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ABSTRACT Amajor amount of the energy of battery-powered sensors is spent during packet transmissions.
This issue has led to the development of power-control-based multiple-access collision avoidance (MACA)
protocols that can reduce the packet transmission power and conserve energy. However, the reduction in
transmission power renders the packets susceptible to collisions. To reduce these collisions whilemaintaining
high energy efficiency, we propose a power control protocol that utilizes reinforcement learning to choose
the optimal transmission power. The total reward is determined by the occurrence of a collision, amount of
transmission power used, frequency of DATA packet retransmissions, and update of the interference range.
A key feature of the proposed protocol is that it enables sensors to prevent collisions without any prior
knowledge of interferences, thus eliminating the need for additional signaling. Simulation results under
varying average traffic loads indicate that the proposed protocol can improve network throughput by up
to 20% compared to benchmark protocols, while minimizing network energy consumption with a similar
gain and reducing collisions per packet by more than 35%. These results demonstrate that the proposed
protocol is effective.

INDEX TERMS Collisions, interference, medium access control, power control, Q-learning, underwater
acoustic sensor networks.

I. INTRODUCTION
Over the past few decades, underwater networks have been
significantly developed for practical applications such as
marine resource exploration, pollution monitoring, mili-
tary surveillance, and oceanic environment observations.
In particular, underwater wireless acoustic sensor net-
works (UWASNs) have been proven to be ideal candidates
for such applications [1], [2]. Because radiofrequency waves
are easily absorbed in an underwater environment owing to
the high conductivity of water, acoustic waves are used for
communication in UWASNs [3]. However, UWASNs have
a limited bandwidth, which prompts the need for resource-
efficient medium access control (MAC) protocols. Owing to
this limitation and the unique characteristics of underwater
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acoustic channels, such as a low propagation speed (approxi-
mately 1500 m/s in seawater), high bit error rate, low channel
capacity, and high dynamics of channel quality, the design of
MAC protocol for UWASNs is challenging [1], [2], [4].

One of the primary functions of MAC protocols is to mit-
igate data packet collisions at the receiver. Among the afore-
mentioned challenges, a low propagation speed is a key factor
that renders existing terrestrial MAC protocols unsuitable for
UWASNs [3], [4]. Moreover, energy consumption is another
major issue as the sensors of UWASNs are battery-powered.
Replacing these batteries is challenging and costly because of
the harsh nature of water. Thus, energy is a valuable resource.
These problems related to the batteries directly affect the
lifetime of the network. As such, extending the lifetime of
a network is necessary to ensure that it operates smoothly
for a long period, thereby reducing the frequency of battery
replacements [5]. Importantly, most of the energy consumed
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by the sensor nodes occurs during packet transmissions [5].
The rate at which this energy is consumed is referred to
as the transmission power. Therefore, efficient consumption
of energy during packet transmissions is critical for extend-
ing the lifetime of the network. Thus, this study focuses
on energy-efficient MAC protocols as they are suitable for
UWASNs.

MAC protocols are mainly classified as contention-free
and contention-based protocols [6]. For underwater MAC
protocols, contention-based protocols are preferred as they
can fully utilize the underwater channel bandwidth [7].
Contention-based MAC protocols are categorized into hand-
shaking and random-access protocols. The former dominates
the latter because of its ability to solve the hidden node
problem. Notably, the hidden node problem is a major cause
of collision in sensor networks.

Herein, we focus on a well-known group of contention-
based MAC protocols for wireless sensor networks, termed
multiple-access collision avoidance (MACA)-based pro-
tocols. These protocols have the ability to solve the
hidden node problem and offer high energy efficiency.
Power control MAC protocols [8] and collision avoidance
power control (CAPC) MAC protocols [9] are well-known
MACA-based energy-efficient MAC protocols. The energy
consumption of a network is minimized by allocating the
maximum transmit power to the control packets, such as
request-to-send (RTS)-clear-to-send (CTS) packets, and the
minimum possible transmit power to the DATA and acknowl-
edgement packets. Although transmission power control
saves the energy of the sensors, it renders the packets more
vulnerable to interference and aggravates the hidden node
problem [10]. This problem is commonly referred to as the
large interference range collision (LIRC) problem [10] and,
if not addressed, can introducemore collisions in the network.

