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ABSTRACT This study proposes a novel solution for the detection of keyframes for static video summa-
rization. We preprocessed the well-known video datasets by coding them using the HEVC video coding
standard. During coding, 64 proposed features were generated from the coder for each frame. Additionally,
we converted the original YUVs of the raw videos into RGB images and fed them into pretrained CNN
networks for feature extraction. These include GoogleNet, AlexNet, Inception-ResNet-v2, and VGG16. The
modified datasets are made publicly available to the research community. Before detecting keyframes in a
video, it is important to identify and eliminate duplicate or similar video frames. A subset of the proposed
HEVC feature set was used to identify these frames and eliminate them from the video. We also propose
an elimination solution based on the sum of the absolute differences between a frame and its motion-
compensated predecessor. The proposed solutions are compared with existing works based on an SIFT flow
algorithm that uses CNN features. Subsequently, an optional dimensionality reduction based on stepwise
regressionwas applied to the feature vectors prior to detecting key frames. The proposed solution is compared
with existing studies that use sparse autoencoders with CNN features for dimensionality reduction. The
accuracy of the proposed key-frame detection system was assessed using the positive predictive values,
sensitivity, and F-scores. Combining the proposed solution with Multi-CNN features and using a random
forest classifier, it was shown that the proposed solution achieved an average F-score of 0.98.

INDEX TERMS Convolution neural network, duplicate frames, sparse auto encoders, static video summa-
rization, video coding, high efficiency video codec (HEVC).

I. INTRODUCTION
With the surge of the Internet and surveillance footage, there
is a vast number of digital videos. The need to summarize
these videos in databases is crucial. This is where video
summarization is useful. Video summarization is the process
of generating a meaningful summary of the original video,
which, in turn, facilitates video retrieval, anomaly detec-
tion, and activity monitoring [1]. Video summarization can
be achieved by using several methods or techniques. These
techniques can be categorized into two groups [2]. The first
is selecting sections or shortcuts of the original video, and
the second is selecting key frames that represent the original
video. Key frame selection techniques require manual human
annotation of videos to automate the training process of frame
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selection. This technique is the most common among the two
aforementioned video summarization techniques. Therefore,
this study focuses on video summarization by automatically
selecting key frames in a video.

Video summarization is computationally demanding, and
more efficient approaches are required. If all frames within a
video are examined for selection, the summarization process
can be slow, and time and computational power are wasted
on redundant or similar frames. Additionally, for any set of
features, space reduction should be used to accelerate the
process and ensure that only meaningful features are consid-
ered [3]. This study aims to address these two issues. Deep
learning has gained popularity in recent years for generation
tasks in image and video processing. Many tools can be used
either independently or in combination to achieve the desired
results. Most notably, conventional neural networks (CNN)
[4] and random forests (RFs) [5].
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FIGURE 1. General overview of the system architecture. Feature extraction is done either through CNNs or a custom HEVC decoder. Dimensionality
reduction using Stepwise regression. Frame elimination using S.A.D of motion estimation and compensation or HEVC features.

The deep learning community falls in the computer and
data science fields, while video compression communities
fall in the field of electrical engineering. The separation in
these research areas often leads the deep learning community
to lack sufficient comprehension of video compression. In the
deep learning field, with the growth of the High Efficiency
Video Codec (HEVC) [6] video standard, HEVC information
found in the video bitstream is often ignored and not used to
its full potential. This research intends to use low-level HEVC
features in combination with CNN features to aid in video
summarization. The integration of HEVC features can take
several forms, including merging bit stream information with
CNN features derived from frames or constructing a separate
channel with HEVC-based bit stream information and then
fusing the output with CNN-based results.

This study also introduces a novel method for reducing
the dimension of the feature space obtained from CNNs
using stepwise regression, along with a novel method for
similar frame elimination based on HEVC features. A general
overview of the system architecture is in Fig. 1.

A summary of our research contributions to the body of the
literature is in the following points:
• We introduce low-level HEVC feature sets suitable for
video summarization.

• We propose a novel method for frame elimination based
on motion estimation and compensation.

• We propose a novel method for frame elimination based
on HEVC features.

• These contributions resulted in promising results that
outperform state-of-the-art works in the literature.

