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ABSTRACT Speech separation has been employed in important applications such as automatic speech,
paralinguistics, speech recognition, hearing aids, and human-machine interactions. In recent years, deep
neural networks have been widely used for speech and music separation. Some of these breakthrough
successful models based on embedding vectors have been proposed, such as deep clustering. In this paper,
we propose a node encoder Squash-norm deep clustering (ESDC) as an enhanced discriminative learning
framework by combining node encoder, Squash-norm, and deep clustering (DC). First, a node encoder is used
to create intermediate features. Node encoders are developed through a matrix factorization-based learning
method for graph representations. It creates distinguishable intermediate features that play an important role
in improving performance. These discriminated intermediate features are then used as input features for the
separation block. The decoder block finally constructs the estimation mask through the clustering method and
reconstructs the estimated signal for each source. In particular, we apply a normalization function, Squash-
norm, to the input and output vectors to enhance the distinction between high-dimensional embedding
vectors. This nonlinear function amplifies the differences in the input vectors, resulting in highly unique
features, which are scalar products of the vectors. Similar to the input vector, Squash-norm also enhances
the discrimination of the output vector, thereby enhancing the ability to construct an estimated mask by
clustering the output vector. Overall, the proposed ESDC achieves 1.27-2.09 dB SDR, 1.28-2.21 dB SDRi,
and 1.3-2.44 dB SI-SNRi gain compared to the DC baseline separation performance across genders on
the TSP and TIMIT datasets. With the same gender, our proposed ESDC achieves 1.14-2.71 dB SDR,
0.99-2.74 dB SDRI, and 0.62-2.86 dB SI-SNRi gain compared with the DC baseline on the TIMIT dataset.
In all cases, the proposed ESDC model consistently maintains STOI and PESQ higher than the DC baselines
on the TSP and TIMIT datasets.

INDEX TERMS Speaker separation, supervised speech separation, monophonic source separation, speech
enhancement, time frequency masking, deep clustering.

I. INTRODUCTION

Audio signals provide a vast amount of important informa-
tion by which human hearing can easily distinguish specific
speech sources in a multi-speaker environment, such as at
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a cocktail party where multiple voice sources are blended
together. However, source separation on a computer is a chal-
lenging task, especially in single-channel source separation,
which is an extremely difficult task that uses only one single
microphone to collect source signals.

In recent decades, statistical models, probabilistic models,
clustering methods, and factorization methods have been
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widely used for acoustic decomposition and many applica-
tions. Clustering techniques include probabilistic distribu-
tions such as the Gaussian Mixture Models (GMMs) [1],
and the hidden Markov (HMMs) [2], as well as statistical
models, e.g., the independent component analysis (ICA) [3].
Traditional methods such as computational auditory scene
analysis (CASA) [4], [5], developed from cognitive psychol-
ogy and spectral clustering [6], separate points into discrete
clusters based on the eigenstructure of affinity matrices. How-
ever, the statistical models, probabilistic models, and clus-
tering methods all lack generalization and have restrictions
on the observed elements [7]. Factorization techniques, such
as the Nonnegative matrix factorization (NMF) [8], [9], are
regarded as an outstanding source decomposition method,
however, NMF is only practical for a small number of facil-
ities and real-time applications are difficult to realize due to
the complex isolation processes of a large number of bases.
In recent years, deep learning models have been widely
used for computer vision [10], [11]. Deep learning meth-
ods have been used for source separation lately, such as
deep neural networks (DNNs), recurrent neural networks
(RNN5s) [12], [13], and convolutional networks (CNNs) [14].
In particular, DC [15] is proposed to attain robust source
separation performance in the time-frequency (TF) domain,
and specifically addresses the problem caused by permu-
tation. During the training phase, DC is used to map the
spectrum of a mixture to the embedding matrix. During
the test phase, individual speakers in the mixed signal are
isolated by clusters implemented using a binary mask of
an embedding matrix. Several updated versions of DC have
improved performances [16]-[21]. Related works have been
successively proposed to improve the performance. The deep
attractor network (DANet) [22] uses attractor points in which
the weights of the DANet are learned from the deep embed-
ding space. The permutation invariant training (PIT) [23] uses
the mean square error (MSE) method to solve the problem
resulted from source permutation. An utterance-level PIT
(uPIT) [24] further improved PIT by fixing each talker to an
output layer throughout each training utterance. Causal deep
CASA [25] achieves state-of-the-art separation performance
with fixed and arbitrary number of sources. A single-channel
speech dereverberation algorithm [26] is proposed to resist
the effect of reverberation, it uses a temporal convolutional
network (TCN) architecture. The causal voice separation
approach [27] has the simultaneous occurrence of reverber-
ation, which is the fundamental requirement for real-time
operation. The models perform vocal separation in the time
domain directly and obtain state-of-the-art results such as
the time-domain audio separation networks (TasNet) [28],
Wavesplit [29], FurcaNet [30], Wave-U-Net [31], LaFur-
calNet [32], the dual-path RNN (DPRNN) [33], and the gated
DPRNN [34]. The architectures of intra-segment and inter-
segment of DPRNN are the effective approaches that are
applied to the recent effective methods, e.g., DPTNet [35]
and SepFormer [36]. In addition, lightweight approaches
based on DPRNN have been introduced, e.g., a self-attentive
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network with a novel sandglass-shape (Sandglasset) [37],
selective mutual learning approach (SML) [38], GroupComm-
DPRNN [39], etc.

In this paper, we propose the ESDC model, which improves
the discriminative ability of high-dimensional vectors for
monophonic speech separation. ESDC achieves impressive
separation performance in the TF domain. The ESDC per-
forms four stages, such as input feature encoding, embedding
vector training, vector normalization, and vector clustering.
In the input feature encoding stage, the node encoder trans-
forms the input feature vectors into scalar product features,
thereby creating correlation of neighboring information. The
node encoder block uses the adjacency-based similarity of
the embedded feature matrix from the input feature vector to
establish the relationship between features. The scalar prod-
uct features are proportional to the strength of the relationship
between the input vectors. The high discriminative rate of
scalar product features is an important feature to improve
the performance of source separation in the training stage.
During the embedding vector training stage, we use the back-
bone network to train scalar product features. In the vector
normalization stage, Squash-norm is used to enhance the
discriminative ability of deep-dimensional feature vectors.
‘When the vector is short, the vector becomes close to the zero
vector. Conversely, if it is a long vector, the vector becomes
close to a unit vector. In the vector clustering stage, various
clustering algorithms are used to cluster the embedding vec-
tors. The main contributions of our proposed ESDC method
are summarized as follows:

1) We propose a discriminative vector learning strategy,

namely ESDC, for single-channel speech separation.
It can enhance the discriminative learning ability of the
embedding vectors.

2) We use the node encoder to generate the scalar product
features, the backbone network trains the embedding
vector, and Squash-norm enhances the discriminative
ability of the embedding vectors.

3) The experimental results show that our proposed
ESDC method achieves state-of-the-art separation per-
formance for the same gender and different gender in
the T-F domain. This approach has the ability to sepa-
rate voices with known or unknown speaker numbers.
The details are discussed in Section VI.

