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ABSTRACT The sensitivity of semiconductor devices to any microscopic perturbation is increasing with the
continuous shrinking of device technology. Even the small fluctuations have become more acute for highly
scaled nano-devices. Therefore, these fluctuations need to be addressed extensively in order to continue
further device scaling. In this paper, we mainly focus on three sources of intrinsic parameter fluctuation
including the work function fluctuation (WKF), the random dopant fluctuation (RDF), and the interface trap
fluctuation (ITF) for gate-all-around (GAA) silicon (Si) nanosheet (NS) MOSFETs. Generally, the effect of
these fluctuations is analyzed using a time-consuming device simulation process. A machine learning (ML)
based powerful and efficient artificial neural network (ANN) model is used to accelerate this process. Firstly,
the effects of fluctuation sources are analyzed individually by using the ANN model and results have been
presented that show the WKF variations dominate the variation of threshold voltage, off-state current, and
on-state current among other fluctuation sources. Next, we examine the combined effect of three fluctuation
sources. It is crucial because considering only one fluctuation can result in unexpected variations due to
other fluctuations appearing in the device. Consequently, the ANN model is used to estimate the combined
effects as well. The results show that the proposed model predicts the outputs with an R2-score of 99% and
an error rate of less than 1%. In addition, the ML is also utilized to calculate the permutation importance of
input variables as a measure to investigate the contribution of each fluctuation source.

INDEX TERMS Artificial neural network, machine learning, GAA Si NS MOSFETs, intrinsic param-
eter fluctuation, WKF, RDF, ITF, characteristic fluctuation, threshold voltage, off-state current, on-state
current.

I. INTRODUCTION
The threat of semiconductor device variability grows as the
transistor size shrinks. The aggressive scaling of transistors
is subject to different variations [1]. However, continuous
reduction in technology nodes is the demand for advanced
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integrated circuits (ICs). The miniaturized nanoscale devices
provide a remarkable improvement in power consumption [2]
and allow more transistors to be fabricated on a given area
of IC [3]. In order to function properly, these highly scaled
ICs are required to fabricate all transistors such that their
characteristics should be identical to each other. However, the
semiconductor industry is facing a major challenge owing to
the fact that each transistor in an IC has different electrical
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characteristics due to a variety of causes. Among them, the
random fluctuations are the major causes of variation in
device characteristics, such as threshold voltage (VTH ), off-
state current (IOFF ), on-state current (ION ), drain-induced
barrier lowering (DIBL), and subthreshold slope (SS), etc.
[4]. These variations in advanced nano-devices are becom-
ing the most severe challenge for further device scaling [5].
No matter how, it is imperative to conduct an extensive anal-
ysis of these fluctuation sources to keep producing better,
cheaper, and faster nano-devices.

The gate-all-around (GAA) is a widely accepted device
structure for technology nodes beyond 3 nm. There are two
types of GAA structures: nanowire (NW) and nanosheet
(NS). Due to a high surface-to-volume ratio, NS provides
more drive current as compared to NW. Therefore, the
GAA silicon (Si) NS metal-oxide-semiconductor field-effect
transistor (MOSFET) has gained enormous attention as a
promising candidate for a high-degree-scaling technology
node [6], [7]. It exhibits excellent short-channel control and
improves the performance of transistors at reduced gate
length. It also provides more conducting channels, improved
power performance, and better area scaling compared to other
transistors, such as FinFETs and nanowire FETs [8]–[10].
However, nanoscale devices are suffered from different kinds
of fluctuations that cause variability in their electrical char-
acteristics [11]–[15] and the miniaturization increases the
device sensitivity to microscopic perturbation. Thus, even a
small fluctuation may become a critical issue for device char-
acteristics. These fluctuation sources are the key obstructions
for future potential applications of GAA Si NS MOSFETs.
Accordingly, their analysis is of utmost interest and needs
further investigation.

The fluctuation is referred to as a type of variability.
Among several fluctuation sources, the intrinsic parameter
fluctuations are less controllable due to their microscopic
nature and are the most serious challenges to overcome.
We consider in this work three major sources of intrinsic
parameter fluctuation, the work function fluctuation (WKF),
the random dopant fluctuation (RDF), and the interface trap
fluctuation (ITF). In general, fluctuation analyses are mainly
accomplished by using device simulation techniques [16].
Effects of fluctuation on GAA Si NS MOSFETs have been
studied [17], [18]; however, despite the high accuracy of
device simulation, it is a very time-consuming process and
desired alternative time-efficient methods [19].