This paper is structured as follows: Section II is the literature
review, Section III presents the datasets and data prepro-
cessing, Section IV proposes the low-level HEVC feature
set, Section V discusses elimination of similar or redundant
frames, Sections V-A and V-B are frame elimination based
on motion estimation and compensation and based on HEVC
features, respectively. Section VI discusses dimensionality
reduction of the feature space, Section VI-A is about the
Sparse Autoencoder, Section VI-B proposes dimensionality
reduction of the feature space using stepwise regression,

Section VII contains the experimental results. Section VII-A
explains the evaluation criteria, followed by Section VII-B
with the experimental results, then Section VII-C with final
discussion and Section VIII presents the conclusion and
future work.

II. LITERATURE REVIEW
Video summarization has been researched extensively in the
past decade owing to the incredible surge of online videos
and the challenges that come with sorting and saving these
videos in huge databases. This section summarizes the efforts
found in the literature that tackle the video summarization
task, especially deep learning-based methods.

A. LSTM-BASED
When casting the task as a structured prediction problem,
[7] used Long Short-Term Memory (LSTM) to model the
variable-range temporal dependency among video frames to
derive both representative and compact video summaries.
In [8], a 2-layer network with two bidirectional LSTMs
is proposed, that acts as filters to identify shot boundaries
to capture forward and backward temporal dependencies
among shots to predict which shots are most representative
of the video content. A stacked memory network called SMN
with LSTM layers was presented in [9] to model the long
dependency among video frames to reduce redundancy in
the produced summaries. Multi-video summarization (MVS)
was achieved by [10] with a two-tier framework that per-
forms target-appearance-based shot segmentation, extracts
deep features from frames, and passes them to a bidirec-
tional LSTM to acquire probabilities and generate a summary.
An attentive encoder–decoder network was proposed in [11],
where the encoder is a bidirectional LSTM to encode the
contextual information among frames, and the decoder is
two attention-based LSTM networks that use additive and
multiplicative objective functions. A self-attention binary
neural tree (SABT-Net) model is proposed by [12] that
uses GoogleNet network, shot encoding, branch routing,
self-attention, and score prediction modules to form the sum-
maries. A TTH-RNN was proposed in [13] which contains
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a tensor-train embedding layer and a hierarchical LSTM
that captures intra-subshot temporal dependence and encodes
inter-subshot temporal dependence from the forward and
backward directions to determine the importance of every
frame and form the summaries.

B. CNN-BASED
The researchers in [14] designed a deep neural network with
a clustering-based summarization technique that maps videos
and descriptions to a common semantic space and trained
it with labeled videos and their descriptions. As proposed
in [15], variance loss is introduced to allow a network to
predict the output scores for each frame. They also designed
a two-stream network (CSNet) that utilized local (chunk)
and global (stride) temporal views. In [16], the authors
proposed fully convolutional sequence models, where they
established a connection between semantic segmentation and
video summarization. An unsupervised deep summarization
network (DSN) was developed by [17] which predicts a
selection probability and selects frames based on probability
distributions to form video summaries. The authors in [18]
leveraged spatiotemporal learning with three-dimensional
convolutional neural networks (3D-CNN), LSTMs, and
recurrent neural networks (RNN) to detect soccer video high-
lights. The framework in [19] is a two-stream deep architec-
ture with cost-sensitive learning. A spatial stream uses RGB
images to represent the appearance of frames, and a temporal
stream uses motion vectors to represent and extract the tem-
poral information of the input video. An encoder-decoder
CNN structure was adopted by [20] where the encoder is
a diagnostic view plane detection network, and the decoder
feeds feature maps into a bi-directional LSTM to analyze
features of past and future frames. The final reinforcement
learning (RL) network selects key frames for the summary.
Video summarization was performed by [21] on the Internet
of Things (IoT) surveillance domain by designing a CNN
framework that performs shot segmentation and image mem-
orability, and aesthetic and entropy features are used to main-
tain the diversity of the summary. The authors in [22] used
a sparse autoencoder that combines feature vectors derived
from four famous image CNNs into a reduced space and a
random forest classifier to select key frames.