The rest of the paper is organized as follows. The
related work is presented in Section II. Section III presents
the problem formulation of monophonic speech separation.
Section IV describes the mask and training criteria. Section V
presents the proposed ESDC model. Section VI discusses the
experimental results and Section VII concludes this paper.

Il. RELATED WORK

Single-channel speech separation isolates distinct sources
from a single recording with overlapping source sounds. This
is a classic work in signal processing [41], [42], which has
developed rapidly in recent years thanks to supervised neural
networks. Traditionally, TF mask-based learning has been
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TABLE 1. Summary of advantages and disadvantages of the models.

Models Advantages Disadvantages
— A novel approach trains embed'dlng vectors during the training | The size of the embedding dimension increases lead
phase and clusters these vectors in the testing phase. . . X .
L. . . to an increase in computational complexity.

— The loss function is the difference between the embedding . .

. . . . . . — Loss function solves the permutation problem well, but

DC [15] affinity matrix and binary affinity matrix. It addresses permutation . .
. . L makes it computationally complex.
invariant training. . . L
. . . — The reconstruction lacks phase information for each TF
— Good results were obtained with both fixed and arbitrary source | , . . . . .
cases bin, leading to errors and artifacts in the estimated source.
— DC++ extends DC and proposes some improvements to make
the algorithm better.
— The STFT performs global mean-variance normalization as
a preprocessing step before being used as an input feature. — Some techniques are added to enhance performance,
— The model incorporates a dropout to avoid overfitting and to however these techniques have been discovered before.
DC++[17] allows for a higher initial learning rate. — This model reuses the DC architecture, and only

— The soft k-means method is used to obtain a more flexible TF changing the number of layers and the number of nodes
bin assignments. per layer.
— The last improvement is to use an end-to-end approach
instead of the clustering stage. This result is better performance
when the number of the sources is known.
— CNN architectures are used instead of BLSTM layers. . Lo .

. . . — Performance is not significantly improved.

. — Dilated convolution outperforms the separation performance . . . .
DC with gated . . — DC with gated convolutional network is mainly
. of BLSTM layers and other traditional CNNs. Dilated . .
convolutional inherited from DC.

network [20]

convolutional models provide the same results even with
smaller training datasets. The backbone network with
dilated convolution layers reduces computational cost .

— Several CNN architectures have been investigated,
but novel architectures have not been proposed.

— DC and traditional network architectures seem to
complement each other. The authors refer as Chimera network.

— The Chimera network almost inherits DC++ and
traditional networks.

Single hybrid | — The hybrid network, which combines a deep clustering — The training time and computational cost increase

network [40] network and a traditional network, is trained using for the single hybrid network .
a multi-task learning approach. This hybrid model significantly — Phase information for each TF bin isn’t used to
outperforms any of its components. reconstruct the estimated sources.
— An improved hybrid model combines DC and mask-inference
networks gsing multiple; altqr native loss functions: . — Improved hybrid network is mainly inherited from
— Alternative loss functions include Graph Laplacian distance Chemira network [40]

Improved hybrid | loss, deep clustering loss with Stochastic normalization, deep ’

network [16]

introducing weights.

linear discriminant analysis (Deep LDA) loss, deep clustering
loss with whitened k-means, and deep clustering loss with

— Phase information is adopted for time-domain re-synthesis.

— Several novel loss functions are proposed. The
complexity of the loss function leads to better
performance but increases in computational cost.

used in these models. The input mixture contains TF bins and
each TF bin of the source with the highest energy is found.
Spectrograms for each source can be created by masking the
TF bins of the other sources.

DC [15] approach provides a clustering model for masking.
The model trains the embedding vectors such that the dis-
tance between the embedding vectors from the same source
is smaller than the distance between the embedding vectors
from different sources. In [17], the authors propose global
mean-variance normalization as a preprocessing step on the
STFT spectrogram, which is then used as input to the model
and the estimated mask is created by soft k-means. In [20],
the authors use gated convolutional layers instead of the
BLSTM layers and the dense layer. A model adopts a new
loss function, while the structure of the model is preserved
in [16]. A network structure with two heads [40], this hybrid
network is designed to incorporate both DC and the inference
mask network. The body of the network is trained using a
combination of the losses from the two heads. These methods
train embedding vectors as the DC method and improve per-
formance significantly. In this paper, we propose the ESDC
method, that outperforms the deep clustering method. In the
ESDC architecture, the node encoder is used to create scalar
product features, the backbone network is used to train the
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embedding vector, and Squash-norm is used to improve the
discriminative ability of the embedding vector.

lIl. PROBLEM FORMULATION OF MONOPHONIC SPEECH
SEPARATION

The goal of source decomposition is to reconstruct the
single-channel source signals from the mixture signal. The
discrete-time mixed signal x(n) of C single-channel source
signals is denoted as x(n) = chzl sc(n), sc(n) € R.
In this paper, the short-time Fourier transform (STFT) with
the constant overlap-add [43]-[45] is used to transform the
original signal. The STFT divides a long-time signal into the
short frame signal and then computes the Fourier transform
on each short frame, and can be written as follows:

X (1. f) = ZZ;;x (myw (n— Hy e 2/l e C, (1)

where w(n) represents the window function of L-points dis-
crete Fourier transform (DFT) with H frame shift, X(z, f)
represents the STFT of the mixed signal x(n), and 7, f € N,
1<t <T,1<f <F are the time frame, and the frequency
bin in the STFT, respectively. Due to the characteristics of
STFT, a mixed signal X(¢, f) in the TF domain is calculated
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from the single source signals by

Xt.)=Y " St.feC. @

where S.(z,f) represents the STFT coefficient of the
component source signal s.(n) in the mixed signal. The sig-
nal is represented by the amplitude and phase S.(z,f) =
|Sc(t,f) exp (jO.). The phase of the STFT is usually
ignored [9], [46] so the spectral magnitude |X(z, f)| of the
mixed signal can be approximated by the sum of the spectral
magnitudes of the single sources as follows [47], [48]:

X~ I I8l ©)

where |S.(¢, f)| is the spectral magnitude of the single source.
The target mask, M.(t,f) € R, is used as the target of the
deep neural network in the magnitude domain. The estimated
signal, St f), of each source signal can be calculated by

Se(t,f) = Mt f) © X(1,f), 4)

where © represents the element-wise multiplication and

Mc(t, f) represents the estimated mask. The estimated signal

fS';(r, f)inthe TF domain is used to reconstruct each estimated

source signal 5.(n) in the time domain by inverse short-time

Fourier transform (iISTFT), and can be calculated as follows:
L—1

Y Set.frem e R (5)
£=0

0 Lot &

IV. MASK AND TRAINING CRITERIA

A. IDEAL BINARY MASK

The ideal binary mask (IBM) in [49] is a TF mask constructed
from the component source signal in the mixed signal. The
IBM is utilized as a computational target for CASA and the
training criteria of neural networks for source separation in
the TF domain. For each TF node, if the local SNR(z, f) is
greater than the local criterion (LC), the mask value is one.
Conversely, if the local SNR(¢, f) is less than the LC, it is zero.
The IBM is defined as:

1, if SNR(t,f) > LC

IBM(t,f) = { 0, otherwise, ©

where SNR(t, ) is the local ratio of the two source signals in
the mixture within the TF node.