The LIRC problem is illustrated in Figure 1. Let us con-
sider three sensors: a sender (S), a receiver (R), and an
interferer (I ). In this setting, two ranges are relevant: the
transmission range (TR) and interference range (IR). TR is
defined as the range within which a DATA packet can be
successfully received and correctly decoded by R (from S).
IR is defined as the range within which R can be interfered
by I , which is outside the TR of both S and R. More specif-
ically, a transmission from I received by R can be treated
as interference when R cannot correctly decode the received
signal because it is below a certain decoding threshold. The
solid line circles represent the TR of the RTS and CTS, which
are transmitted at the maximum transmission power by S
and R, respectively. Notably, because I is beyond this TR,
it will neither receive the RTS nor CTS and therefore cannot
enter a sleep state. At this moment, if I has a DATA packet
to transmit, it first performs a control packet (that is, RTS)
transmission in order to capture the channel, as it assumes that
the channel is free. However, R receives a DATA packet from
S that is transmitted with a controlled transmission power,
and the RTS transmission from I may cause a collision.
This is because, the controlled power of the DATA packet

could be lower than that of the RTS packet transmitted by I
with the maximum transmission power, thus leading to low
signal strength. Therefore, the signal-to-noise-interference
ratio (SINR) of the DATA packet decreases, making it vulner-
able to interference. As mentioned previously, this induced
interference is termed the LIRC problem [10]. In Figure 1,
the area in the stripes represents the IR of R.

FIGURE 1. LIRC problem of MACA-based MAC protocol. S, R, and I denote
the sender, receiver, and the interferer node, respectively. TR is the
transmission range and IR is the interference range.

Current solutions that address the LIRC problem require
the distance of a potential interferer [9] to realize optimal
performance. However, acquiring the distance information of
a potential interferer can be challenging owing to propagation
delay and can incur high signaling overhead costs. The over-
head cost is further amplified when there are more than one
interferes. To overcome this issue, we focus on reinforcement
learning algorithms and, in particular, the Q-learning algo-
rithm, in which a learner’s objective is to maximize rewards
by interacting with its environment [11]. It is widely applied
in wireless sensor networks because it does not require prior
knowledge of the environment or training data to determine
the optimal solution. Moreover, it can operate distributively
and has low complexity and computational requirements [6].

In this study, we propose a Q-learning-based power con-
trol protocol that can optimize the transmission power under
multiple interferers for an underwater MACA-based MAC
protocol. The proposed protocol enables the sensors to adap-
tively determine the optimal transmission power level such
that the transmitted packets do not undergo collisions. Most
importantly, this is achieved without any prior information
regarding the interferers. A preliminary version of the current
study was presented at the 2021 IEEE Region 10 Symposium
(TENSYMP 2021) [12].

The remainder of this paper is organized as follows.
Section II provides a discussion on the related works.
The system model is described in Section III. After that,
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a detailed description of the proposed protocol is presented
in Section IV. Section V and Section VI discuss about inter-
ference range estimation and energy consumption analysis,
respectively. Section VII provides the performance evalua-
tion. Finally, in Section VIII we present the conclusion.

II. RELATED WORKS
Power control is a common but important mechanism for both
terrestrial wireless sensor networks and UWASNs because
it facilitates energy saving and throughput improvement.
However, in sensor networks, LIRC problems induced by
power control cannot be ignored, as collisions are inevitable.
In fact, the LIRC problem is significantly more severe in
UWASNs than in terrestrial sensor networks [10]. Several
techniques have been discussed in previous studies to address
this problem.