C. GAN-BASED
The authors in [23] specified a novel generative adversarial
framework (GAN) with an LSTM summarizer autoencoder
for selecting frames and an LSTM discriminator to distin-
guish between the original video and its reconstruction from
the summarizer. A GAN framework was developed by [24]
where the generator was an attention-aware Ptr-Net, and the
discriminator was a 3D-CNN classifier. The researchers in
[25] presented an unsupervised GANwith an attention mech-
anism to identify significant parts of a video.

D. OTHER MODELS
A ‘‘retrospective encoder’’ is used in [26] that embeds the pre-
dicted summary into an abstract semantic space and compares

it to the embedding of the original video in the same space
and try to minimize the distance between these two spaces.
HEVC intra-frame coding was leveraged by [27] by fus-
ing weighted luminance and chrominance values along with
texture feature vectors, and then applying thresholding to
select frames for summarization. In [28], motion information
between frames is used, where spatio-temporal information
is extracted, an inter-frame motion is generated from it, and
a self-attention model selects key frames for summarization.
Motion-based frame selection and a novel clustering validity
index were used in [29] to segment shots and select candidate
frames by evaluating their forward and backward motion,
where the frame with the largest motion was taken in each
segmentation to form the video summary.

III. DATASETS AND DATA PREPROCESSING
In this study, we assessed the performance of the proposed
solutions using two benchmark datasets for static video
summarization, namely, VSUMM and OVP. The datasets
include CNN features generated using GoogleNet and ground
truth data. The datasets and ground-truth data are publicly
available in [30].

The VSUMM dataset contains 50 videos from websites
such as YouTube containing several genres (cartoons, news,
sports, commercials, tv-shows, and home videos) and have
a duration of 1–10 min at 30 fps. The OVP (Open Video
Project) dataset has 50 videos from Open Video Project in
MPEG-1 format at 30 fps. The videos were distributed among
several genres (documentary, educational, ephemeral, histor-
ical, and lecture) and have a duration of 1-4 minutes.

In our data preparation process, we retrieved the original
videos from [30] and converted them into RGB images. These
images were then fed into a number of pretrained CNN
networks for feature extraction. The CNN networks used for
feature extraction were AlexNet [31], Inception-ResNet-v2
(IRv2) [32], and VGG16 [33]. GoogleNet features for both
the OVP and VSUMM datasets were acquired online from a
public HDF5 dataset from [30]. Each of the CNN networks
has it unique input size, and therefore, our input frames were
resized prior to feature extraction to match the respective
input size of each of the CNNs. The resulting feature space
from each network along with the input sizes used are all
summarized in Table 1.

TABLE 1. Input and feature vector sizes for networks used for feature
extraction.

In addition, we converted the original videos into YUV
images and then to an HEVC/H.265 video coder [34].
We modified the coder to generate low-level features,
as described in the next section. HEVC features have been
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successfully used in many applications, including encoding
speedup [35], video transcoding [35], data embedding [36],
double and triple compression detection [37] and saliency
detection [38]. Eventually, all the feature variables are added
to the .h5 files of the OVP and VSUMM, as illustrated in
Fig. 2. In this work, we tested the proposed solution using
HEVC features, CNN features, and a combination of both.

FIGURE 2. The structure of the HDF5 file with CNN and HEVC features.

IV. PROPOSED LOW-LEVEL HEVC FEATURE SET
As mentioned in Section III, the HEVC codec was used to
compress the videos. Thus, HEVC can be used to extract rich

TABLE 2. Proposed HEVC feature set per frame. A custom HEVC decoder
was used to extract these features.

feature sets based on quadratic recursive splitting of coding
units (CUs).

CUs in HEVC can have different depths ranging from 0,
which corresponds to a block of 64× 64 pixels, to a depth of
3, which corresponds to a block of 8× 8 pixels. A CU can be
split into four square parts, and each part can be recursively
split into subparts. Splitting occurs following a rate distortion
criteria which considers the spatio-temporal activities of the
underlying CU.

In this study, we proposed a set of 64 feature variables per
frame for video summarization. The selection of variables
quantifies the spatiotemporal activities of the video frames.

The variables are listed in Table 2. In the table, MVD is
short for motion vector difference, SAD is short of the sum
of absolute differences, and CU is short for the coding unit.