B. IDEAL RATIO MASK

The ideal ratio mask, (IRM), is shown as a soft version of the
IBM and is defined as follows [49], [50]:

RM (1, f) = DL ™

; ISe(t, )

where |Sq(¢,f)| is the spectral magnitude of the single
source. The IRM is limited to 0 < IRM.(¢t,f) < 1 and
€ IRM(t,f) = 1 for all TF nodes. The IRM is simi-
lar to the classic Wiener filter and regarded as the optimal
estimation tool of target speech from the standpoint of power
spectrum.
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TABLE 2. Math symbols in problem formulation of single-channel speech
separation.

Symbol Meaning/definition

t Time frame in the short-time Fourier transform
f Frequency bin in the short-time Fourier transform
T Number of time frames

F Number of frequency bins

C Number of source signals

D Deep dimension value

w(n) Window function of discrete Fourier transform
z(n) Discrete-time mixture signal

X(t, f) Mixture signal in the time-frequency domain
sc(n) Time-domain source signal

Se(t, f) Source signal in the time-frequency domain
Se(t, f) Estimated source signal in the time-frequency domain
Se(n) Estimated source signal in the time domain
Mc(t, f) Target mask in the time-frequency domain
]\/Zc(t, ) Estimated mask in the time-frequency domain
| X (¢, )] Spectral magnitude of the mixed signal

|Sc(t, )l Spectral magnitude of the single source
IBM.(t, f) Ideal binary mask

IRMc(t, f) Ideal ratio mask

PSM.(t, f) Phase-sensitive mask

LN(X) Layer normalization of the mixed signal
w(X) Mean of the mixed signal

o) Difference phase

o(X) Standard deviation of the mixed signal

€ Small positive number

Zi, 2§ Input vectors

Vi, Vj Output vectors

Ui, Usj Output vectors with Squash-norm

Yir Yj Indicator vectors

g, U Output vectors with unit-norm

me Centroid of the c*” cluster

Tic Element of a label vector 7;

Cartif Artifacts

Enoise Noise

€interf Interferences

dsym Symmetric disturbance

dAasyM Asymmetric disturbance

Z Input embedding matrix

S Scalar product of input vectors

Y Label mask

\%4 Output matrix

U Output normalization matrix

C. PHASE-SENSITIVE MASK
The phase-sensitive mask (PSM) reflects the relationship
between the clean voice, the mixed voice, and the phase
difference, which is given by

REGYRIN

PSM._(t, =
D ="%a.p)

0s ¢, ®)
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where ¢ denotes the difference between the pure voice phase
and the mixed-voice phase in the TF bin. The PSM is
extended from the IRM and provides extra phase information.

D. TRAINING CRITERIA

Since we use the scalar product of indicator vectors as the
training criteria in the proposed ESDC model (to be defined
in detail in Sec. V). The TF mask, M.(t, f), is utilized to
construct the indicator vectors, y;, y; € RIXC Let Yic € RIxI
denote that each element of the indicator vector corresponds
to the TF unit of the reference mask. In the experiments,
IBM(t,f), IRM.(t,f) and PSM_(t, f) are used to construct
each element of the indicator vector respectively, in the cases.

V. THE PROPOSED MODEL FOR MONOPHONIC SPEECH
SEPARATION

Although DC achieves good performance in the source sep-
aration tasks in the TF domain, it is still worth looking for
further improvements. In this paper, we propose the ESDC
model is shown in Fig. 1. We have two main contribu-
tions to the separation performance. First, the node encoder
alters the mixture spectra of the input vectors, resulting in
the highly distinctive features which are the scalar product
of the input vectors. These features are helpful to improve
the performance in the training stage. Second, Squash-norm
ensures discriminative learning among the embedded vectors
by shrinking the vectors with small norm and dilating the
large ones. The objective function optimizes the feature rep-
resentation by amplifying the difference between the scalar
products of the normalized deep-dimensional output vectors
of the model and the scalar products of the indicator vectors.

A. PREPROCESSING BLOCK

In preprocessing block, we use STFT with constant overlap-
add (Eq. 1) to transform the discrete-time mixture speech
sequences and detailed in Sec. VI-A1. We perform logarithm
on the magnitude of the STFT coefficients. The transformed
log-scaled magnitude spectra are then normalized in two
standard score layers, a global mean-variance layer for all
spectra of the dataset and the local mean-variance layer for
the magnitude spectra, X;(¢, f), of each segment in the dataset.
The general formula used to these layers is given by

LN(X) = X, f,r)— pX) ©)
T oX) +e

where ©1(X), 0(X) and e are the mean, standard deviation
and small positive number, respectively. The small positive
number, ¢, is stable value added in Eq. 9 to avoid dividing
by zero. The mean and standard deviation are calculated as
Eq. 10 and Eq. 11:

T F R

nx) = % DD OY X, (10)

=1 f=1 r=I
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TABLE 3. List of abbreviations of single-channel speech separation
problem.

Abbreviation ~ Explanation/ definition
GMM Gaussian mixture model
HMM Hidden markov model
ICA Independent component analysis
CASA Computational auditory scene analysis
NMF Nonnegative matrix factorization
DNN Deep neural network
TF Time-frequency
MSE Mean square error
DC Deep clustering
DANet Deep attractor network
PIT Permutation invariant training
uPIT Utterance-level PIT
TasNet Time-domain audio separation network
DPRNN Dual-path RNN
DPTNet Dual-Path Transformer Network
SepFormer Separation Transformer
SML Selective Mutual Learning
LSTM Long-short term memory
BLSTM Bidirectional long-short term memory
TF Time-frequency
DFT Discrete Fourier transform
STFT Short-time Fourier transform
iSTFT Inverse short-time Fourier transform
IBM Ideal binary mask
IRM Ideal ratio mask
VAD Voice activity detection
SDR Source to distortion ratio
SAR Source to artifacts ratio
SIR Source to interference ratio
SI-SNRi Scale-invariant signal-to-noise ratio improvement
SDRi Source-to-distortion ratio improvement
STOI Short-time objective intelligibility
PESQ Perceptual evaluation of speech quality
1 T F R
2
0X) = |2 2D D (X o) — X))
t=1f=1r=1

where T, F, and R denote the number of frames, frequency
nodes, and channels, respectively. The standard score layer
is utilized in the deep learning models for the monophonic
speech separation task in order to accelerate the training
process and stabilize the neuron activations. As shown in
Eq. 9, the normalized power spectra above the mean value
yields positive values, while the spectra below the mean
value yields negative values. The covariance shift is handled
by this technique during the training phase. The usage of
the normalization layer improves the quality of the source
separation performance [25], [28], [33].
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; Mean-variance e i Embedding . Clustering :
] normalization layer : ! Ve matrix e algorithms ]
: P : ; Squash-norm i :
E Discrete Fourier transform E E ConvaD & Conv2D & ; - 'T‘ : E E
: v RelLU Sigmoid i Linear layer i T-F mask :
: D H BLSTM layer P S
= | X % 3 ?« XeR™M
: :' Squash-norm i BLSTM layer : : iSTFT :
; ' i i Recovered :

E : Scalar-product i BLSTM layer ' speech i

Mixed signal waveform

Preprocessing Block Encoder Block

L >

Separation Block Decoder Block

FIGURE 1. The architecture of the proposed ESDC framework uses the node encoder block and the Squash-norm for the input and output embedding
vectors. The mixture speech signals are mapped into the high-dimensional embedding vectors. The embedding vectors of TF nodes of the speakers are
pulled closer together in the same cluster while being pushed further away in different clusters. The embedding vectors are trained by the model during
the training stage, and then they are clustered by the different clustering algorithms to construct the estimated mask during the testing.