In [10], a two-level power control (TLPC) MAC protocol
was proposed, where two different transmission power levels
were used. RTS/CTS and ACK were sent with a minimum
transmission power, while DATA packets were sent with
the maximum transmission power. Specifically, RTS/CTS
was sent with a transmission power that was equal to one-
tenth of the maximum transmission power. Thus, the induced
interference range at the receiver could be limited to the
sender–receiver distance, thereby minimizing the LIRC prob-
lem. Moreover, a grid topology was considered, in which the
inter-node distance between the sensors was fixed.

The authors of [9] proposed a CAPC MAC protocol to
solve the LIRC problem for terrestrial wireless ad hoc net-
works. The CAPC MAC protocol employed the maximum
transmission power for RTS/CTS transmission and the min-
imum transmission power for DATA packet transmission to
maintaining the required SINR at the receiver. Thus, the LIRC
problem was addressed by limiting the interference range to
the RTS/CTS transmission range. As mentioned above, the
senders require the distance information from the interferers.
In this context, the distance is measured using a signaling
mechanism that has a low accuracy.

Similar to the method in [9], for the MACA-based power
control (MACA-PC) MAC protocol [13] and dual busy
tone multiple access (DBTMA) with a power control proto-
col [14], the authors used the maximum transmission power
for RTS/CTS transmission and the minimum required trans-
mission power for DATA packets and ACK transmission.
However, a different approach was adopted to avoid the
LIRC problem: a notification signal was transmitted with the
maximum transmission power along with the DATA packet
transmission.

In [8], [15], and [16], the senders periodically trans-
mitted the DATA packets with the maximum transmission
power instead of the minimum transmission power for the
DATA packets and the maximum transmission power for the
RTS/CTS packets. More specifically, the senders increased
the transmission power of the DATA packets to its max-
imum value in a fixed interval within a fixed amount of

time. Consequently, the interfering sensors could detect the
transmission and deferred their future transmission.

In [17], the authors proposed an adaptive range-based
power control (ARPC) MAC protocol in which a range cover
mechanism was implemented. The basic idea was to cover
the interfering sensors with RTS/CTS transmission so that the
LIRC problem could be avoided. Four suchmechanismswere
proposed for adapting the transmission power of the sensors.
Moreover, an adaptive algorithm was employed to select one
of the proposed mechanisms based on the distance between
the sender and receiver.

Although these studies have been pivotal in solving the
LIRC problem, they present some limitations. For example,
the TLPC is designed for a fixed grid topology. In prac-
tice, the nodes are randomly deployed. Hence, TPLC may
perform poorly, thus increasing the energy consumption of
the network. CAPC, MACA-PC, DBTMA, and ARPC suffer
from high signaling overhead and low energy efficiency.
In [8], [15] and [16], concurrent transmission was reduced,
which resulted in low throughput, in addition to that, energy
consumption was increased due to periodic DATA transmis-
sion power increase.

To address the aforementioned gaps, we propose a MAC
protocol that does not require the distance information of
the interferers and can be deployed in a practical network
setup. Aided by Q-learning, the sensors can calculate the
optimal transmission power that can mitigate the LIRC prob-
lem. Hence, no additional signaling exchange is required,
resulting in low overheads. Consequently, the throughput and
energy efficiency increase.

III. SYSTEM MODEL
We considered a data-gathering cluster-based network,
as shown in Fig. 2. There are three clusters in this network,
and each cluster consists of a cluster header (CH) that is
located in the center of the cluster.Moreover, multiple sensors
are uniformly distributed within a one-hop range of the CH.
The sensors collect DATA from the environment and deliver
them directly to the CHs. Similarly, the sink gathers DATA
from the CHs in a one-hop fashion and then forwards them
to the surface buoy. It is assumed that all the sensors have the
same battery lifetime, computation ability, and transmission
power. Because the sensors are randomly deployed, hidden
node problem exists in the network. In this study, we consider
both intra-cluster and inter-cluster interferences. In addition,
the sensors are considered to be static; therefore their move-
ments, such as those caused by water current and waves, are
ignored.