The modified OVP and SUMME datasets with the pro-
posed HEVC features and Multi-CNN features are available
at https://bit.ly/HEVC-SVS.

V. ELIMINATION OF SIMILAR FRAMES
In [22] it was mentioned that redundant frames increase the
complexity of detecting keyframes. A redundant frame is
defined as one that is identical or very similar to the previous
frame. In the following subsections, we propose two solutions
to quantify frame redundancy based on the introduction of a
temporal activity index. In the first proposed solution, such an
index is computed using low-level HEVC feature variables.
In the second proposed solution, the index is computed based
on motion compensation and motion vector variance.

Clearly varying the framerate can affect the percentage of
eliminated video frames.More specifically, with higher frame
rates, the similarity between consecutive frames becomes
higher and hence higher percentage of frames are eliminated.
However, since the work reported in the literature all use the
same datasets with the same framerates, we will discuss the
effect of framerate on frame elimination in future work.

In [22] this approach was used for elimination, which is
based on the work reported in [39]. Briefly, each frame in
a video is converted to a SIFT image, where each pixel is
represented by a 128-D SIFT descriptor. The flow vectors
were then calculated between consecutive SIFT images. The
global displacement vector of a given video frame was calcu-
lated by adding all magnitudes of the flow vectors per frame.
Eventually, redundant frames are identified based on local
thresholding of the magnitude of the global vectors.

A. PROPOSED ELIMINATION OF SIMILAR OR FRAMES
BASED ON HEVC FEATURES
In the proposed list of HEVC feature variables, there exists
a set of variables that indicates the low temporal activity of
video frames. Such low temporal activity indicates that the
current frame is similar to its previous frames, and therefore,
can be eliminated. In this solution, we use the sum of the
following HEVC feature variables to produce a temporal
activity index: the lower the index, the lower the temporal
activity. The feature variables are listed in Table 3.
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TABLE 3. List of HEVC feature subset variables used to produce a
temporal activity index.

In the implementation process, the video dataset was split
into training and test data, as explained in the experimental
results section. For each split of the dataset, we used video
frameswith ground truth zero in the training data to determine
the average value of the features listed in Table 3. Video
frames with ground truth zero are those that are not part of the
video summary. The averages were then summed to compute
the temporal activity index. To vary the value of the men-
tioned index, the summation of the standard deviations of the
feature variables can be added, as illustrated in Equation 1.

TAI =
∑I

i=1
f̄i + c

∑I

i=1
σfi (1)

where TAI is the temporal activity index, fi is feature i from
Table 2, and i ranges from 1 to 11, which is the total number
of features used. Constant c ranges from 0 to 1 and can be
used to vary the value of the temporal activity index. In this
work, it is set to 0.35 using empirical testing. Consequently,
a video frame from the test data was eliminated according to
the Boolean condition presented in Equation 2.

Eliminate framej =


False, if

∑I

i=1
f̄i,j > TAI

True, if
∑I

i=1
f̄i,j ≤ TAI

(2)

where the frame at index j belongs to the test video set and
fi,j is feature i from Table 3 of the test frame at index j.

B. PROPOSED ELIMINATION OF SIMILAR FRAMES BASED
ON MOTION ESTIMATION AND COMPENSATION
The temporal activity index is calculated based on the sum
of the absolute differences between a video frame and its
preceding frame after applying motion compensation. In the
implementation, we used the optical flow to compute the
motion between two consecutive frames at indices j and j-1.
This results in a list of motion vectors, one for each pixel
in frame j. These motion vectors are then used to motion
compensate framej−1, according to Equation 3:

MC_framej−1 (r, c) = framej−1(x − Vxr,c − Vyr,c) (3)

where MC is short for motion compensation, r and c are the
pixel coordinates in a video frame, and Vyr,c and Vyr,c are
the x and y components of the motion vector belonging to the
pixel at indexes r and c, respectively.