B. NODE ENCODER BLOCK
The node encoder block is designed based on the gated con-
volutional network [51]. The mixed spectral features, X; €
RT*F are fed to two different convolution layers, both with
a 5 x 5 kernel, L feature maps, a stride value of 1, and
the same paddings. The sigmoid and ReLU functions are
adopted as the non-linearity activation functions for each
convolutional stream. These two streams are used to generate
the high-dimensional input vectors, z;,z; € RYL of the
input embedding matrix Z € R¥*L, by element-wise mul-
tiplication. Through the convolution layers, the TF nodes are
highlighted and mapped onto the input feature vectors. The
Squash-norm function is then used to ensure that the small
input vectors are reduced to approximately the zero vector,
while the large input vectors are scaled below the unit vector.
Instead of using input vectors for the separation block, the
input features are replaced by the scalar product, S, of the
vectors, S is computed by ziz; = |zl |zj| cos(z;, zj) where
1 <i, j<N,andN = T x F, with the time-frame number T
and the frequency-bin number F of the TF nodes. In the view
of a vector space, S represents the similarity between the two
vectors. If S is positive, the angle between the two vectors
is less than ninety degrees. Conversely, when S is negative,
the two vectors produce two directions with an angle greater
than 90 degrees. On the matter of magnitude, if the absolute
value of § is large, it is inferred that the two vectors are
also large, or the projection of one vector onto the other is
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large and vice versa. In other words, the more similar the two
input vectors are, the greater their scalar product will be. The
high discrimination rate of the feature representation is an
important factor for performance improvement in the training
stage.

C. SQUASH-NORM OUTPUT VECTORS OF THE
SEPARATION BLOCK

Following the main idea of a DC network of the separation
block [15], the proposed model trains the scalar product
features, and then applies some clustering methods to cluster
embedding vectors that generated the estimated TF mask. The
scalar product features, S, are used as the input features for
the separation block. The scalar product features are trained
by the bidirectional long-short term memory (BLSTM) when
all of the hidden states of the BLSTM unit are calculated
according to the Markov technique. The output products
of the BLSTM network are the deep-dimensional vectors,
Vi € R'™*P_ with 1 < d < D, which are mapped from the TF
node. These vectors are used to create the deep-dimensional
embedding matrix V = [vi,vo,...,vny]. The mathemat-
ical non-linear function [52] is utilized to normalize the
deep-dimensional vector v; of the matrix V € RN*D and
is calculated as Eq 12:

vill> v

=, 12)
L+ il 12 vl

i
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where u; € R'*P denotes the normalized deep-dimensional
vector of the normalized deep-dimensional matrix U €
RN*D The deep dimension value, D, is the number of ele-
ments v;g € R in the deep-dimensional vector. The
magnitude of the deep-dimensional vector, v;, is calculated by

[lvil]| = ‘/ZdD=1 vl-2 4- According to the non-linear function,
the magnitude, ||u;||, of the normalized deep-dimensional
vector u; is calculated as follows:

2
[vill
L+ [vil|?

From Eq. (13), the magnitude of the normalized
deep-dimensional vectors will be in the range from zero to
one. The normalized vector u; becomes close to the zero
vector when the vector v; is a vector with small magnitude.
Conversely, this normalized vector becomes close to the
unit vector if the vector v; yields large magnitude. Eq. (12)
shows the definition of the Squash-norm that enhances the
discriminative learning of the normalized deep-dimensional
vectors into disjoint clusters. The labels are represented by
the class indicator vectors, y;,y; € R*C, of the label
ideal ratio mask ¥ € RM*C for each TF node, where
C numbers of single-channel sources in the mixture. The
loss function, L(u), is used to optimize the feature repre-
sentation which means minimum for the difference between
the scalar product, wju; = |u;| |uj| cos(m), of the nor-
malized deep-dimensional vector in the normalized matrix
U = [uy,up,...,uy] and the scalar product, y;y; =
lvil lyjl cos(yi, yj), of the indicator vectors in the label ideal

luil| = (13)

ratio (or label binary ideal) mask ¥ = [y1, y2,...,yn], and
is calculated as Eq. 14:
N N ,
L(u) = Z Z (i — yiy))
i=1 j=1
N N /D c 2
= Z (Z i dUj,d — Zyi,cyj,c> - (14
i=1 j=1 \d=1 c=1

To reduce the computational consumption, the issue is
considered as low-rank for the sparse point Y. Therefore, the
loss function is replaced by

D N 2 C N 2
L(u) = Z Z uigijk |+ Z Z Yi.cYi.q
d k=1 \i=j=1 cq=1 \i=j=1
2

D C N
=23 > | Y wiavie | - (15)

d=1c=1 \i=j=1

where u; 4, u; . are the normalized embedding elements and
Yi,e» Yj,q are the elements of the indicator vectors. The scalar
product of the vectors represents the relationship between the
output vectors. In other words, the more similar the pairs of
the output vectors are, the greater their scalar products will be.
Hence, the embedding vectors in the normalized embedding
space are pulled closer together in the same cluster while
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being pushed further away in different clusters. Both the
output dimension mismatch and permutation issues are able
to be solved by the loss function and the clustering stage on
the normalized vector.

In the case of ii; is unit-norm of v;, the loss function, L(it),
is used to optimize the feature representation which means to
minimize the difference between the cosine of the normalized
output vectors and the cosine of the indicator vectors, and
calculated as follows:

N N
Lip=3"Y" (cos(m) _ cos(yﬂj))z. (16)

i=1 j=1

The separated method is different from the end-to-end
source separation methods. The estimated signal recovered
by this method will be described in the next section, decoder
block.

D. DECODER BLOCK FOR WAVEFORM RECONSTRUCTION
Visualization of the decoder block used for waveform recon-
struction is illustrated in Fig. 2. The separation block pro-
duces the normalized embedding vectors during the training
stage. The vectors, u;, of the normalized embedding matrix U
are separated into the disjoint clusters when using the differ-
ent clustering algorithms in the testing stage.

The optimization problem guides a clustering process, e.g.,
K-means. Given a set of vectors u;, K-means aims to group
the N vectors into C clusters of the vectors. This is achieved
by minimizing the cost function:

N C
min » > " Tl lui — me|13
i=1 c=1
C
Tie € 0. 1}Vi.c; ) Tie=1 (17)
c=0

where m. € R!P is the centroid of the ¢ cluster.

7, is element of a label vector 7; and denotes the ¢ cluster’s
membership assignment.

The estimated TF mask, A?L.(t, f) € R, of each speech
source recreates the estimated speech sources in the mixed
signal as previously shown in Fig. 1, and is written as Eq. 18:

Mc(t,f) = ClusteringAlgorithm ({ui}f.vzl , C) . (18)

The estimated signal, :S‘\C(t,f ) € C, of each source signal
is calculated by Sc(t, f) = M.(t,f) ® X(.f). The estimated
speech signal §C(t, f) in the TF domain is utilized to reha-
bilitate each estimated speech signal 5.(n) € R in the time
domain by iSTFT.