Moreover, we consider the traditional handshaking-
based MAC protocol for channel access that employs
RTS/CTS/DATA/ACK. Sensors and CHs exchange RTS/CTS
with maximum power such that all the other sensors in the
transmission range switch to sleep states.

Intuitively, the LIRC problem can be solved by controlling
the size of IR. This can be achieved by assigning the optimal
transmission power for the DATA packet transmissions. This
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FIGURE 2. Underwater multi-cluster network.

transmission power must satisfy the following condition:

SINRDATA ≥ SINRTH, (1)

where SINRDATA is the signal-to-interference-plus-noise-
ratio of the DATA packet, and SINRTH is the minimum SINR
required to successfully decode a received packet. (1) can be
reformulated as follows:

SINRDATA =
PRX
N + I

≥ SINRTH, (2)

where PRX is the received power level at the receiver, I is the
interference signal, and N is the ambient noise.

Let S and R represent the sender and the receiver, respec-
tively. Let us assume that PDATA is the DATA packet trans-
mission power of S. Therefore, according to [18] and [19],
we can define PRX as

PRX =
PDATA

A(DSR, f )
, (3)

where A(DSR, f ) is the attenuation function considering the
acoustic pathloss for a center frequency f and distance DSR
between S and R.
Since, the interference occurs beyond the RTS/CTS trans-

mission range, the maximum value of the interference signal
can be expressed as

I =
PMAX

A(DIR, f )
, (4)

where PMAX is the maximum allowable transmission power
(defined as a system parameter) and A(DIR, f ) is the attenua-
tion between I and R that are separated by a distance DIR.

According to [18] and [19], the noise N can be
approximated as

N = 50− 18 log(f ). (5)

Finally, inputting (3), (4), and (5) in (2), we can rewrite (2)
as

PDATA
A(DSR,f )

50− 18 log(f )+ PMAX
A(DIR,f )

≥ SINRTH. (6)

When multiple interferes exists, the following condition must
be met according to (6) for decoding the received signal:

PDATA
A(DSR,f )

50− 18 log(f )+
∑ PMAX

A(DIR,f )

≥ SINRTH. (7)

IV. PROPOSED Q-LEARNING-BASED POWER CONTROL
In the proposed scheme, the optimal transmission power for
DATA packet transmissions is determined using Q-learning.
Each sensor in the network acts as an agent of Q-learning
and maintains a Q-table. Moreover, the initial Q values are
set to 0 and updated according to the reward obtained after
executing an action using below equation [11] as follows:

Qt+1(s, a)=Qt (s, a)+ α[rt + γ maxaQt (s′, a)− Qt (s, a)],

(8)

where Qt+1(s, a), Qt (s, a), rt , a, s, α, γ is the updated Q
value, old Q value, reward, action, state, learning rate (∈
[0, 1]), and discount factor (∈ [0, 1]), respectively.

We define actions as selections of power levels for the
DATA packet transmissions. For example, at a time step t , if a
sensor j selects a power levelPDATA, then the defined action is
expressed as aj,t = PDATA. If each sensor employs a discrete
power level for PDATA, then, PDATA ∈ {P0,P1, . . . ,PM−1},
where P0 is the minimum transmission power level andM is
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the number of power levels. The step size between consecu-
tive power levels is a constant denoted as

1 = Pi − Pi−1, (9)

where i = 1, 2, . . . ,M − 1.
Furthermore, we define a state as the receiver of DATA

packets. Because each cluster has only one CH that acts as
the soleDATApacket receiver, theQ-learningmethod applied
here is a single-state Q-learning method. Several recently
published studies, such as, [20]–[22], and [23], related to
both underwater and terrestrial MAC protocols have adopted
single-state Q-learning because of its low computational
complexity. Moreover, in the absence of states, it is relatively
easier to design protocols by relying only on action–reward
pairs [24].