The sum of the absolute differences (SAD) between
framej and its previous motion-compensated frame (i.e.,
MC_framej−1) is then computed according to Equation 4:

SADj =
∑

r

∑
c

∣∣framej (r, c)−MC_framej−1 (r, c)∣∣
(4)

The higher the SAD, the higher the temporal activity between
the two frames. To further quantify the temporal activity,
we propose weighing the SAD using the variance of the
motion vectors. This is because a high variance inmotion vec-
tors is another indicator of high temporal activity. Therefore,
Equation 4 can be expanded as follows:

SADj =
√
σVx + σVy

∗

∑
r

∑
c

∣∣framej(r, c)−MC_framej−1(r, c)∣∣ (5)

Consequently, a frame from the test data is eliminated if it’s
SAD is less than the Pth percentile of all the sums of the
absolute differences of a test dataset. Formally, a frame was
eliminated according to the following Boolean condition.

Eliminate framej =

{
False, if SADj ≥ SADd p

100 ∗Je

True, if SADj < SADd p
100 ∗Je

(6)

where J is the total number of frames in the video test set
minus one (as the motion estimation starts from the second
frame). The subscript of SAD on the right-hand side indicates
the percentile rank.

VI. DIMENSIONALITY REDUCTION
As mentioned previously, in this study, we propose the use
of HEVC features for video summarization, and we also use
CNN features generated from the obtained networks, as pro-
posed by [22]. This will allow us to compare our work with
existing solutions and it will allow us to test the suitability of
combining the proposed HEVC features with CNN features.

The CNN features were generated using IRv2, AlexNet,
and VGG16. While GoogleNet features were acquired from
[29], as mentioned in Section III.When all four CNN features
were combined, the total length of the feature vector per video
frame was 10,752. In [22], a sparse autoencoder (SAE) was
used to reduce the dimensionality of the feature space to 500
feature variables. Reduction is performed to ensure that the
best encoded representation of the feature vectors is chosen
and to ease the training process.

A. DIMENSIONALITY REDUCTION BASED ON SAE
The SAE architecture includes an input layer that takes in the
entirety of the 10,752-feature vector for a given frame with a
node representing each feature, a latent layer with a reduced
feature space, and an output layer with a feature vector of
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length 500. The SAE works similarly to a traditional autoen-
coder except that it adds a sparsity penalty. Every feature
was compared against a weight decay penalty, which was one
thousand the value of the sparsity penalty. This means that if
the autoencoder deems that the feature is not as useful as the
other, it does not make it into the reduced space.

In this study, in addition to the use of SAEs, we propose
the use of stepwise regression for dimensionality reduction.

B. PROPOSED STEPWISE REGRESSION SOLUTION
Stepwise regression is a supervised predictor-selection algo-
rithm in which the choice of predictive variables is performed
automatically [40]. The use of stepwise regression in video-
based intelligent systems was first proposed by the authors
in [41]. Since then, it was successfully used with video codec
as reported in [38], [42] and [43] to mention a few.

In this work, we propose the use of stepwise regression
to reduce the dimensionality of both HEVC and CNNs fea-
tures, in which we treat the feature variables as predictors
and the class labels as response variables. Because stepwise
regression is a supervised predictor selection algorithm, it is
important to implement it on the training data only. Conse-
quently, the indices of the retained feature variables are stored
and used to reduce the dimensionality of the test data, as illus-
trated in Fig. 3. For completeness, we provide a summary of
the stepwise regression algorithm.

Dimensionality reduction methods are usually forward,
starting with one feature and adding features to reach the
optimal model, or backward, starting with all features and
dropping one feature at a time to reach the optimal model.
Stepwise, it combines the forward and backward methods,
meaning that at each iteration, a feature can be dropped or
added.

For a set of features x1, x2, . . . , xk . Fin is the F-random
feature for the feature to be added to the model, whereas Fout
is the feature to be dropped from the model. The steps for
stepwise regression are as follows:

1- Form 1-itemsets from all features to produce single-
feature models:

h (x) = θ0 + θ1x1 (7)

where h(x) is the hypothesis that the added features
are needed for the classification task. x1 was one of
the features that yielded the highest F-score. f1 is the
statistic of x1 and is given by the following formula:

f1 =
SSR(θ2|θ1θ0)
MSE (x2, x1)

(8)

where SSR is the regression sum square error andMSE
is the mean square error.