VI. EXPERIMENTS
A. EXPERIMENTAL SETUP
1) FEATURES

All experiments were performed on speech mixtures gener-
ated from the TSP speech corpus [53] and the TIMIT speech
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FIGURE 2. Visualization of the decoder block describes the estimation masks. These estimation masks perform element-wise
multiplication with the mixed signal to recreate the spectrograms of the first and the second speakers in the TF domain. Then,
these spectrograms are transformed into time-domain waveforms by iSTFT.
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corpus [54] for acoustic-phonetic data. The TSP dataset con-
tains the recordings of 24 speakers with 1444 utterances
with an average length of 2.372 s, and almost half male
and half female. The TIMIT dataset comprises of broadband
recordings of 630 speakers in eight major dialects in Amer-
ican English, each with 16kHz speech waveform files and
ten phonetically rich sentences per speaker. In the case of
different genders, we select four speakers FA, FB, MC, and
MD from the TSP speech corpus for experiments, mixing
together 60 voices of the speaker. The data is divided into
groups 80% for training, 10% for development, and 10%
for evaluation. The utterance datasets are constructed from
the TIMIT corpus. The training and testing directories are
divided into the original TIMIT corpus with the training,
development, and evaluation datasets. Both TSP and TIMIT
datasets are mixed between -5 and 5 dB signal-to-noise ratio.
In the case of the same gender, we only select the same
male or female speech from the original TIMIT corpus in
the training and testing directories. The length of the input
mixed voice is the shortest speech in the component sources.
The log-scaled magnitude spectrograms of the STFT using
input features are down sampled from 16 kHz to 8kHz to
reduce the computational consumption. The window length
is 32 ms using a Hann window with a hop length of 8 ms.
These input features have a 256-point DFT signal. A voice
activity detection (VAD) threshold is applied to each spectral
frame, removing inactive TF bins during the computation of
the objective function. Only TF bins with magnitude greater
than VAD were used during training (VAD threshold was set
to 40 dB). VAD ensures that the model does not assign vectors
to inactive TF bins. In this way, the computational cost is
significantly reduced.

2) OBJECTIVE EVALUATION METRICS
For the objective measures of performance, we use sev-
eral criteria, including scale-invariant signal-to-noise ratio
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TABLE 4. The values of feature and parameters in single-channel speech
separation.

Parameter Value
Window length 32 ms
Hop length 8 ms
Window Hann
Sampling frequency 8 kHz
DFT size 256
Numbers of single-channel sources 2,3
Embedding dimension value 40
Feature map 16
Number of BLSTM units 600
Number of BLSTM layers 4
Batch size 32
Number of epochs for training 120

improvement (SI-SNRi), source-to-distortion ratio improve-
ment (SDRi), short-time objective intelligibility (STOI) [55],
and perceptual evaluation of speech quality (PESQ) [56].
In addition, source to distortion ratio (SDR), source to arti-
facts ratio (SAR), and source to interference ratio (SIR) in
the BSS-EVAL toolbox [57] are used for comparison with
the other methods. Higher index values represent better sep-
aration quality.

STOI represents a quantified index of speech intelligibility,
ranging from O to 1. It revealed the correlation of voice
intelligibility in hearing tests.

PESQ is a quantitative estimate of the source separation
in the ranges in [—0.5, 4.5], and uses cognitive modeling to
measure interference between the pure voice and the esti-
mated voice. PESQ is calculated as follows:

PESQ = 4.5 — 0.1dsyy — 0.0309dusyp, (19)
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where dsym and dasym denote symmetric disturbance and
asymmetric disturbance, respectively.

The SIR demonstrates the ability to reduce interference.
The SIR is determined only on the basis of interference from
other signals, with noise being ignored. The SAR analyses
variations in the signal, such as brief audio spikes lasting a
few milliseconds or less. The SDR evaluates the cumulative
distortion of these various effects compared to the original
signal, and is therefore frequently used as a general measure-
ment of how effectively the separation work. SDR, SIR, and
SAR in the BSS-EVAL toolbox are respectively defined as:

~ ||5target||2
SDR(s, 5) = 10log ,  (20)
10 [|€interf + €noise + eanif||2
2
N
SIR(s, §) = 101og10M, 1)
|leintert!|
) Starget + €interf + €noise ||
SAR(s, §) = 1010g10 Il target T €interf noise| | .2

|learti] |2
where ejnterf, €noise, and eair are the interferences, noise and
artifacts error terms, respectively. s, § and x are a reference
clean source, an estimated source, and a mixture in the time
domain, respectively. As can be seen, the evaluation metrics
are very powerful in analyzing the results of an algorithm.
However, the noise signals are not always known so we
don’t compute enpise and eyyir. This is SI-SNR used as SDR.
SI-SNR is utilized as an objective measure and is defined as
follows:

(§, s)s
Starget = ||S||2 , (23)
enoise = § — Stargets (24)
2
N
SI-SNR(s, §) = 101og10M. (25)
llenoise |

The SI-SNRi and SDRi metrics used in [17], [22], [24],
and [28], computed as follows:

SI-SNRi(s, §, x) = SI-SNR(s, §) — SI-SNR(s, x) (26)
SDRIi(s, §, x) = SDR(s, §) — SDR(s, x) Q27)

3) SYSTEM ARCHITECTURE AND REGULARIZATION

The training network in the ESDC model is built by Tensor-
flow. Both the feature extraction and signal reconstruction
have used the Librosa library and Signal library in Scipy. Ref-
erencing to [15]-[18], we adopt various hyper-parameters to
adjust the number of units and layers for robustness. In Fig. 1,
the ESDC model is constructed by four BLSTM layers with
600 hidden nodes in each layer, the number of clusters is
C = 2 and 3, the feature map is L = 16, the dimension is
D = 40 with a sigmoid activation function before the output
layer. Different clustering algorithms are used to construct
the estimated mask. We choose the Adam algorithm [58] as
the optimizer with settings of g1 = 0.9, B2 = 0.999 and
& = le — 8, the initial learning rate » = 0.0001 and the batch
size of 32. The alternative learning rate iteratively halves
the previous learning rate while the objective function is not
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reduced by more than 4 epochs on the validation set. The
dropout technique is used to prevent over-fitting, the input
dropout is 50% and the output dropout is 20%. The training
stage using the early stopping technique automatically stops
and saves the alternative weights when the objective function
does not decrease on the development set for more than
5 epochs. The number of epochs for training is 120.