A. PRELIMINARIES AND RELATED WORKS
Various machine learning (ML) approaches have recently
been proposed for device simulation to shorten the turn-
around time. ML has emerged as an efficient method that
is having applications in different fields such as healthcare
[20], agriculture [21], cybersecurity [22], education [23],
data governance [24], finance [25], marketing [26], etc.
In the past few years, it has also been used significantly
in the semiconductor industry to solve modeling and opti-
mization problems [27]–[33]. It is successfully employed as

a strategy to speed up semiconductor device development
and reduce the computational resources [34]–[39]. Device
simulation assisted ML frameworks have been reported to
solve different problems such as device variation and oper-
ating temperature analysis [40], point defect prediction [41],
hotspot detection [42], anomaly detection [43], device struc-
tural variation identification, and inverse design [44], etc.
These works have focused to speed up and automate the
device modeling task with high accuracy. Some of recent
researches applied ML-based frameworks to predict next-
generation device characteristics [45]–[48]. They employed
the ML models as an alternative to the compact model for
advanced devices to predict their electrical characteristics.
Notably, these ML frameworks are entirely based on device
data and do not include device physics. In addition to this,
the ML techniques have been further used to predict and
model the characteristics variations that occurred in different
semiconductor devices due to WKF [49], random dopant dis-
tribution [50], line-edge-roughness [51], [52], process varia-
tion effect [53], etc. In some studies, ML was also applied
for the estimation of threshold voltage variability induced
by random telegraph noise fluctuation [54] and by device
parameter variability [55], etc. In our recent work, the effect
of WKF was modeled using ML for NS devices such as,
in [56], the ML technique was proposed to suppress theWKF
on device characteristics of a three-channel NS device by
using a random forest regressor-based ML model. In [57],
ML was utilized to identify the WKF patterns on the metal
gate to reduce its impact on DC characteristics of GAA Si NS
MOSFETs. However, all previousMLworks have considered
only one specific type of fluctuation and to the best of our
knowledge, this is the first time when ML is used to model
more than one fluctuation sources simultaneously.

The goal of the current work is to avoid the intensively
performing 3-dimensional (3D) device simulation of GAA
Si NS MOSFETs by determining the effect of the source
of variation through the ML-based ANN model. In addi-
tion to this, we also estimate the variability in important
parameters such as VTH, IOFF, and ION by considering the
effects of random numbers of different fluctuations. In this
way, we also accelerate the overall 3D statistical device
simulation by using the ML model. Furthermore, the fair
prediction of the effect of all types of fluctuation sources and
their combined effects demonstrate the generality of the pro-
posed strategy to construct accurate MLmodels for advanced
nano-devices.

B. NOVEL CONTRIBUTIONS IN THIS WORK
1. This is the first time the ML approach is proposed

to capture multi-fluctuation variability in nano-devices.
Their individual as well as combined effects are analyzed
comprehensively.

2. We, for the first time, investigate the denser ANN-based
ML algorithm to analyze the complex physical behavior of
multi fluctuation sources. The ANN model proved to be a
general and more robust model in contrast to the if/else
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FIGURE 1. A flow of fabrication process of the explored GAA Si NS MOSFET with origin of random sources. Random nano-sized metal grains, random
discrete dopants, and random interface traps are raised during the complicated process. (a) An illustration of the explored GAA Si NS MOSFET. (b) A
flow of fabrication process with introduced random factors of the explored GAA Si NS MOSFET. (c) The fluctuated ID-VG curves and the associated
device parameters: VTH , IOFF , and ION , as well as their impact on device variability and circuit mismatch.

statistical function based model (such as in the random
forest regressor model).

3. We derive the benefit fromML to investigate the contribu-
tion of each fluctuation source on electrical characteristics
when their combined effect is analyzed. The individual
permutation scores for all input features are also calculated
that revealed the contribution of each fluctuation source on
the device characteristics.
The rest of the paper is organized as follows. Section II

presents the structure of GAA Si NS MOSFET with device
simulation settings, physical and electrical parameters, and
an overview of fluctuation source. Section III discusses the
machine learning modeling approach and integration with
device simulation. In Section IV, the predicted results for dif-
ferent fluctuation sources are compared with the simulation
data and discussed in detail. Finally, Section V concludes the
main work of this study.

II. DEVICE SIMULATION, FLUCTUATION SOURCES, AND
DATA GENERATION
The 3D statistical device simulations are centered around the
GAASi NSMOSFET, as shown in Fig. 1(a). A flow of device
fabrication for the explored GAA Si NS MOSFET with the
origin of various fluctuation sources including random nano-
sized metal grains, random discrete dopants, and random
interface traps is shown in Fig. 1(b) [7]. Starting with the
epitaxial growth, the fin with a height of 5 nm and a width
of 25 nm is fabricated. To meet the requirement of advanced
technological nodes, the sidewall image transfer technique is
used. Dummy gates are defined before the anisotropic etching
and the source/drain regions are grown epitaxially. After the
removal of dummy gates, the channel release is performed
and Si wires are released completely during the replacement
metal gate. The contacts are wrapped around tomaintain good
electrostatic integrity. Fig. 1(c) shows the fluctuated drain
current-gate voltage (ID-VG) curves and device parameters,
and their impacts on circuit mismatch.