In the case of single-state Q-learning, only the immediate
reward considered as γ is set to 0, given that no future state
exists in the system. The rule for updating the Q values is
different from (8) and is described as

Qt+1(a) = (1− α)Qt (a)+ αrt . (10)

Once a sensor executes an action, it rates the quality of
its action by using the total reward rt . This reward consists
of four reward factors, namely, a success/collision-related
reward factor (r1), an efficiency-related reward factor (r2),
a retransmission-related reward factor (r3), and an interfer-
ence range-related reward factor (r4).
The parameter r1 indicates whether collision has occurred.

An ACK is not returned when a collision occurs, thereby
indicating that the DATA transmission power is insufficient.
In this case, the reward is -1. Conversely, an ACK is returned
when there is no collision, indicating that the DATA trans-
mission power is sufficient to avoid collision. In this case,
the reward is +1. We can express r1 as

r1 =

{
+1, if ACK is received
−1, if ACK is not received.

(11)

The parameter r2 represents the goodness of the selected
transmission power and is expressed as

r2 = 1−
PDATA
PMAX

. (12)

A sensor receives a lower reward if a higher power is allocated
to transmit the DATA packet. This is because the total energy
consumption of the network increases with the allocation of
a higher DATA packet transmission power. Conversely, a suf-
ficiently low transmission power provides a higher reward.

The parameter r3 represents the occurrence frequency of
the DATA packet retransmissions in the network. A high
number of DATA packet retransmissions indicates that, at the
receiver, the condition of SINR for decoding the received
DATA packet is not satisfied. Consequently, the throughput
of the network decreases. Therefore, an extremely low num-
ber of retransmissions is required. The parameter r3 can be

expressed as follows:

r3 = 1+
1− ψ

ψMAX − 1
, ψMAX > 1 (13)

where ψ is the number of transmission of the same DATA
packet, and ψMAX represents the maximum allowable num-
ber of retransmission of DATA packets.
r4 can be written as

r4 =
PRX
PMAX

. (14)

A higher value of r4 indicates a lower range of interference.
This can improve both the throughput and energy efficiency
of the network by lowering the collision probability.

Therefore, the total reward rt for learning the minimum
transmission power robust to the interference is as follows:

rt =
4∑
i=1

βiri, (15)

where βi is the weighting parameter of ri, and
∑4

i=1 βi = 1.
The four reward factors can be weighted differently depend-
ing on the purpose of the network. For example, the settings
β1>β2 indicate that more priority is given to collision avoid-
ance rather than energy consumption minimization. This can
improve the network throughput at the cost of higher energy
consumption. Similarly, the converse is true when β2>β1.
To obtain rt corresponding to a chosen PDATA, the sensors

can update the Q value according to (10). Overtime, the
Q value converges and facilitates the determination of the
optimal transmission power that is robust to interferences
(that is, the goal of this collective reward is to allocate the
minimum power that avoids collision). Notably, in this pro-
posed protocol, the term convergence in an optimal transmis-
sion power occurs when the Q value of the selected optimal
transmission power approaches 1. This is because the reward
factors are designed to have a maximum value of 1. In addi-
tion, these factors are scaled by the weighting parameter βi,
where

∑
βi = 1.

In the proposed protocol, ε-greedy [25] is applied to intro-
duce exploration while sufficiently exploiting the single-state
Q-learning technique.

A. EXAMPLE
An example of the proposed protocol is shown in Figure 3.
When S receives the CTS, it allocates PDATA (action) by
using a Q-table (or an arbitrary PDATA if it is the first time).
After sending the DATA packet, S listens for the ACK within
the ACK timeout duration. Despite the interference(s), if R
decodes the DATA successfully, it sends an ACK back to S.
Upon receiving the ACK, S updates its Q-table based on the
current rt with the corresponding r1(=1, ACK received), r2,
r3, and r4. However, if the DATA collides at the receiver due
to the interference(s), R does not send back the ACK. At the
end of the ACK timeout duration, S updates the Q-table based
on the current rt with the corresponding r1(=-1, ACK not
received), r2, r3, and r4 values.
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FIGURE 3. Operation of the proposed scheme.