B. COMPARISONS AND EXPERIMENTAL RESULTS

In the experiments, the proposed models are evaluated on the
monaural source separation tasks with two cases, different
genders on the TIMIT and TSP datasets and the same gen-
der on the TIMIT dataset. We evaluate the obtained results
of the speech separation task by testing each system block
separately and divide the tests into five parts. In the first
part, we evaluate the separation results in comparison with
other methods on the TIMIT dataset. In the second part,
we compare the proposed models to the experimental results.
In the third part, the clustering algorithms are studied through
the proposed ESDC model. In the fourth part, we investigate
the types of TF masks to construct the indicator vectors
and the output activation functions. In the last part, we eval-
uate the similarity matrix in the proposed cases and the
spectrograms of the best model. In this work, we evaluate the
speech separation performances when training many different
models on the TIMIT and TSP datasets. We use the DC model
which consists of four BLSTM layers with 600 hidden units
for each layer and a fully connected layer. The input features,
X, € RT*F , are used in the DC model, and the output
embedding vectors are created by a fully connected layer.
The output vectors are normalized by the unit-norm. In the
Squash-norm DC model (SDC), we use the Squash-norm
instead of the unit-norm. The Squash-norm is used to nor-
malize the output embedding vectors, and the SDC model
directly trains the normalized spectra X; € RT*F In the
ESDC model, we combine the node encoder and the SDC
model. Two different convolutional layers, the sigmoid and
ReLU functions are utilized to construct the input vectors.
These input vectors are normalized by the Squash norm. Then
a scalar product, z;z; = |z |zl cos(zf\zj), of the vectors is
used to replace the input features for SDC.

1) OBIJECTIVE EVALUATION

In Table 5, we compare the separation performances obtained
by the proposed ESDC model and the other models on SDR,
SAR, and SIR metrics in the different gender speech case,
including CNN [59], DF-DNN [60], RNN [61], DRNNSs [62],
and GDC [63]. In this case, the ESDC model in Table 5
achieves an improved performance compared to the other
methods. As shown in the table, the proposed ESDC model
increase 3.75 — 6.46 dB SDR, 891 - 11.17 dB SIR, and
3.64 — 6.3 dB SAR compare with the others.

We utilize DC as the framework baseline to evaluate the
proposed models. To further analyze the performance of the
proposed model, we conduct the experiments on the separa-
tion performances in several aspects. In these experiments,
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TABLE 5. The values in dB of the proposed ESDC model using the
indicator vectors from IRM and K-means algorithm for the estimated
mask compare to the values of the others on the TIMIT dataset.

Model SDR SIR SAR
dB dB dB
CNN [59] 6.60 9.50 10.20
DF-DNN [60] 6.39 9.72 9.89
RNN [61] 7.41 11.76 7.54
DRNN s [62] 7.74
GDC [63] 9.1 - -
ESDC 12.85 20.67 13.84

the proposed models present two cases including SDC and
ESDC. Table 6 presents the experiment results of DC, SDC,
and ESDC on the TIMIT and TSP datasets. It can be observed
that the separation results on the TSP dataset are always lower
than the TIMIT dataset on all three trained models. This
demonstrates that deep learning models give better results
when the training data is larger. In Table 6, the quality val-
ues of SDR, SDRi, SI-SNRi, STOI, and PESQ of SDC are
respectively 1.09 dB, 1.09 dB, 1.11 dB, 2%, and 0.21 higher
respectively, compared to DC on the TIMIT dataset. These
separation performances are similar on the TSP dataset where
the evaluation metrics increase by 1.78 dB SDR, 1.91 dB
SDRi, 2.03 dB SI-SNRi, 5% STOI, and 0.35 PESQ gain,
respectively. ESDC provides the best separation performance,
where SDR, SDRi, SI-SNRi, STOI, and PESQ metrics are
respectively 1.27 dB, 1.28 dB, 1.3 dB, 3%, and 0.29 higher
than DC, and respectively 0.18 dB, 0.19 dB, 0.19 dB, 1%,
and 0.08 higher than SDC on the TIMIT dataset. These
values of ESDC on the TSP dataset increase respectively
2.09dB SDR, 2.21 dB SDRi, 2.44 dB SI-SDRi, 6% STOI, and
0.39 PESQ compare to DC and respectively 0.31 dB SDR,
0.3 dB SDRi, 0.41 dB SI-SDRi, 1% STOI, and 0.04 PESQ
higher than SDC. However, the usage of the node decoder
of the ESDC model results in a significant increase in the
number of the parameters to 114,893,992, while the number
of parameters of DC and SDC is smaller and equal. It can
be seen that SDC achieves better separation performance
than DC because the Squash-norm shrinks or expands the
output vectors of the separation block. On the other hand, The
performance of the ESDC model increases slightly compared
to SDC when we add the node encoder for ESDC.

In Table 7, we compare the proposed ESDC method with
DC and SDC on the TIMIT dataset with the case of the
same gender. The proposed ESDC approach has the best
performance for the same gender pairs. The proposed ESDC
approach outperforms DC and, produces slightly better sep-
aration performances than SDC. However, the separation
performances of the same gender in Table 7 are much lower
than the different gender in Table 6. The experimental results
in Tables 6 and 7 are consistent with the previous observations
in [64] and [65] where the same gender speech separation
from the mixed signal is always a difficult issue due to the
similar frequency range from the same gender.
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The proposed models consist of two phases. In the first
phase, we utilize the scalar product of the indicator vec-
tors to estimate the scalar product of the high-dimensional
output vectors through supervised learning. In the second
phase, we study these output vectors through unsupervised
learning using clustering algorithms. According to Table 8§,
we investigate the separation performances of the differ-
ent clustering algorithms on the proposed ESDC model on
the TSP and TIMIT datasets. Gaussian Mixture Models
(GMM), Bayesian Gaussian Mixture (BGM), Mini batch
K-means (MBK-means), K-means, K-means++, and Spher-
ical K-means (SK-means) algorithms are selected as the clus-
tering algorithms for TF mask estimation. In the experiments,
both GMM and BGM have poor separation performances on
embedding space while rest of clustering algorithms have
achieved similar performances. The K-means algorithm is
less stable for the initialization of the centroids and also less
efficient due to the presence of hyperpolynomials in the input.
The K-means++ algorithm [66] ensures a better initializa-
tion of the centroids, while the MBK-means in [67] is the
fastest among the other algorithms. The SK-means clustering
method in [68] normalizes the data by using cosine similarity
for cluster assignment. At the end of each maximization
step, the estimated cluster centroids are mapped onto the
unit sphere. The SK-means clustering is superior to K-means
on the directional data, both in performance and speed. The
comparisons show that the SK-means clustering algorithm
outperforms other clustering algorithms.

In Table 9, we perform an ablation experiment on the effect
of the Squash-norm on the input vector. From the exper-
iments, we see that the separation performance is slightly
enhanced. This proves that Squash-norm shrinks or expands
the input vectors, which leads to obtain the discriminative
scalar product. The high distinction ratio of the scalar product
feature is an important factor for performance improvement.

As shown in Table 6, an important issue is that, the more
discriminative the output embedding vectors, the more accu-
rate the estimated mask. This significantly improves the sep-
aration performance (DC vs SDC). For input vectors, the
more similar the input embedding vectors are, the greater
their scalar product is. However, this did not significantly
improve the separation performance in Table 9 (Squash-
norm vs Non-Squash-norm for the input embedding vectors).
Furthermore, we investigate different clustering techniques
for output embedding vectors in Table 8. However, the clus-
tering algorithms have little impact on performance. The
separation performance mainly depends on the training of
the output embedding vectors in Table 6. This proves that
the performance mainly depends on discriminative learning
of the embedding vectors.

In the Table 10, the backbone network is changed from
BLSTM to LSTM. In this case, ESDC is a causal speech
separation system suitable for real-time speech separation
applications. The same parameters of the BLSTM network
(non-causal speech separation system) are used for the LSTM
network in this ablation study. We can observe that the
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TABLE 6. Separation performance of the proposed models with the indicator vectors from IRM and K-means algorithm on the TSP and TIMIT datasets for

the different gender.