FIGURE 2. A comparison between the numerically simulated (line) and
experimentally measured (symbol) [8] ID-VG curves that are used to
calibrate the nominal device simulation of GAA Si NS MOSFET.

The ideal device without any fluctuation is referred to
as a ‘‘nominal device’’. The adopted device and mate-
rial parameters, dimension, doping concentration, and the
achieved nominal values of electrical characteristics and
short-channel effect parameters are summarized in Table 1.
As shown in Fig. 2, before performing the 3D statisti-
cal device simulation on the explored devices, a nominal
device simulation is first performed and calibrated with the
experimentally measured ID-VG curves [8] of a stacked
GAA Si NS MOSFET by tuning the device parameters,
physical models, and doping profile to reproduce the best
accuracy of the transfer characteristics. We then apply the
similar calibration methodology to statistically simulate a
single-channel GAA Si NS MOSFET for various fluctua-
tions. Notably, the intrinsic parameter fluctuation of a single-
channel GAA Si NS MOSFET is studied because it is more
critical than that of devices with multi stacked NS channels.

The GAA Si NSMOSFETwith sources of intrinsic param-
eter fluctuation is shown in Fig. 3. Total number of simulated
devices with different fluctuations is listed in Table 2. Statisti-
cally, three fluctuation sources are generated by following the
Gaussian distribution for the explored GAA Si NSMOSFET.
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FIGURE 3. An illustration of the 3D architecture of nominal GAA Si NS MOSFET including various fluctuation sources i.e. (a) WKF, (b) RDF, and (c) ITF.
(a’) random pattern of metal grains of TiN on gate area. (a’’) High and low work functions with orientation <111> for WKL and <200> for WKH.
(a’’’) Histograms of sub-planes following the Gaussian distribution. (b’)-(b’’’’) Random dopants in channel, source/drain extensions, and penetration
from the S/D extensions into the channel regions the average dopants in each square is 5.7, 64.6, 64.6, and 5.7, respectively. (b1)-(b4) Histograms
showing the Gaussian distribution of random dopants. (c’) Interface traps randomly generate in a large plane of 224 nm2. (c’’) Sub-plane of small
dimensions. (c’’’) The size of each trap is 2 nm2 with density of 1.5-7.6×1013 cm−2 eV−1 and histogram shows that the interface traps follow
Gaussian distribution.

TABLE 1. List of the adopted device parameters and achieved device
characteristics of the GAA Si NS MOSFETs corresponding to sub-3-nm
technological nodes.

A. GENERATION OF WKF SAMPLES
The titanium nitride (TiN) layer is used as the metal gate for
the device and it is composed of metal grains (MG) of sizes
3.92 nm× 3 nm. For all WKF fluctuated devices, the random

TABLE 2. List of different sources of fluctuation and their corresponding
total number of fluctuated devices.

patterns of low/high work function (WK) are generated by
using the Monte Carlo method [14]. The low WK is referred
to as TiN<111> and high WK is referred to as TiN<200>
with the probability of occurrence as 40% and 60% with
WK = 4.4 eV and WK = 4.6 eV, respectively as shown
in Fig. 3(a). The effective work function is 4.52 eV. Total
number of MG is fixed (MGN = 80) for all devices. More
details about the generation ofWKF are given inAppendix A.

B. GENERATION OF RDF SAMPLES
To simulate RDF fluctuated devices, 1725, 19396, and
1718 random dopants are generated in a large cuboid with
the doping concentration of 5 × 1017, 1.1 × 1019, and
3.36 × 1017 cm−3 for the channel (CH), source-drain exten-
sion (S/DEXT), and channel penetration (CPE), respectively,
as shown in Fig. 3(b). The large cuboid is then partitioned
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FIGURE 4. An illustration of 1000 ID-VG curves (line) of the GAA Si NS
MOSFET induced by intrinsic parameter fluctuation, i.e., work function
fluctuation, random dopant fluctuation and interface trap fluctuation.
Symbols are of the nominal characteristic of ID-VG (i.e., the GAA Si NS
MOSFET device without any fluctuation.

into 1000 sub-cuboids which are mapped into CH, S/DEXT,
and CPE regions for each fluctuated device [5], [16]. The
average number of dopants in CH, S/DEXT, and CPE regions
are 5.7, 64.6, and 5.7, respectively. See Appendix B for more
discussion about the RDF.

