
Received 29 May 2022, accepted 26 June 2022, date of publication 5 July 2022, date of current version 15 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3188713

Non-Iterative Data-Driven Tuning of Model-Free
Control Based on an Ultra-Local Model
SHUICHI YAHAGI 1 AND ITSURO KAJIWARA 2
16th Research Department, ISUZU Advanced Engineering Center Ltd., Fujisawa-shi, Kanagawa 252-0881, Japan
2Division of Mechanical and Aerospace Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan

Corresponding author: Shuichi Yahagi (yahagi@iaec.isuzu.co.jp)

ABSTRACT In this paper, we present a data-driven tuning method for model-free control based on an
ultra-local model (MFC-ULM), which is also called intelligent proportional-integral-derivative control.
In industries, the control design must be easy, and it is important that the control law can be applied to
nonlinear systems. TheMFC-ULM has most of these features. However, in practice, trial-and-error tuning of
MFC-ULMdesign parameters is necessary. To address this problem, we adopt a data-driven tuning approach.
In the proposedmethod, theMFC-ULMdesign parameters can be tuned from single-experiment data without
requiring system identification, and optimal parameters for the MFC-ULM are obtained using the least-
squares method. Additionally, we adopt L2-norm regularization to avoid overlearning. The effectiveness
of this method was examined using simulations of two nonlinear systems. The results revealed that the
MFC-ULM design parameters can be obtained directly without knowing the characteristics of the controlled
object.

INDEX TERMS Data-driven control, model-free control, parameter tuning, PID control.

I. INTRODUCTION
In industrial systems, more than 90% of closed-loop control
uses proportional-integral-derivative (PID) control [1] due to
its simple structure, easy implementation, and good robust-
ness [2]. Although the desired control performance can be
obtained for highly linear controlled objects, it is difficult
to achieve sufficient control performance with a fixed PID
controller for nonlinear systems. Nonlinear control theory
and model-based control can be applied to nonlinear systems,
but the hurdles to nonlinear control applications are high due
to limited controller performance, complexity of the theory,
and large computational load. Additionally, industrial sys-
tems are complex, and it is often difficult to obtain accurate
mathematical models, so model-based control may not be
fully effective.

Recently, control system design methods that do not
use system identification for a model of the system to
be controlled have attracted attention [3]. There are many
studies [4], including virtual reference feedback tuning
(VRFT) [5]–[7], fictitious reference iterative tuning (FRIT)
[8], [9], model-free adaptive control based on dynamic-
linearization techniques (MFAC-DLT) [10], model-free
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control based on an ultra-local model (MFC-ULM) [11],
[12], active disturbance rejection control (ADRC) [13], and
adaptive fuzzy control (AFC) [14]. MFAC-DLT, MFC-ULM,
and AFC can be applied to nonlinear systems and have been
widely studied [10]–[20]. Additionally, control system design
methods that do not use system models to be controlled are
being applied to industrial systems, such as process systems
and automotive systems [21]–[27].

The present paper focuses on the MFC-ULM proposed
by Fliess and Join [11], [12], which is also called intelli-
gent PID (iPID) control [11] and which is considered to
be intuitively understandable. This is crucial for industries.
Although the term ‘‘model-free control’’ generally means
control techniques that do not explicitly use a model of
the system to be controlled, in this paper, the ‘‘model-free
control based on an ultra-local model’’ proposed by Fliess is
referred to as ‘‘MFC-ULM’’ or simply ‘‘MFC’’ as in previous
works [11], [28], [29].

As mentioned above, key features of MFC include its ease
of understanding and its applicability to nonlinear systems.
However, its design parameters, including α and PID gains,
must be tuned in the field by trial and error. Reference [25]
states that the tuning of an intelligent proportional (iP) con-
troller is simpler than that of a conventional PID controller,
and tuning guidelines have been proposed for an intelligent
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proportional (iP) controller. However, fine-tuning is neces-
sary for the final stage, and there is no mention of the
fine-tuning method or any tuning guidelines for iPID control.
That is, trial-and-error tuning is occurring. To address these
issues, a method has been proposed to tune the MFC design
parameters directly using a data-driven control approach [28],
[29]. Although the proposedmethod is useful, it does not treat
all of the design parameters (α and PID gains). The tunable
parameters of the MFC are only the PID gains, assuming
that α, which is significantly related to the performance of the
MFC, is known. Additionally, the cost function is not convex
with respect to the tuning parameters, and nonlinear optimiza-
tion is used to obtain the design parameters. The optimization
of nonlinear cost functions requires a large amount of compu-
tation time, may lead to local solutions, and requires setting
the hyperparameters of the optimization solver. For practical
use, it is desirable to obtain design parameters easily and
quickly. In reference [30], the cost function is made convex
by setting α as a known parameter and adopting integral-
proportional derivative (I-PD) control; however, for PID con-
trollers, the cost function does not become convex. Thus, the
same problem occurs as described above. Additionally, a part
of the MFC is unused, and the full MFC is untargeted.