2- From the equation obtained above for the 1-itemset
feature, we examined the rest of the k − 1 features
that can, when combined with h(x), produce a higher
hypothesis than h(x) by itself. We add x2 if its f2 is

FIGURE 3. General overview of how Stepwise regression is used for
feature space dimensionality reduction. SW retains the indices of best
features so they can be used later for testing on new data.

greater than Fin and obtain the following:

f2 =
SSR(θ1|θ2θ0)
MSE (x1, x2)

(9)

h (x) = θ0 + θ1x1 + θ2x2 (10)

After adding x2, we check whether x1 needs to be
removed by comparing f1 to the new Fout . If f1 is lesser,
x1 decreases.

3- The remaining k−2 features are examined to obtain x3
and get the following hypothesis:

h (x) = θ0 + θ1x1 + θ2x2 + θ3x3 (11)

The algorithm continues until there are no features to
add or drop.

VII. EXPERIMENTAL RESULTS
A. EVALUATION CRITERIA
The used quantitative performance metrics are:
• Positive predictive values (PPV): Percentage of true
positive predictions over all positive predictions. Where
PT is the true positive prediction, and P is all positive
predictions.

PPV = PT/P (12)

• Sensitivity (S): Percentage of true positive predictions
over the users’ ground truth (at the same frame indices).
where PT is the true positive prediction and Pu is the
user-selected frames and their indices.

S = PT/Pu (13)

• F-score: F-measure (or F-score) is the harmonic mean of
the precision and recall scores. It provides a combined
view when either of these scores is not sufficient to
describe the imbalanced classification problem, such as
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the frame selection problem, in which most frames are
not selected and only a few are selected.

F− score = 2× PPV × S/PPV + S (14)

B. EVALUATION
After data preprocessing and preparation, we proceeded
with experimenting our proposed methods. The proposed
dimensionality reduction method using stepwise regression
was compared with the SAE in [22]. In addition, the pro-
posed elimination of similar frame methods using ME+MC
(Section V-B.) and low-level HEVC features (Section V-A),
respectively, were compared against the SIFT flow algorithm
used in [22]. Finally, the proposed HEVC feature set was
tested against the features extracted from well-known CNN
models.

The trial runs reported have the following set-up: Each
run consists of 5 non-overlapping folds. In other words, the
data (videos) are split in an 80%-20% fashion for training
and testing, respectively. For single CNN runs, the feature
vector lengths are mentioned in Section-III. For Multi-CNN
runs, the feature vector length is 10,752, which is a combi-
nation of the 4 CNNs (GoogleNet: 1024 features, AlexNet:
4096, IRv2: 1536 features, VGG16: 4096 features). For
Multi-CNN & HEVC runs, the feature vector length is
10,816, which is a combination of the 4 CNNs and the
HEVC feature set (GoogleNet: 1024 features, AlexNet: 4096,
IRv2: 1536 features, VGG16: 4096 features, HEVC: 64).
The results reported for each trial run are the average results
for of the 5 testing folds. The metrics reported are PPV,
Sensitivity and F-score, which correspond to equations 12,
13 and 14, respectively. Further evaluations like the confusion
matrices and the models’ run times can be found in the
appendix section at the end of this paper. The experiments
were conducted on a PC provided by the American University
of Sharjah with Intel i7 (7th gen) CPU, 16 GB of RAM and
NVIDIA GTX 1070 GPU.

1) OVP DATASET – SINGLE-CNN RESULTS
The following are the experimental results for the OVP
dataset using a random forest classifier with features derived
from GoogleNet (1024 features), AlexNet (4096 features),
IRv2 (1536 features), and VGG16 (4096 features). We also
present the results from using the proposed HEVC feature set
(64 features).

In Table 4, the accuracy of the key-frame detection using
different methods is presented. The best detection results
are obtained when using the proposed HEVC features com-
bined with stepwise regression and HEVC feature-based
frame elimination (Section V-B). For features generated from
the pertained CNNs, we experimented with dimensionality
reduction using the existing work of [22], which is based
on SAEs, and using the proposed stepwise regression solu-
tion. Higher detection accuracies have been reported for the
latter.

TABLE 4. Experimental results on the OVP dataset - Single-CNN.