Dataset Model Parameter SDR (dB) SDRi (dB) SI-SNRi (dB) STOI PESQ
DC 35,635,560 8.10 7.41 6.73 0.82 1.64
TSP SDC 35,635,560 9.88 9.32 8.76 0.87 1.99
ESDC 114,893,992 10.19 9.62 9.17 0.88 2.03
DC 35,635,560 11.58 11.15 10.73 0.88 2.15
TIMIT SDC 35,635,560 12.67 12.24 11.84 0.90 2.36
ESDC 114,893,992 12.85 12.43 12.03 0.91 2.44

TABLE 7. Separation performance of the proposed models with the indicator vectors from IRM and K-means on the TIMIT datasets for the same gender.

Gender Model SDR (dB) SDRi (dB) SI-SNRi (dB) STOI PESQ
DC 7.11 6.67 6.62 0.78 1.54
Male-Male SDC 8.08 7.63 7.15 0.79 1.65
ESDC 8.25 7.66 7.24 0.80 1.67
DC 6.79 6.41 5.68 0.75 1.62
Female-Female SDC 8.94 8.58 7.96 0.80 1.78
ESDC 9.50 9.15 8.54 0.82 1.81

TABLE 8. The separation performance of the different clustering algorithms for the output embedding vectors of the proposed ESDC model with the

indicator vectors from IRM on the TSP and TIMIT dataset.

Model Dataset Clustering algorithms SDR (dB) SDRi (dB) SI-SNRi (dB) STOI PESQ
GMM 5.98 5.42 4.51 0.75 1.60
BGM 6.03 5.46 4.55 0.76 1.61
ESDC TSP MBK-means 10.17 9.61 9.17 0.88 2.03
K-means 10.19 9.62 9.17 0.88 2.03
K-means ++ 10.19 9.63 9.18 0.88 2.03
SK-means 10.25 9.71 9.27 0.89 2.03
GMM 3.02 2.60 1.48 0.69 1.58
BGM 3.27 2.85 1.74 0.70 1.59
ESDC TIMIT MBK-means 12.85 12.42 12.03 0.90 2.44
K-means 12.85 12.43 12.03 0.91 2.44
K-means ++ 12.87 12.44 12.04 0.91 2.46
SK-means 12.91 12.48 12.08 0.91 2.46

separation performance decreases by 1.05 dB SDR, 1.13 dB
SIR, 0.93 dB SAR, 0.98 dB SDRi, and 0.93 dB SI-SNR,
respectively while replacing BLSTM to LSTM. Despite the
reduced separation performance, this causal system is suit-
able a variety of applications on real-time devices.

To further investigate the proposed model, we observed
the effect of the indicator vectors constructed from IBM,
IRM, and PSM in comparison between groups including
the first, second grouped columns, the third, fourth grouped
columns, and the fifth, sixth grouped columns. The effect
of the output activation functions is examined in the first,
third, and fifth grouped columns compared to the second,
fourth, and sixth grouped columns in Fig. 3. In this work,
we use the scalar product of the indicator vectors as the
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training target. The IBM, IRM, and PSM are used to construct
the indicator vectors. In this case, we find that the scalar
product objective of the PSM-based indicator vector achieves
the highest separation performance, while the scalar product
objective of the IRM-based indicator vector achieves higher
performance than the IBM-based indicator vector. The scalar
product objective based on the IBM-based indicator vector
is more sensitive to estimation error than the IRM-based
indicator vector. The scalar product objective of PSM-based
indicator vectors adds phase information, which achieves
higher performance than IBM-based and IRM-based indica-
tor vectors. The performance difference using scalar product
targets based on IBM-based, IRM-based, and PSM-based
metrics vectors is negligible. In our method, the effect of the
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TABLE 9. The values in dB of the proposed ESDC model with non-Squash
encoder and Squash encoder using the K-means algorithm on the TIMIT
dataset.

Encoder SDR SIR SAR SDRi  SI-SNRi
Non-Squash 12.74 19.72 13.68 12.31 12.03
Squash 12.85  20.67 13.84 12.43 12.03

TABLE 10. The values in dB of the proposed ESDC model with LSTM and
BLSTM using the K-means algorithm on the TIMIT dataset.

Model Backbone SDR SIR SAR SDRi SI-SNRi

ESDC LSTM 11.80 19.54 1291 11.36 11.10
ESDC BLSTM 12.85 20.67 13.84 1243 12.03

(a) SDR, SIR and SAR of the ESDC model
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FIGURE 3. The results of speech separation performance of the ESDC
model with K-means on the TIMIT dataset using different activation
functions and the indicator vectors from the different reference masks.

activation function is negligible, as shown in Fig. 3. The dif-
ferences between the six cases are insignificant because our
method relies heavily on the training phase of the embedding
vector and the clustering algorithm that estimates the mask.

The full neural network-based methods achieve impressive
performance in scenarios with a fixed number of sources.
Each source belongs to a discriminative signal class, such
as speech and music. However, the number of classes and
sources is arbitrary, making fully neural network-based
approaches unsuitable. In contrast, a deep clustering strategy
comparable to deep learning network-based spectral clus-
tering assigns an embedding vector to each TF bin of the
spectral map. Then, the vectors are clustered by the clustering
algorithm to construct the estimated mask. In Table. 11,
we train the ESDC model with two-speaker mixtures and
three-speaker mixtures. The two-speaker mixed model per-
formed well in tests with two and three speakers. In particular,
the three-speaker model achieves impressive performance in
both cases. This proves that the ESDC model with deep clus-
tering achieves good results in both with fixed and arbitrary
source cases.
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TABLE 11. SDR (dB) of the ESDC model in the case of training with
different numbers of speakers on the TIMIT dataset.

Test dataset
Model  Training dataset
Two speakers  Three speakers
Two speakers 12.85 4.36
ESDC
Three speakers 10.21 8.71

2) SPECTROGRAM ANALYSIS AND SIMILAR MATRIX
ANALYSIS

Observing the spectrograms in Fig. 4, and 5, the proposed
ESDC model performs source separation of gender-specific
speech on the TSP and TIMIT datasets. Compared with
the original spectrogram, the recovered spectrogram has a
high similarity. Whereas in Fig. 6, and 7, we perform the
same gender speech separation. Some spectral regions con-
fused and overlapped between the two speeches. We know
that speech separation of the same gender is more diffi-
cult than the case of different genders. Since the pitch and
vocal tract of the voices are in the same range, separation
from mixed speech of same-sex speakers can be extremely
challenging.