In this paper, we propose a method to tune all the MFC
design parameters directly from the input/output data of the
controlled object without a system model to be controlled.
The proposed method is based on the VRFT approach, which
uses a set of experimental data to find the optimalMFCdesign
parameters. In other words, there is no need for repetitive
hand tuning, such as repeated experiments. First, the cost
function for VRFT-based MFC, which realizes direct tun-
ing of the MFC design parameters, is derived as a convex
function. This allows the optimal parameters to be obtained
in a short time without the need for nonlinear optimiza-
tion, unlike the previous literature [28], [29]. Additionally,
L2-norm regularization is introduced to prevent overlearning.
L2-norm regularization has a hyperparameter setting, which is
determined by introducing cross-validation. In the proposed
method, the hyperparameters do not need to be set, thereby
allowing for simple automatic tuning. The contributions of
this paper are summarized below:
• We propose a direct-tuning method for all MFC design
parameters in the framework of data-driven control.
Conventional methods treat only some of the MFC
design parameters as tunable parameters.

• The proposed cost function is convex, and the opti-
mal solution can be obtained quickly. In the conven-
tional method, the cost function is not convex, and
nonlinear optimization is required to obtain the optimal
parameters.

• L2-norm regularization is introduced to prevent over-
training, and hyperparameters are determined automati-
cally. This has not been examined in previous studies.

The remainder of this paper is organized as follows.
In Section 2, we provide an overview of theMFC and describe
the problem setting. In Section 3, we propose a method for

directly tuning the MFC design parameters based on a data-
driven approach. In Section 4, we demonstrate the effective-
ness of the proposed method using simulations. In Section 5,
we provide a summary of this paper.

II. PRELIMINARY
First, we give an overview of MFC in discrete time. Then,
we explain the problem setting.

A. MFC OVERVIEW
1) ULTRA-LOCAL MODEL
The controlled object is a nonlinear single-input, single-
output system that can be expressed as

y (t) = f (y (t − 1) , . . . , y (t − m) ,

u (t − 1) , . . . , u (t − l)) , (1)

where t represents discrete time, f () is an unknown nonlinear
function, u ∈ R is the control input, y ∈ R is the output,
and l and m are the unknown orders of the input and output,
respectively. The ultra-local model proposed in MFC [11],
[12] is expressed as

pny (t) = αu (t)+ F (t) , (2)

where n ≥ 1 is the order, α ∈ R is a design parameter which
is not a physical parameter, and F ∈ R represents unmodeled
dynamics and disturbance. p is the differential operator which
is defined as p(q) = (1− q−1)/Ts. q−1 is the backward shift
operator and Ts is the sampling period. Here, we assumed
n = 1 based on prior literature [12], [25], [28], [29].

2) MFC CONTROL BASED ON AN ULTRA-LOCAL MODEL
Fig. 1 shows the MFC control law. yr is the target value, ε is
the deviation, and P is the controlled object. Based on (2), the
MFC control law is expressed as

u (t) = α−1
(
−F̂ (t)+ pyr (t)

)
+ C(ε (t)) (3)

with

F̂ (t) = py (t)− αu (t − 1) , (4)

ε (t) = yr (t)− y (t) , (5)

where F̂ (t) is the estimated value of F . Additionally, yr is
a differentiable signal, which is generated by passing the
original target value through a low-pass filter or the like, and
C(ε (t)) is the feedback controller. Here, the PID control law
is used in the form

C (ε (t)) = Kpε (t)+ KiTs
∑

ε (t)

+
Kd
Ts
(ε (t)− ε (t − 1)) , (6)

where Kp, Ki, and Kd are the proportional, integral, and
derivative gains, respectively. The PID controller can be
expressed as

C (q) = KTψ(q) (7)
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FIGURE 1. MFC algorithm based on an ultra-local model.

with

K =
[
Kp Ki Kd

]T
, (8)

ψ (q) =
[
1

1
p(q)

p(q)
]T
. (9)

When the feedback controller used in (3) is a PID controller,
the MFC is also called iPID control, and similarly, when it
is a P (PI) controller, it is also called iP (iPI) control. In the
estimation of F , since noise removal is necessary for real
systems, the filterWF is added to (4) as follows

