n = 1, 2, . . .), xn represents
the fast variable of neuron transmembrane voltage and yn
represents the slow variable of the gating process. α, µ, σare
system parameters, where 0 < µ < 1. When the system
parameters take different values, Rulkov neuron shows very
rich nonlinear dynamic behavior and significant biological
neuron characteristics, which is shown in Fig.1(a)-(d) corre-
sponding to α = 4, 2,−1,−4, respectively. Fig. 1(a) shows
the square bursting firing. Fig. 1(b) shows the spike firing

where the periodical action potential corresponding to a sta-
ble limit cycle attractor. Figs. 1(c) and (d) show the silent state
and periodic pulse firing state, respectively.

In order to study the dynamic behaviors of the dis-
crete memristor-based neuron, the discrete HP memristor is
applied into the Rulkov neuron. Assuming Sn = Vn,Hn = in,
the discrete memristor can be rewritten as:

Sn =

RA − RB(q0 + K n∑
j=0

Hj)

Hn (13)

The memristor-based Rulkov neuron is derived as follows
x(n+1) =

α

1+ x2(n)
+

RA − RB(q0 + K n∑
j=0

yj)

 y(n)
y(n+1) = y(n) − µ

(
x(n) − σ

)
(14)

Besides, the use of the memristor leads to an increase in
dimensionality. Following [36], the equation of this three-
dimensional memristive nervous system can be written as:

z(n+1) = z(n) + y(n)
x(n+1) =

α

1+ x2(n)
+
[
RA − RB(q0 + kz(n))

]
y(n)

y(n+1) = y(n) − µ
(
x(n) − σ

) (15)

IV. NONLINEAR DYNAMICS OF THE DISCRETE
MEMRISTOR-BASED RULKOV MODEL
The dynamics of the memristor-based Rulkov neuron is
firstly studied by bifurcation diagram. The initial state of
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FIGURE 2. The bifurcation of the neuron with different values of RA, where Figs. (a)-(f) correspond to RA = 0, 0.8, 1, 1.5, 1.7,
1.9 respectively.

the system is set to x0 = 1, y0 = −2.9, z0 = 0, the
parameters of the neuron are set to µ = 0.001, σ = 0.001,
RB = 0.001, k = 10. Fig. 2 shows bifurcation diagrams of
the memristor-based neuron versus serveal different values
of RA, where Figs. 2(a)-(f) correspond to RA = 0, 0.8, 1,
1.5, 1.7, 1.9, respectively. From Fig. 2, one can find two
interesting information different from what happens in the
original Rulkov neuron. First, the resistance parameter delays
the occurrence of bifurcations, in particular, when the resis-
tance parameter is greater than a threshold (RA = 1.8), the
bifurcation disappears and the system reaches the fixed point
of the neuron. Secondly, it is found that the memristor have an
important effect on the chaos in the memristor-based neuron.
With increasing the resistance parameter of memristor, the
chaotic regions shrink. On the further increase of the resis-
tance parameter, chaotic regions eventually disappear.

The effect of current gain k on the firing pattern of
memristor-based Rulkov neuron is further studied. The
results are shown in Figs. 3(a)-(d), corresponding to k =
0.2, 0.3, 0.5, 1, respectively. From Fig. 3 one can observe
that as the current gain increases, the bursting activity of
memristor-based Rulkov neuron becomes more frequent,
which indicates that an increase in current gain can induce
and enhance the activity.

Finally, the complexity of memristive Rulkov neuron is
studied. Complexity algorithm of a nonlinear system is
an indicator to measure how closely the time sequence
approaches to random sequence. For a chaotic system, the
higher the complexity is, the higher the randomness of the
pseudo random sequence generated by the chaotic system
is. On the other hand, proven by previous work, the chaos
activity of EEG (electroencephalo-gram) is closely related to

FIGURE 3. The firing pattern of the discrete memristive Rulkov neuron
with different values of k , where Figs.(a)-(d) correspond to k = 0.2, 0.3,
0.5, 1, respectively.

the functional state of the brain. In the normal state of the
brain, the indicators of the chaotic activity of the brain, such
as the dimensionality, Lyapunov exponent and complexity,
are relatively larger, while the above-mentioned chaotic indi-
cators will decrease if the brain is in the pathological state
of impaired brain function. Among these chaotic indicators,
complexity is of great significance to the normal activities of
brain function[36]–[39]. In this paper, we use spectral entropy
complexity (SE) algorithm to calculate the complexity of
neuron [38]. Figs. 4(a) and (b) show the complexity of the
original and memristive Rulkov neuron, respectively, where
dark color area indicates that the area has high complexity.
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FIGURE 4. SE complexity with parameters α and σ for: (a) original Rulkov neuron; (b) discrete memristor-based Rulkov neuron.

Observe from Fig. 4 that the dark-colored area of the original
Rulkov neuron is very narrow, which is mainly concentrated
in parameter range α ∈ (4, 4.3) ∪ (6, 8]. On the contrary,
the discrete memristive Rulkov neuron have a relatively wide
parameter range with high complexity, where α ∈ (4, 10].
Existing research results show that the complexity of EEG
activity increases sequentially in three states: coma, deep
sleep, and awake [40]–[42]. With the high complexity, the
discrete memristive Rulkov neuron is more adaptable to inter-
nal and external environments, more reliable to accept and
process external information, and more adaptable to extra-
cellular factors such as neurotransmitters, temperature, etc.
Therefore, discrete memristive Rulkov neurons have better
prospects for medical applications, and have potential signif-
icance for the understanding of neurological diseases.

V. CONCLUSION
The discrete memristors are more suitable for discrete chaotic
systems and digital circuits.We apply discrete HPmemristors
into two-dimensional Rulkov neurons, named discrete mem-
ristive Rulkov neurons. And then the dynamics of the dis-
crete memristor-based neuron are analyzed by experiments
including phase diagram, bifurcation structures, and spectral
entropy complexity algorithm. It is shown that the resistance
of the memristor delays the occurrence of bifurcation, espe-
cially, when the resistance parameter is greater than a thresh-
old, the chaotic area gradually shrinks, and then the system
reaches the fixed point of the neuron. The current gain also
has an important influence on neuron activity. The increase in
current gain can bring about a significant increase in the firing
frequency of neurons. Compared with the original system, the
spectral entropy complexity of this system has a wider range
of complexity. The results of this study show that discrete
memristor can improve the performance of Rulkov neuron
and may provide new insights into the memory and cognitive
mechanisms of the nervous system.
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