The results in the table also indicate that eliminating repli-
cated frames based on HEVC features results in a higher
detection accuracy compared to the use of the SIFT-based
algorithm. The detection results for features based on IRv2
and VGG16 peaked with the use of the proposed ME+MC
frame elimination solution described in Section V-B.

2) OVP DATASET – MULTI-CNN RESULTS
In Table 5, we present the detection results for the OVP
dataset after combining all features. In one experiment, all
CNN features were combined (Multi-CNN), and in another
experiment, we combined the proposed HEVC features with
all CNN features (Multi-CNN and HEVC).

The Multi-CNN model performed better than all previous
models with single CNN features by up to a 6% increase
in performance across all metrics. This shows how the
stepwise regressor can retain the best features from mul-
tiple CNNs and attain satisfactory results. The detection
accuracy resulting from Multi-CNN surpasses the use of
individual CNNs, as reported in Table 4. More noticeably,
the use of Multi-CNN and HEVC resulted in accuracy of
0.98 F-score.

72086 VOLUME 10, 2022



O. Issa, T. Shanableh: CNN and HEVC Video Coding Features for Static Video Summarization

TABLE 5. Experimental results on the OVP dataset - Multi-CNN.

3) OVP DATASET – VS. EXISTING WORKS
Figure 4 shows our best model on the OVP dataset, with
Multi-CNN and HEVC feature sets and HEVC-based frame
elimination against the state-of-the-art [22], VISCOM [44],
VRHDPS [45] and VSUMM [46]. The results obtained from
our proposed solution for the OVP dataset surpassed those of
the existing work across all metrics.

FIGURE 4. This graph shows our top performing model (Multi-CNN &
HEVC and HEVC-based frame elimination) in terms of F-score on the OVP
dataset compared with existing works in the literature.

4) VSUMM DATASET – SINGLE-CNN RESULTS
Similar to Table 4, Table 6 reports the results for the VSUMM
dataset. Similar to the conclusions drawn from the results
in Table 4, when using the proposed HEVC feature set,
our solution surpasses the CNN models when combined
with stepwise regression and the HEVC feature-based frame
elimination method. Additionally, the proposed stepwise
regression method for dimensionality reduction achieved
up to a 17% increase in performance compared to SAE
across all performance metrics. Further improvement can
be observed when using our proposed elimination of

TABLE 6. Experimental results on the VSUMM dataset - Single-CNN.

similar frame methods using ME+MC and HEVC features
with up to 5% and 12% performance improvement, respec-
tively, when compared to SIFT Flow across all performance
metrics.

5) VSUMM DATASET – MULTI-CNN RESULTS
Table 7 shows the performance of our proposed models when
using Multi-CNN features only and when using Multi-CNN
features with HEVC features on the VSUMM dataset under
the same run conditions as the previous runs. Again, the
detection accuracy resulting from Multi-CNN surpasses the
use of individual CNNs, as reported in Table 6. More
noticeably, the use of Multi-CNN and HEVC resulted in
an outstanding detection accuracy score, as indicated by the
0.98 F-score.

The Multi-CNN model performed better than all previous
models with single CNN features by up to a 7% increase in
performance across all metrics. When combining the HEVC
features with the Multi-CNN features, the models showed
up to a 5% score increase in performance across all met-
rics. Our best performing model (Multi-CNN & HEVC with
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TABLE 7. Experimental results on the VSUMM dataset - Multi-CNN.

HEVC-based elimination) is compared with existing works
in the following section.

6) VSUMM DATASET – VS. EXISTING WORKS
Figure 5 shows our best solution on the VSUMM
dataset, which uses Multi-CNN and HEVC features and
HEVC-based frame elimination against the state-of-the-art
[22], VISCOM [44], VRHDPS [45] and VSUMM [46]. Sim-
ilar to the results reported for the OVP dataset, our proposed
solution for the VSUMM dataset surpasses existing work.

FIGURE 5. This graph shows our top performing model (Multi-CNN &
HEVC and HEVC-based frame elimination) in terms of F-score on the
VSUMM dataset compared with existing works in the literature.