F̂ (t) = WF (q) (py (t)− αu (t − 1)) . (10)

From the above, the control input is calculated by the follow-
ing equation:

u (t) = α−1 (−WF (q) (py (t)− αu (t − 1))

+ pyr (t))+ C (ε (t))

= WF (q) u (t − 1)+ α−1 (pyr (t)−WF (q) py (t))

+KTψ (q) ε (t) . (11)

Remark 1: From (3) and the block diagram shown in
Fig. 1, we can interpret −α−1F̂ (t), α−1pyr (t) , and C(ε (t))
as corresponding to the disturbance observer, feedforward
control, and feedback control, respectively. That is, we can
consider that MFC is an extended form of the classical PID
controller [20].

3) STABILITY ANALYSIS
Here, we describe the stability analysis [25]. Substituting the
control law shown in (3) into the ultra-local model shown in
(2), we obtain

py (t) = F̂ (t)+ pyr (t)+ αC (ε (t))+ F (t) . (12)

The error between the real and the estimated value of F (t) is
given by

Fdlt (t) = F (t)− F̂ (t) . (13)

Then, the error equation becomes

pε (t) = −αC (ε (t))− Fdlt (t)

= −α

(
Kp + Ki

1
p
+ Kdp

)
ε (t)− Fdlt (t) . (14)

Let us assume that the error estimate is bounded. In other
words,

‖Fdlt (t)‖∞ < M . (15)

The system is stable when the roots of the characteristic
equation in z-domain given by

c0 + c1z−1 + c2z−2 = 0 (16)

with

c0 = 1+ α(KpTs + KiT 2
s + Kd )

c1 = −2− αKpTs − 2αKd
c2 = 1+ αKd

are inside the unit circle.
Remark 2: System stability is not guaranteed if (15) is not

satisfied, even when the characteristic equation is a Hurwitz
equation. Since the system is implemented in a digital con-
troller, it is not possible to set the sampling period to zero;
thus, an estimation delay must occur. If the control input
fluctuates significantly over a large sampling period, the error
in the estimate of F increases, which may cause (15) no
longer to be satisfied.

B. PROBLEM SETTING
InMFC, design parameters need to be tuned through repeated
experiments. Fig. 2 shows a block diagram of model-
referenced control with MFC. We consider the direct tuning
of the MFC design parameters w such that the transfer char-
acteristic from the target value (setpoint) yr to the output y
matches the reference modelMd determined by the designer.
The cost function is given by

JMR =
1
N

N∑
t=1

(y (t,w)−Mdyr (t))2 , (17)

where y (t,w) is the closed-loop response and N is the data
length. The tuning parameters w are the MFC design parame-
ters (α and PID gain). If the model to be controlled is known,
we can obtain the optimized parameters from the above
nonlinear cost function; however, identification of the plant
model may be difficult for industrial systems. Thus, in this
paper, we consider a direct data-driven approach, which does
not need the model to be controlled.

III. PROPOSED METHOD
Here, we develop amethod for tuning theMFC design param-
eters directly using the VRFT approach, which is a data-
driven control method.

A. VRFT
VRFT [5]–[7] is a method for tuning directly the con-
trol parameters of a controller with a pre-specified struc-
ture from input/output data in an open-loop system without
requiring system identification. Furthermore, it is a model-
referenced data-driven control that automatically tunes the
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FIGURE 2. Model-referenced control by an MFC algorithm based on an
ultra-local model.

control parameter w so that the closed-loop transfer char-
acteristic from the target value (setpoint) yr to the output y
matches the reference modelMd determined by the designer.
Fig. 3 shows the structure of VRFT, where C , Md , and P
are the controller, reference model, and controlled object
(plant), respectively; u (t) and y (t) are the inputs and outputs,
respectively; ρ is the controller parameter; and yrv (t) and
uv (t) are the virtual reference signals and virtual control
input, respectively. The VRFT procedure is briefly described
below:

[Step 1] The reference model Md is set. The input and
output data for the plant D = {u (t) , y (t)| t = 1, . . . ,N }
are acquired in a test.