V. INTERFERENCE RANGE ESTIMATION
In this section, the effect of the reduced power level on IR is
discussed. In general, IR is larger than TR [8], [13]. Moreover,
IR increases with a decrease in the PDATA [9]. Specifically,
LIRC is the result of the expansion of IR owing to the usage
of the controlled transmission power such that sensors that are
out of IR are originally covered by the expanded interference
range afterward. From [10], IR is estimated as follows:

IRPDATA =
W (PMAX.A(DSR,f ).SINRTH. ln af

PDATA
)

ln af
, (16)

where W (·) denotes the Lambert W function [26], and af is
the frequency (measured in kilohertz) dependent absorption
coefficient (measured in decibels per kilometer), which can
be expressed empirically using Thorp’s underwater channel
model [27].

VI. ENERGY CONSUMPTION ANALYSIS
According to [28], the energy consumption to transmit a
packet can be expressed as

ETX = PTX.TTX-PACKET, (17)

where TTX-PACKET is the time duration to transmit a packet.
In addition, the energy consumption to receive a packet can

be defined as

ERX = PRX.TRX-PACKET, (18)

where TRX-PACKET is the time duration to receive a packet.
In the proposed protocol, the transmit energy consumption

is considered according to (17) and can be expressed as

ETX = [PMAX.(TTX-RTS + TTX-CTS)]

+[PDATA.(TTX-DATA + TTX-ACK)], (19)

where, TTX-RTS, TTX-CTS, TTX-DATA, TTX-ACK is the time
duration to transmit RTS, CTS, DATA, and ACK packets,
respectively.

The received energy consumption can be described accord-
ing to (18) as follows:

ERX=PRX.(TRX-RTS + TRX-CTS + TRX-DATA + TRX-ACK),

(20)

where, TRX-RTS, TRX-CTS, TRX-DATA, TRX-ACK is the time
duration to receive RTS, CTS, DATA, and ACK packets,
respectively.

Therefore, the total energy consumption of the network can
be written as

ETOTAL = ETX + ERX. (21)

VII. PERFORMANCE EVALUATION
A. SIMULATION MODEL
We evaluate the performance of the proposed protocol by
using computer simulations in MATLAB. The simulation
parameters are listed in Table 1. To reflect the underwater
channel characteristics, Thorp’s empirical underwater acous-
tic channel model [29] is applied. Additionally, the follow-
ing interference scenarios are assumed. First, it is assumed
that when an interference occurs between a control packet
and a DATA packet, the DATA packet cannot be decoded
if the condition given in (7) is not satisfied even for partial
overlapping [30]. Second, it is assumed that the interference
signal and the receiving signal are uncorrelated and that the
interference signals can be considered as additive terms [30].
To determine the values of the data rate and TX/RX pow-
ers, we use the specifications of the commercially available
underwater Teledyne Benthos ATM-903 modem.
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Each sensor is randomly deployed in one of the three
clusters and forms a star topology network centered around
the sink, as shown in Figure 2. The three clusters are deployed
to consider inter-cluster interference scenarios. Moreover,
a specific simulation scenario, such as varying average traffic
load with a fixed number of sensors in a cluster, is consid-
ered. For example, in cluster-1, 12 sensors generate traffic,
which follows a Poisson distribution, at a rate of 0.005 to
0.015 packets/s. Each simulation is repeated 3000 times to
improve the reliability of the results.

TABLE 1. System parameters and values.

B. PERFORMANCE MATRICES
Five performance metrics, namely, – network throughput,
network energy consumption, network energy efficiency, col-
lisions per packet, and packet delivery ratio (PDR), are con-
sidered for performance evaluation.

1) NETWORK THROUGHPUT, ρ
Let NR denote the total number of DATA packets that are
successfully received throughout T for which the network
was active. Then, the network throughput can be express as

ρ =
NR.LD
T

[bits/sec] (22)

where LD denotes the DATA packet size.

2) NETWORK ENERGY CONSUMPTION, σ
The network energy consumption is defined as the
total amount of energy consumed by the entire network
throughout T . In the proposed scheme, it is calculated accord-
ing to (21).