C. DISCUSSION
Our results show an overall improvement over previous
works in the literature. The advantages and limitations of the
proposed solution in comparison with existing work are sum-
marized as follows. The proposed HEVC 64 feature variables
are precise and concise compared to CNN-generated features
with significantly higher dimensionality. In comparison to
the reviewed work, VISCOM described the video frames
using novel color co-occurrence matrices [44]. VSUMM

extracted the video frames attributes based on color histogram
and line profiles [46]. VRHDPS used the Scale Invariant
Feature Transform (SIFT) features. [22] and [39] used a
novel combination of CNN features. In this work it was
shown that the HEVC feature set contains rich video descrip-
tors based on quadratic recursive splitting of coding units.
These descriptors provide rich information about the spatio-
temporal video content and therefore provide an excellent
choice for the task at hand.

Moreover, in terms of dimensionality resolution, our solu-
tion used stepwise regression which is significantly faster
than the use of auto-encoders, and yet retains enough features
that are the best representative features for training and clas-
sification. The use of auto-encoders was used successfully for
directionality reduction as reported in [22].

The proposed HEVC-based frame elimination avoids the
high complexity of optical flow based in SIFT-descriptors
which was used for frame elimination as reported in
[22]. Black frames and shot boundaries were elimi-
nated in VRHDPS [45] as they were deemed useless.
In VISCOM [44], monotonic frames are eliminated based
on normalized summations of squared distances between
frames.

In this work, combining the proposed solutions together
resulted in an average F-score of 0.93 and 0.86. Further com-
bination of the proposed solution with multi-CNN resulted in
an outstanding F-score of 0.98 for both theOVP andVSUMM
datasets. However, a drawback of combining the proposed
solution with multi-CNNs is that it can be computationally
intensive on some computer systems. This limitation can
be overcome by simply relying on the HEVC feature set
alone, as it proved to identify key frames more accurately
in comparison to existing work. On the other hand, it was
reported in VRHDPS [45] that their solution does not require
any iteration in the clustering process, rendering it an effi-
cient algorithm. Likewise, VSUMM [46] used simple color
attributes to generate quality summaries with low computa-
tional requirements.

VIII. CONCLUSION
With the surge of the Internet and surveillance footage,
the need for video summarization is crucial. This research
focused on the key-frame detection technique for its wide
use in the literature. We proposed a feature set extracted from
HEVC-coded videos. Eliminating duplicate or similar video
frames was performed based on a subset of the proposed
HEVC features, it was also performed based on the sum of
absolute differences resulting from ME and MC. The dimen-
sionality reduction of the feature variables was based on
stepwise regression. Using the Random Forest classification,
it is shown that by combining the proposed solution with
Multi-CNN features, an average PPV, Sensitivity and F-score
of 0.83, 0.96 and 0.98 are reported for the OVP dataset and an
average of 0.85, 0.94 and 0.98 are reported for the VSUMM
dataset respectively.
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APPENDIX
A. ELAPSED RUN TIMES FOR THE MODELS
Setup: Intel i7 (7th gen), 16 GB RAM and GTX 1070 GPU.

TABLE 8. OVP dataset - Single-CNN, with elapsed run times added.

TABLE 9. VSUMM dataset - Single-CNN, with elapsed run times added.

TABLE 10. Experimental results on the OVP dataset - Multi-CNN, but with
elapsed run times added.

TABLE 11. Experimental results on the VSUMM dataset - Multi-CNN, but
with elapsed run times added.

B. CONFUSION MATRICES
Figure 6 contains the confusion matrices for our best per-
forming models for the OVP and VSUMM datasets. The

FIGURE 6. Confusion matrices of models ‘‘Multi-CNN & HEVC’’ with
Stepwise regression feature space reduction and HEVC-based frame
elimination. OVP (top), VSUMM (bottom).
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best performing model for both datasets is Multi-CNN &
HEVCwith Stepwise regression for dimensionality reduction
of the feature space and HEVC-based elimination of similar
or redundant frames (i.e the models with the highest scores
in tables 5 and 7). The OVP confusion matrix translates to a
sensitivity score of 0.96 and the VSUMM confusion matrix
translates to a sensitivity score of 0.94. Both have an F-score
of 0.98, surpassing existing works in the literature.
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