[Step 2] If y(t) is regarded as the output of the reference
model, the reference signal that generates y(t) is determined
as

yrv (t) = M−1d y (t) . (18)

[Step 3] This signal is considered the reference input for the
closed-loop system shown in Fig. 2. In this case, the virtual
control input is given by

uv (t) = C (ρ, q) (yrv (t)− y (t)) . (19)

[Step 4] If the data for this virtual control input and the
actual control input are close, the closed-loop system can
be considered close to the reference model. That is, the cost
function to be minimized is

JVR (ρ) =
1
N

N∑
t=1

(u (t)− uv(t))2 . (20)

Substituting the virtual control input into (20) yields

JVR (ρ) =
1
N

N∑
t=1

(u (t)− C (ρ, q) εv(t))2 (21)

with

εv (t) = yrv (t)− y (t) . (22)

[Step 5] A prefilter L is introduced.
The terms in (21) may include a nonproper factor because

of the inverse of the reference model. The addition of a
prefilter helps to avoid the nonproper property and to bring

FIGURE 3. The concept of VRFT.

the VRFT cost function (21) close to the model reference cost
function (17) [6], [7]. Adding the prefilter to (21) yields the
following equation:

JVR (ρ) =
1
N

N∑
t=1

(uL (t)− C (ρ, q) eL(t))2 (23)

with

uL (t) = L(q)u (t) , eL (t) = L(q)εv (t) . (24)

B. DERIVATION OF THE COST FUNCTION
The virtual control input for MFC can be obtained from (11)
as follows:

uv (t) =
(
1−WF (q) q−1

)−1{
α−1(pyrv (t)−WF (q) py0 (t))

+KTψ (q) εv (t)
}

=

(
1−WF (q) q−1

)−1
×
[
α−1 KT

] p (M−1d (q)−WF (q)
)

ψ (q)
(
M−1d (q)− I

)  y0 (t) .
(25)

Using the obtained virtual control input, the VRFT cost func-
tion for the MFC can be obtained as

JVR (w) =
1
N

N∑
t=1

(
d (t)− wT ξ (t)

)2
(26)

with

d (t) = L(q)u0(t) (27)

w =
[
α−1 KT

]T (28)

ξ (t) = L (q)
(
1−WF (q) q−1

)−1
×

 p (M−1d (q)−WF (q)
)

ψ (q)
(
M−1d (q)− I

)  y0 (t) . (29)

Since the cost function is convex with respect to the control
parameter vector w, the least-squares (LS) method yields the
optimal solution:

w∗ =
(
ZTZ

)−1
ZTD (30)

with

Z =
[
ξ (1) ξ (2) · · · ξ (N )

]T (31)

D =
[
d (1) d(2) · · · d (N )

]T
. (32)
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C. DIRECT PARAMETER TUNING BY L2-NORM
REGULARIZATION
L2-norm regularization is a technique that suppresses both
overtraining and the sizes of parameters. In the field of
machine learning, it is employed to reduce prediction errors
while preventing overfitting. Here, L2-norm regularization is
introduced to find the optimal solution of (26). This opti-
mal solution is expected to prevent overfitting of the weight
coefficients, thereby suppressing excessively large control
inputs and system instability due to the overfitting. L2-norm
regularization, which is the cost function obtained by adding
the L2 norm term to (26), is as follows:

J (w) =
∥∥∥D− ZTw∥∥∥2

2
+3 ‖w‖22 , (33)

3 = diag
(
1
λ
, λ, λ, λ

)
, (34)

where diag() denotes the diagonal matrix. λ, a parameter
that tunes the relative strength between the regularization
term and the term of the sum of squares of the errors, is a
positive constant. By changing the value of λ, it is possible to
tune the degree of suppression of overlearning. The L2-norm
regularization (33) yields the analytical solution:

w∗ =
(
ZTZ +3

)−1
ZTD. (35)

In this paper, cross-validation [31] is used to determine the
optimal regularization parameter λ. Fig. 4 briefly explains the
steps in cross-validation.

1. Divide the data into k blocks. This division is called a
fold.

2. Fold 1 is the test set, and the remaining folds 2–5 are the
training set. The model is trained and evaluated, respectively,
using those sets.

3. The model is trained using fold 2 as the test set, and is
evaluated using the remaining folds 1 and 3–5 as the training
set.

4. This process is repeated for test folds 3, 4, and 5.
The average of the obtained Jk is used as the evaluation

value J of the model.
Cross-validation is performed for several λ set by the

designer, and the evaluated value J for each λ is used to
obtain the optimal λ and optimal parameters with the lowest
evaluated value.
Remark 3: The reason for taking the reciprocal of λ in (34)

is explained. From the MFC control law, a larger value of α
results in smaller control input. Since the value directly tuned
by VRFT is α−1, it is necessary to decrease the magnitude of
α−1 to increase the suppression of overlearning. Therefore,
the reciprocal of λ is taken in the part concerning α−1.
Remark 4: L2-norm regularization was introduced (33) to

suppress overlearning. L1-norm regularization can also be
applied to obtain a sparse controller, as in the literature [27].
However, since there are only four MFC design parameters,
we employ L2-norm regularization, with which we can obtain
an analytical solution.