In this experiment, we construct the similarity matri-
ces in Fig. 8(a), (b), and (c). These similarity matrices
are the scalar product of output vectors of DC, SDC, and
ESDC in the training stage, respectively. Each element of
the similarity matrix is the scalar product of the two out-
put vectors. The similarity matrix reflects the relationship
between TF nodes and densely connected information. The
blue areas have higher similarity than the white areas.
A segment of speech data is randomly chosen for observa-
tion. In this case, we use the frame in the female speech
{./TSP/FA_TEST/FA05_09.wav} and the frame in the
male speech {./TSP/MB_TEST/MB12_10.wav} in the
TSP dataset. Observed on the color area of each similarity
matrix, the blue areas are small and the contrast of the ele-
ments on the similarity matrix in Fig. 8(a) is low. Therefore,
it is difficult to determine the relationships of the elements
in the matrix. In Fig. 8(b) and (c), we use the Squash-norm
which shrinks the small vectors and dilates the large ones.
It increases the contrast of the scalar product of the vectors.
Therefore, the blue areas are enlarged, similar to the high
contrast of elements on the matrix. In the experiments, when
the training model is combined with the node decoder and the
Squash-norm function, the contrast of the similarity matrix is
most evident in Fig. 8(c).

The similarity on the diagonal of the matrix is the highest
in Fig. 8(a) with a value of 1 but it is only the highest
value of Fig. 8(b) and (c). To explain this, the values on the
diagonal are the scalar product of the same vector. The unit
normalization is used in Fig. 8(a) so that the values on the
diagonal are always 1, while these values in Fig. 8(b) and (c)
are normalized by the Squash-norm function. In other words,
the TF nodes of a speech frame in the blue areas of the
similarity matrix may belong to the same speech source for
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FIGURE 4. A voice separation example of the ESDC model on the TSP dataset. Fig. 4(a) is the mixed spectrum of the pure-female voice and the pure-male
voice. Fig. 4(b) and (c) are the spectra of the pure-female voice and the estimated-female voice, respectively. Fig. 4(d) and (e) are the spectra of the
pure-male voice and the estimated-male voice, respectively.
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FIGURE 5. The spectrograms of the different-gender speech separation example of the ESDC model on the TIMIT dataset. Fig. 5(a) shows the mixed
spectrum of the pure-female speech and the pure-male speech. Fig. 5(b) and (c) are the spectra of the pure-female speech and the estimated-female
speech, respectively. Fig. 5(d) and (e) are the spectra of the pure-male speech and the estimated-male speech, respectively.
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FIGURE 6. lllustration of spectrograms for separating the first female and second female utterances from the mixed utterance of the ESDC model on the
TIMIT dataset. Fig. 6(a) is the mixture of the pure speech of the first female and the pure speech of the second female. Fig. 6(b) and (c) show the spectra
of the pure speech of the first female and the estimated speech of the first female, respectively. Fig. 6(d) and (e) show the spectra of the pure speech of
the second female and the estimated speech of the second female, respectively.
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FIGURE 7. lllustration of spectrograms for separating the first male and second male utterances from the mixed utterance of the ESDC model on the
TIMIT dataset. Fig. 7(a) is the mixture of the pure speech of the first male and the pure speech of the second male. Fig. 7(b) and (c) are the spectra of the
pure speech of the first male and the estimated speech of the first male, respectively. Fig. 7(d) and (e) are the spectra of the pure speech of the second
male and the estimated speech of the second male, respectively.

the high similarity while the TF nodes of a speech frame embedding with structural features that are beneficial for
in the white areas of the similarity matrix may belong to estimating TF masks.

different speech sources with low similarity. Therefore,

we can further improve the separating performance of the 3) SUBIJECTIVE EVALUATION

embedding vector of matrix based on the Squash-norm The subjective evaluation is done through a series of
constructed by the speech similarity matrix, and obtain blind AB listening tests that determined the method

102060 VOLUME 10, 2022



H. M. Tan et al.: Speech Separation Using Augmented-Discrimination Learning

IEEE Access

0 500 100015002000250030003500 0 500 100015002000250030003500 0 500 100015002000250030003500
s - 1.00 0 : : 0 D .
T I A1 818 1 100 T 0.90 = : 0.90
1 0.90 m T 0.85 i i 0.85
500 -ERE 9-92 500 C1 0 o080 500 IR [ il i 0.80
= —— 0.80 i 0.75 e ! 0.75
1000 H——F : 1 075 1000 {E=E=n 0.70 1000 1 0.70
! i ! 0.70 ]
J i | Tt 0.60 T 0.60
1500 1 | Plogo 1500 1500 {1 1TTH
3 ] . L 0.50
2000 T 0.50 2000 = — 050 5000 ?
i s 0.40 0.40
2500 £ 040 5500 Jemmi 2500
= 0.30 === 0.30 0.30
3000 {8 3000 e
% ; 0.20 e 0.20 0.20
3500 040 3500 010 3500 0.10

.(an) :

(b)

(c)
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FIGURE 9. The mean subjective preference score (%) comparison of the
ESDC, SDC, and DC for the two recordings sp05 and sp07 with 5 dB SNR in
the Noizeus corpus.

preference [69], [70]. We performed to create stimuli of sp10
and sp27 from the NOIZEUS corpus at 5 dB SNR. Utter-
ance spl0 and sp27 are male and female speakers, respec-
tively. This experiment was helped by twenty-five listeners.
The actual test comprised of thirty stimulus pairs shuffled
at a comfortable volume through closed circumaural. For a
subjective preference for each stimulus pair, listeners were
presented with three choices. The first and second options
indicated a preference for the associated stimuli, while the
third option indicated a similar liking for both stimuli. Pair-
wise scoring was used, with the preferred approach receiving
a score of 100% and the other receiving a score of 0%.
Each method received a 50 % score for a similar preference
response.

In addition to other objective evaluations, we also con-
duct subjective evaluations of the proposed ESDC model.
In Fig. 9, the clean speech, ESDC, SDC, DC, and noisy
achieve 100%, 71.18%, 67.93%, 56.12%, and 1.93% of the
mean subjective preference score, respectively. The subjec-
tive evaluations showed that clean speech is always the most
preferred, while noisy is the least preferred. The subjective
evaluation has shown that our proposed ESDC method is
more popular with listeners than other methods. Among the
remaining methods, the listeners preferred the SDC method
over the DC method. On the AB blind listening tests, we find
that the proposed ESDC method achieves the best subjective
evaluation among all the tested methods.
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VIl. CONCLUSION

In this paper, we propose an ESDC framework leverag-
ing Squash-norm and the DC node encoder. The node
encoder highlights and enhances scalar product features,
while Squash-norm improves the discrimination between
high-dimensional vectors in the embedding matrix. When
combining node encoder, DC, and Squash-norm, we explore
various deep learning architectures, including DC, SDC, and
ESDC, to solve the monophonic speech separation problem in
the TF domain. Node encoder and Squash-norm significantly
improve the performance of the proposed ESDC model.
Overall, the proposed ESDC model achieves 1.27 — 2.09 dB
SDR, 1.28 — 2.21 dB SDRi, and 1.3 — 2.44 dB SI-SNRi in
TSP and TIMIT dataset gains compared to the DC base-
lines in different gender situations separation performance.
Compared with the DC baseline on the TIMIT dataset, our
proposed ESDC achieves 1.14—2.71 dB SDR, 0.99 —-2.74 dB
SDRi, and 0.62 — 2.86 dB SI-SNRIi gains in the same-sex case
of separation tasks. In all cases, the proposed ESDC model
consistently maintains STOI and PESQ higher than the DC
baseline. Furthermore, the ESDC method also outperforms
the other methods in Table 5. In future research, we will
design models with diffusion maps in graph representation
learning and graph neural networks to accomplish the task
of speech separation, which is expected to well distinguish
elements in similarity matrices.
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