3) NETWORK ENERGY EFFICIENCY, θ
By considering σ , network energy efficiency can be
expressed as

θ =
NR · LD
σ

[bits/j] (23)

4) COLLISIONS PER PACKET, τ
The collisions per packet is defined as the ratio of the number
of collided DATA packets to the number of transmitted DATA

packets. It is expressed as

τ =
CollTOTAL

NT
(24)

where CollTOTAL and NT represent the total number of col-
lided DATA packets and total number of transmitted DATA
packets throughout T , respectively.

5) PACKET DELIVERY RATIO (PDR), µ
The PDR can be express as

µ = (
NR

NT
)× 100 (25)

FIGURE 4. Network throughput vs average traffic load.

C. SIMULATION RESULTS
The proposed protocol is compared with the following
benchmarks: CAPC [9], TLPC [10], and MACA-PC [13].
In addition, it is also evaluated by implementing greedy
algorithm [31].

Figure 4 shows the network throughput for the various
average traffic loads. An upward performance is observed for
all the five protocols. The performance of the proposed pro-
tocol with the greedy algorithm is superior to that of the pro-
posed protocol with the ε-greedy algorithm, TLPC, CAPC,
and MACA-PC, with a throughput improvement of approxi-
mately 2%, 4.5%, 8%, and 20%, respectively, when average
traffic load is 0.015. Moreover compared to the proposed
protocol with the ε-greedy algorithm, the proposed protocol
with the greedy algorithm shows a slightly better performance
with an average traffic load of 0.010. This is because the
proposed protocol with greedy algorithm selects the trans-
mission power based on the maximum Q value until the end
of the simulation period. Conversely, the proposed protocol
with the ε-greedy algorithm explores although it finds a
transmission power corresponding to the maximum Q value.
Therefore, a low power level is occasionally selected for
DATA packet transmission, which cannot satisfy the SINRTH
requirements. Hence, a small drop in the throughput can
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be observed. Likewise, both the proposed protocol with the
greedy algorithm and that with the ε-greedy algorithm adopt
the DATA transmission power according to the surrounding
interference environment. Thus, packet losses are minimized.
Conversely, TLPC, MACA-PC, and CAPC cannot allocate
sufficient power to a DATA transmission that is robust to mul-
tiple interferences, resulting in higher packet losses. When
packet losses occur, the latency for successful packet delivery
increases, thus decreasing the network throughput.

FIGURE 5. Network energy consumption vs average traffic load.

Figure 5 shows the network energy consumption for the
various average traffic loads. The proposed protocol with
the greedy algorithm has lower energy consumption than
TLPC, CAPC, and MACA-PC by, 15%, 6%, and 22%,
respectively, for an average traffic load of 0.015. However,
the proposed protocol with greedy algorithm has a slightly
lower energy consumption of 2% than that with the ε-greedy
algorithm. This is because the former does not explore;
therefore, the DATA packet transmission power is selected
based on the maximum Q value. Thus, the number of retrans-
missions is minimized. In the case of the proposed with
ε-greedy algorithm, sometimes insufficient power levels are
chosen because of the exploration. This increases the number
of retransmissions; consequently, the energy consumption
increases. MACA-PC has the highest energy consumption
among all the protocols. This is because, in this protocol,
before transmitting DATA packets with optimal transmission
powers, a short tone packet with a maximum power level
is always transmitted. Thus, the energy consumption in the
network increases. In addition, MACA-PC does not consider
multiple interferences when determining the optimal trans-
mission power. Thus, when multiple interferences occur, the
SINR cannot satisfy the threshold requirements. Moreover,
the energy consumption increases owing to an increase in the
number of retransmissions. The reason why TLPC and CAPC
have high energy consumption is similar to the explanation
forMACA-PC. However, in TLPC and CAPC, no tone packet
is sent before DATA packet transmissions.

FIGURE 6. Collisions per packet vs average traffic load.