FIGURE 4. k-fold cross-validation.

D. ALGORITHM
The algorithm for direct-tuning method of the MFC design
parameters is shown below:

[Step 1] Obtain the input/output data in a test.
[Step 2] Set the reference model and a prefilter. The pre-

filter in Step 2 is used as follows: [32, 33]

L (q) = Md (q) . (36)

[Step 3] After calculating Z and D shown in (31) and (32)
using the data obtained in Step 1 and setting the model in
Step 2, use (35) to find the weight coefficients (MFC design
parameters) that minimize the cost function.

In implementing the controller, we use the intelligent PID
controller shown in (11), with the tuned parameters.
Remark 5: In references [28], [29], a direct-tuning method

for the MFC design parameters was proposed using VRFT;
however, the cost function is not convex. In reference [30],
FRIT has been adopted; however, this approach cannot obtain
a convex cost function for PID controllers, except for a
special case like the I-PD controller. Additionally, full MFC
is not targeted. Hence, the following issues arise: the high
computational cost, the need to set hyperparameters related
to the optimization solver, and the fact that the solution is
not uniquely determined. However, the proposed method is
useful in practical applications because the optimal parame-
ters can be obtained by convex analysis. The optimal parame-
ters uniquely determine the solution and significantly reduce
the optimization time. Furthermore, the parameter-tuning
method based on L2-norm regularization suppresses over-
learning. There are no previous studies that consider the
suppression of overlearning.
Remark 6: As a hand-tuning guideline for iP control, ref-

erence [25] proposed to set the P gain to 0 and then gradually
decrease α to a value in which overshoot does not occur.
Afterward, the P gain is gradually increased. However, the
need for fine-tuning remains, and iPID (full MFC) is not
targeted. Thus, automatic tuning of the MFC parameters is
important. In references [28, 29], a direct-tuning method for
the MFC parameters was proposed; however, α was assumed
to be known, and only the PID gain was treated as a tuning
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parameter. In contrast, this paper can tune design parameters,
including α, which were not addressed in the prior literature.
Remark 7: The VRFT approach does not guarantee closed-

loop stability. However, it remains an attractive approach
when the system is complex or models are unavailable due to
development costs (engineering time and required hardware)
[25]. Instead, in the proposedmethod, L2-norm regularization
can improve the obtained solution and suppress overlearning,
as shown next in Section IV. This leads to improved closed-
loop stability [34].

IV. SIMULATION STUDIES
The systems to be controlled are the Hammerstein model
and the linear parameter-varying (LPV) system, which are
widely used as models for describing nonlinear systems. The
simulation is implemented using a PC (CPU: core i5-8250U
1.6 GHz; RAM: 16GB). MATLAB R© is used as the program-
ming language. The algorithm described in Section III-D is
implemented. That is, theMFC parameters are tuned from the
initial data, the user-defined reference model, and the user-
defined prefilter. After MFC parameter tuning, a closed-loop
response test is conducted.

A. EXAMPLE 1
1) SYSTEM FORMULATION
Here, the system formulation, including the plant and refer-
ence model, is the same as in the previous literature [32, 35].
The sampling period of the simulation is set to 1 s. The
Hammerstein model [36] is given as

y (t) = 0.6y (t − 1)− 0.1y (t − 2)+ 1.2x (t − 1)

− 0.1x (t − 2)+ v(t)

x (t) = 1.5u (t)− 1.5u2 (t)+ 1.5u3 (t) , (37)

where v is white noise. The setpoint values at each time are
set as follows:

r (t) =


1.0 (0 < t ≤ 100)
3.0 (100 < t ≤ 200)
0.5 (200 < t ≤ 300)
2.0 (300 < t ≤ 400).

(38)

The reference model is set to

Md

(
q−1

)
=

0.399q−1

1− 0.736q−1 + 0.135q−2
. (39)

2) RESULTS
Although an open-loop test is recommended in standard
VRFT, it is sometimes difficult to perform an open-loop test
in a real system. Therefore, initial input/output data with
open-loop and closed-loop tests are considered in this sim-
ulation. Additionally, both the noiseless (ideal) case and the
noisy case are examined. In this section, an iPD controller
is used for comparison with a classical PID controller, since
the structure of the iPD corresponds to that of a PID con-
troller [12]. Additionally, the proposed method is compared

FIGURE 5. Time-series data of initial input and output under open-loop
system.

with a conventional method [28], [29] in which the gravita-
tional search algorithm (GSA) [37] is used as an optimization
method [28], [29]. We use the same GSA hyperparameters as
in the previous literature [37], [38]. For increased accuracy,
here, the number of agents and the maximum number of
iterations are increased to 30 and 100, respectively.

[Use of open-loop test data]
First, we consider a noiseless case, which is the ideal

case. Let v be white noise with variance 0. Fig. 5 shows
the initial input/output data measured in the open-loop test.
The input is a chirp-sine signal, and the input/output data
is measured. Figs. 6 and 7 show the time-series data when
the MFC (iPD controller) design parameters (α and PD gain)
are obtained from the input/output data using the LS method
(MFC-VRFT-LS) and L2-norm regularization (MFC-VRFT-
Regularization), respectively. For comparison, Fig. 8 shows
the time-series data with a classical PID controller. The PID
gains (Kp = 0.059, Ki = 0.058, and Kd = 0.0038)
were obtained by the classically famous CHR method [35].
In Figs. 6, 7, and 8, the top and bottom images show the
output and input, respectively. This confirms that the pro-
posed method is more responsive than the CHR method.
The overshoot in the case of MFC-VRFT-Regularization
is less than that in the case of MFC-VRFT-LS. TABLE 1
shows the optimized parameters, cost function values, and
the calculation time for optimization. The obtained λ is 10.
The table includes the results of the conventional method
[28, 29] for comparison. The magnitude of α in MFC-
VRFT-Regularization is higher than that in MFC-VRFT-LS.
Although the tracking error of the conventional method is
almost same as that of MFC-VRFT-Regularization, the cal-
culation time for optimization in MFC-VRFT-Regularization
is much smaller than that of the conventional method.

Next, we examine the noisy case. Let v be white noise
with variance 1 × 10−3. As input, the same chirp-sine signal
as in Fig. 5 is applied, and the input/output data are mea-
sured. Figs. 9 and 10 show the time-series data when the
MFC design parameters (α and PID gain) are obtained from
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FIGURE 6. Time-series data with parameters tuned using MFC-VRFT-LS
under ideal conditions with open-loop test data.

FIGURE 7. Time-series data with parameters tuned using MFC-VRFT-
Regularization under ideal conditions with open-loop test data.

FIGURE 8. Time-series data with parameters tuned using the CHR
method.

the input/output data using the LS method (MFC-VRFT-LS)
and L2-norm regularization (MFC-VRFT-Regularization),
respectively. In Figs. 9 and 10, the top and bottom images

TABLE 1. Results under ideal conditions (open-loop system).

TABLE 2. Results under noisy conditions (open-loop system).

FIGURE 9. Time-series data with parameters tuned using MFC-VRFT-LS
under noisy conditions with open-loop test data.

show the output and input, respectively. Additionally, these
figures confirm that the proposed method has higher respon-
siveness than the CHR method. The overshoot in the case of
MFC-VRFT-Regularization is smaller than that in the case of
MFC-VRFT-LS. This difference in overshoot occurs because
the fluctuations of the control input became smaller in the
case of MFC-VRFT-Regularization because of suppressed
overlearning. TABLE 2 shows the optimized parameters and
cost-function values. The obtained λ is 1. When L2-norm
regularization is used, the magnitude of α is large compared
to the result obtained when the LS method is used. This
implies that overfitting was suppressed and that more sta-
ble MFC parameters were obtained. The table includes the
results of the conventional method [28, 29] for comparison.
The magnitude of α in MFC-VRFT-Regularization is higher
than that in MFC-VRFT-LS. Although the tracking error of
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FIGURE 10. Time-series data with parameters tuned using MFC-VRFT-
Regularization under noisy conditions with open-loop test data.

FIGURE 11. Time-series data of the initial input and output in a
closed-loop system.

the conventional method is almost same as that of MFC-
VRFT-Regularization, the calculation time for optimization
in MFC-VRFT-Regularization is much smaller than that of
the conventional method. These tendencies are equivalent to
those in the ideal case (without noise).

[Use of closed-loop test data]
First, wewill consider an ideal situation, i.e., without noise.

Let v be white noise with variance 0. Fig. 11 shows the
initial input/output data measured in the closed-loop test. For
the set value, a rectangular-wave random signal (minimum
value−1, maximum value 5) is applied, and the input/output
data are measured. Figs. 12 and 13 show the time-series
data when the MFC design parameters (α and PID gain) are
obtained from the input/output data using the LS method
(MFC-VRFT-LS) and L2-norm regularization (MFC-VRFT-
Regularization), respectively. In these figures, the top and
bottom images show the output and input, respectively. When
MFC-VRFT-LS is used, the system is divergent. This situ-
ation is thought to occur because of overfitting. In contrast,
whenMFC-VRFT-Regularization is used, it can be confirmed

FIGURE 12. Time-series data with parameters tuned using MFC-VRFT-LS
under ideal conditions with closed-loop test data.