Figure 6 shows the average number of collisions per packet
for the various average traffic loads. The value increases with
an increase in the average traffic load. Notably, all the proto-
cols exhibit similar characteristics. This is because, with an
increasing average traffic load, CHs are subjected to numer-
ous collisions owing to an increase in the number of multiple
interferences. These interferences are introduced because of
an increase in the number of DATA transmissions in a net-
work with power control. The proposed protocol with greedy
algorithm has a 27%, 15%, and 37% lower average number
of collisions per packet compared to TLPC, CAPC, and
MACA-PC, respectively, when average traffic load is 0.015.
This is because both the proposed protocols with greedy
and ε-greedy algorithms have effectively learned the optimal
transmission power that can overcomemultiple interferences,
thus lowering the average number of collisions per packet.
Conversely, the results of TLPC, CAPC, and MACA-PC
reveal that assigning insufficient DATA transmission power
can increase packet losses and subsequently the number of
average collisions per packet. Moreover, the highest average
number of collisions per packet is observed in MACA-PC.
This is because the interference range in MACA-PC is set
to twice the transmission range according to [32]. Notably,
if the interference range doubles the transmission range size,
the collision probability increases because more sensors are
covered by the interference range.

Figure 7 shows the PDR, which decreases as the aver-
age traffic load increases. It is also observed that when the
weighting parameter β1>β2, the PDR is higher than that when
β1<β2. This is because, β1>β2 implies that a higher priority
is given to the collision avoidance reward factor (that is, r1)
rather than the energy efficiency reward factor (that is, r2).
Therefore, the network throughput increases; however, this
leads to a decrease in energy efficiency.

Figure 8 shows the network energy efficiency obtained by
varying the average traffic load. The efficiency decreaseswith
an increase in the average traffic load, as shown in Figure 7.
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FIGURE 7. Packet delivery ratio vs average traffic load.

FIGURE 8. Network energy efficiency vs average traffic load.

When β1<β2, more weight is given to the energy-efficient
reward factor than when β1>β2, resulting in higher energy
efficiency.

Figure 9 shows the network energy consumption for vary-
ing ε-values. Notably, the network energy consumption is the
lowest when the ε value is set to 0.1. This is because, for
an extremely low ε-value, there is insufficient exploration,
thereby making the convergence extremely slow. Conversely,
for a high ε-value, an unnecessarily large amount of explo-
ration is introduced, which increases the energy consumption.
The second lowest network energy consumption occurs when
ε = 0.8. On average, the discrepancy between ε = 0.1 and
ε = 0.8 is 400 W.
Figure 10 shows the convergence of the Q values of the

sensor with increasing simulation time. Among the three
clusters, only one (consisting of 12 sensors) is considered
for this particular simulation. It can be observed that the
sensor behavior is quite similar in terms of convergence.
Most of the sensors converge at 5400 s, whereas very few
of them converge within the range from 7000 to 9000 s.
On average, approximately 3500 s are required to achieve

FIGURE 9. Network energy consumption vs ε-values.

FIGURE 10. Convergence of Q values vs simulation time.

90% convergence. Moreover, on average, almost full con-
vergence is achieved in 7000 s, which is one-third of the
total simulation time. The result presented in Figure 10
demonstrates the adaptability and robustness of the proposed
protocol.

VIII. CONCLUSION
To alleviate the LIRC problem, which is intrinsic to
MACA-based underwater MAC protocols, we demonstrated
that the determination of the optimal transmit power using
Q-learning improves the network’s performance. In particu-
lar, we used a collective reward system to update theQ values.
The proposed protocol is tested under a practical multiple-
interference scenario. Our findings demonstrated that the
proposed protocol is robust to collisions, as it can reduce
collisions by 35%, and energy-efficient, as it consumed 20%
lesser energy, which is a valuable resource for sensors. More-
over, the proposed protocol can determine the optimal trans-
mission power of the sensors in the multi-cluster network
that is adapted to the strength of the surrounding interfer-
ences. In addition, under different traffic load conditions, the
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proposed protocol consistently outperformed existing bench-
mark schemes.
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