FIGURE 13. Time-series data with parameters tuned using MFC-VRFT-
Regularization under ideal conditions with closed-loop test data.

that the response follows the target. Additionally, higher
control performance is obtained compared to the classically
famous CHR method, as in the case using open-loop test
data. TABLE 3 shows the optimized parameters and the cost-
function values. The obtained λ is 10. When the L2-norm
regularization is used, the magnitude of α is large, and the PD
gain is small compared to the result when the LS method is
used. This implies that overfitting was suppressed. The calcu-
lation time for optimization in MFC-VRFT-Regularization is
much smaller than that required by the conventional method.
In addition, in the conventional method, the closed-loop
response became unstable because the parameters fell into a
local solution due to nonlinear optimization.

Next, we examine the noisy case. Let v be white noise
with variance 1 × 10−3. A rectangular-wave random sig-
nal (minimum value −1, maximum value 6) is applied,
as shown in Fig. 11, and the input/output data are measured.
Figs. 14 and 15 show the time-series data when the MFC
design parameters (α and PID gain) are obtained from the
input/output data using the LS method (MFC-VRFT-LS)
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TABLE 3. Results under ideal conditions (closed-loop system).

FIGURE 14. Time-series data with parameters tuned using MFC-VRFT-LS
under noisy conditions with closed-loop test data.

and L2-norm regularization (MFC-VRFT-Regularization),
respectively. In these figures, the top and bottom images show
the output and input, respectively. When MFC-VRFT-LS is
used, the system is divergent. This situation is thought to
occur because of overfitting. In contrast, when MFC-VRFT-
Regularization is used, the response can follow the target.
Furthermore, higher responsiveness is obtained compared to
the classically famous CHR method. TABLE 4 shows the
optimized parameters and cost-function values. The obtained
λ is 1000. When L2-norm regularization is used, the mag-
nitude of α is large, and the PD gain is small compared
to the result when the LS method is used. This implies
that overfitting was suppressed. The calculation time for
optimization in MFC-VRFT-Regularization is much smaller
than that required by the conventional method. In addition,
in the conventional method, the closed-loop response became
unstable because the parameters fell into a local solution
due to nonlinear optimization. This implies that overfitting
was suppressed and that more stable MFC parameters were
obtained.

B. EXAMPLE 2
Here, we provide a numerical example for a noisy case.
In this section, iPID control is adopted. Further, we apply only
the cost function (35) because we confirmed the effective-
ness of MFC-VRFT-Regularization in the previous session.
Additionally, the proposed method is compared with the

FIGURE 15. Time-series data with parameters tuned using MFC-VRFT-
Regularization under noisy conditions with closed-loop test data.

TABLE 4. Results under noisy conditions (closed-loop system).

conventional method [28], [29]. The hyperparameters are the
same as in the previous section.

1) SYSTEM FORMULATION
Here, the system formulation, including the plant and ref-
erence model, is the same as in the previous literature [32].
Fig. 16 shows the system to be controlled, which is a spring-
mass LPV system. The quantities m, c, k , and y represent
the mass, viscosity coefficient, spring stiffness, and system
response, respectively. The system response determines the
changes in the mass, spring stiffness, and viscosity coeffi-
cient. The controlled object is a system inwhich the following
equation of motion is discretized:

m (y, t)
d2y (t)
dt2
+c (y, t)

dy (t)
dt
+k (y, t) y(t)=u(t)+ v(t)(40)

with

m (y, t) = 1+ 0.2y (t)

k (y, t) = 5+ 2y+ y2 (t)

c (y, t) = 2+ 0.5y (t) , (41)

where v is white noise with variance 1 × 10−4. The setpoint
at each time is given as

r (t) =


0.75 (0 < t ≤ 10)
2.0 (10 < t ≤ 25)
1.25 (25 < t ≤ 40)
0.5 (40 < t ≤ 50).

(42)
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FIGURE 16. Spring-mass system with time-varying parameters.

FIGURE 17. Time-series data for the initial input and output of the
open-loop system.

The reference model, which has a time constant of 1 s, is set
to

Md (q) =
0.01q

1.01q− 1
. (43)

The sampling period of the controller is 10 ms. A low-pass
filter for F , which has time the constant 0.02 s, is given by

WF (q) =
0.01q

0.03q− 0.02
. (44)

2) RESLUTS
[Use of open-loop test data]

Fig. 17 shows the initial input/output data measured in the
open-loop test. A rectangular-wave random signal (minimum
value−1, maximum value 30) is applied, and the input/output
data are measured. Fig. 18 shows that the time-series data
when the MFC design parameters (α and PID gain) are
obtained from the input/out data using L2-norm regularization
(MFC-VRFT-Regularization). The top and bottom images
show the output and input, respectively. When MFC-VRFT-
Regularization is used, the response follows the target. The
optimized parameters and cost function are as follows: λ =
1 × 104, α = 8.0973, Kp = 0.7185, Ki = −0.0001,
Kd = 0.0024, and JVR = 3.0958, JMR = 3.8734 ×
10−3. Additionally, when MFC-VRFT-LS is used, the sys-
tem becomes divergent. This is thought to occur because of
overfitting. In the conventional method [28, 29], the system

FIGURE 18. Time-series data with parameters tuned using
MFC-VRFT-Regularization under noisy conditions with open-loop test
data.

became unstable with the obtained parameters: α = 23.1229,
Kp = −0.7265,Ki = −0.0034,Kd = −0.4885, and JVR =
30.1717. The calculation time was 3.1800× 103 s.
[Use of closed-loop test data]
Fig. 19 shows the initial input/output data measured in

the closed-loop test. A rectangular random signal (mini-
mum value −0.5, maximum value 2.5) is applied as a set-
point and the input/output data are measured. Fig. 20 shows
the time-series data when the MFC design parameters
(α and PID gain) are obtained from the input/output data
using L2-norm regularization (MFC-VRFT-Regularization).
The top and bottom images show the output and input,
respectively. When MFC-VRFT-Regularization is used, the
response follows the target. The optimized parameters
and cost function are as follows: λ= 1×105, α= 11.5657,
Kp= 0.5875, Ki= 0.0003, Kd= −0.0004, and JVR= 4.0526,
JMR= 4.0099×10−3. However, when MFC-VRFT-LS is
used, the system becomes divergent. This situation is
thought to occur because of overfitting. In the conven-
tional method [28, 29], the system became unstable with the
obtained parameters: α= 28.9101,Kp= 0.2889,Ki= 0.0012,
Kd= −0.0466, and JVR= 17.488. The calculation time was
2.9805×103 s.

C. DISCUSSION
The proposed method was applied to two nonlinear sys-
tems. We confirmed that the proposed method enables
the MFC design parameters to be tuned from only
single-experiment data. The parameters obtained using
MFC-VRFT-LS and MFC-VRFT-Regularization enabled
high model-matching performance in both ideal and noisy
cases. Additionally, we confirmed that the parameters tuned
using MFC-VRFT-LS may make a closed-loop system
unstable because of overlearning (see Figs. 12 and 14).
In contrast, with MFC-VRFT-Regularization, the closed-
loop system became stable. The tuned α using MFC-
VRFT-Regularization is larger than that obtained using
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FIGURE 19. Time-series data for the initial input and output of the
closed-loop system.

FIGURE 20. Time-series data with parameters tuned using MFC-VRFT-
Regularization under noisy conditions with closed-loop test data.

MFC-VRFT-LS (see Tables 1–4). This result shows that
overlearning was suppressed by introducing L2-norm regu-
larization. Additionally, the proposed method was compared
with the conventional method. The results showed that the
calculation time was approximately one hour and that the
obtained parameters fell into a local solution in the con-
ventional method. On the other hand, using the proposed
method, the calculation timewas less than one second, and the
proposedmethod does not suffer from being trapped in a local
minimum. Furthermore, there were some differences in the
parameters optimized using the open-loop and closed-loop
test data. This may be due to differences in the input/output
data, which is understandable from the results [32].

V. CONCLUSION
In this paper, we have proposed a direct data-driven tuning
method to obtain the MFC design parameters. This method is
based on VRFT, which is a data-driven control method. That
is, theMFC design parameters are obtained directly from a set
of input/output data without requiring a model for the system
to be controlled. In the proposed method, a cost function

that is convex with respect to the tuning parameters was
introduced, and the LS method can be applied. Additionally,
L2-norm regularization was introduced to suppress overlearn-
ing. The effectiveness of this method was examined using
simulations of two nonlinear systems. The results showed that
the MFC design parameters can be tuned from the data with-
out trial-and-error iterative tuning. Moreover, overlearning
can be avoided by introducing L2-norm regularization, and
the instability of a closed-loop system due to overlearning
can be suppressed. Hence, the proposed method eliminates
the need for trial-and-error parameter tuning for MFC design.
In the future, applications to automotive systems will be
considered.
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