C. GENERATION OF ITF SAMPLES
Similarly, for ITF fluctuated devices, 2700 random inter-
face traps (RITs) are generated in a large square plane
of size 224 nm × 224 nm, as shown in Fig. 3(c). The
RITs are generated arbitrarily at the interface between the
gate stack and Si channel using the statistical generation
simulator [5]. The dimension of each RIT is 2 nm2 with
a density of around 1.5-7.6 × 1013 cm−2 eV−1. From this
plane, 1000 sub-planes are pulled out randomly. The average
number of RITs in-plane is 9 and plane density is kept as
3 × 1013 cm−2. The ITF is further discussed in detail in
Appendix C.

D. GENERATION OF COMBINED FLUCTUATION SAMPLES
Finally, to generate the devices with combined fluctuations
(CF), the distribution of all sources (WKF, RDF, and ITF)
remains the same as mentioned above. Moreover, 1000 such
fluctuated devices have been randomly generated and simu-
lated for the CF case as well [5].

Eventually, through comprehensive simulations, the
ID−VG characteristics of all above 4000 fluctuated devices
for four different cases are collected which are later used
for ML analysis as the training and the test datasets. The
simulated electrical parameters: VTH , IOFF , and ION are also
determined which are later compared with the ML predicted
values. Fig. 4 shows the nominal device curve (red triangular)
and 1000 simulation curves for devices with the combined
fluctuations (black lines) with relative standard deviation
(RSD) (explained in detail in Section IV) of VTH , IOFF ,
and ION .

FIGURE 5. A comprehensive flow chart showing the proposed
methodology with data generation, data collection, splitting training and
testing processes, extraction of the electrical parameters and then
comparison of the electrical characteristics.

III. MACHINE LEARNING APPROACH
The overall purpose of the NN-based framework is to
develop the ML technique that can accelerate the process
of modeling the characteristic variations imposed by var-
ious fluctuations. The NN-based framework used in this
work is outlined in Fig. 5, which consists of device simu-
lation steps and machine learning process flow. The simu-
lations are performed for four fluctuation sources to obtain
the training and test datasets as described in Section II.
Figs. 6(a) and (b) show the ANN architectures for the differ-
ent sources of variations. The ANN models are implemented
using Python’s Keras library with Tensorflow working in its
backend [58]. All architectures have three layers referred
to as input layer, hidden layer, and output layer. The input
layer consists of fluctuation sources governing parameters
as inputs such as for WKF count of high and low WK
[WKH, WKL], for RDF, count of random dopants in the
channel, source-drain extensions and channel penetration
[CH, S/DEXT1, S/DEXT2, PE], for ITF, count of interface
traps at the top, bottom, side-1 and side-2 [ITT, ITB, ITS1,
ITS2], and at last, for CF, the input pattern consist of all
fluctuation counts [WKH, WKL,CH, S/DEXT1, S/DEXT2, PE,
IT, IB, IS1, IS2]. Variation in VTH , IOFF , and ION is pre-
dicted by considering the distribution of fluctuation sources
using the output layer. The ANN models for all cases have
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FIGURE 6. Modeling of ML algorithm using data obtained from the GAA Si NS MOSFET. (a) Three ANN models trained and evaluated
separately using three different intrinsic parameter fluctuation, i.e., WKF, RDF and ITF and (b) the ANN model trained and evaluated
using combined fluctuation, i.e., all variations: WKF, RDF, and ITF, simultaneously.

two hidden layers. The list of various hyperparameters such
as activation function, type of optimizer, number of neu-
rons in each hidden layer, learning rate, and batch size
are also summarized in Table 3 and explained in detail as
follows.

The input (I/P) fed into the ML model has distinct dimen-
sions depending on the fluctuation source, such as for WKF
I/P dimension is 2, i.e., WKH, and WKL and for RDF the
I/P dimension is 4 i.e. CH, S/DEXT1, S/DEXT2, PE, etc.
However, each model has an output (O/P) dimension in
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TABLE 3. List of model parameters add hyperparameters for various ANN
models with inputs: WKF, RDF, ITF, and CF, respectively.

a monochromatic fashion, i.e., 36 (due to the number of
ID values being 36). The activation function governs the
threshold at which a neuron is activated. The hyperbolic
tangent activation function is investigated for nonlinear map-
ping, due to its property to deal with −1 to +1 range of
the dataset. Furthermore, the optimization algorithm widely
affects the accuracy of the ML models. it is utilized to tune
the weights and biases through an appropriate learning rate
to reduce the overall loss and also improve the training speed
of the model. For this work, RMSprop is used to minimize
the loss while tuning the entire hyperparameters conjointly.
The other crucial hyperparameters are epoch and batch size.
Epoch represents the number of times the ML model is
trained on the training dataset and batch size is the number
of samples utilized in one iteration. We use the batch size as
5 and the number of epochs is set to 5000. Thus, 5 samples
are used at a time before the model’s loss function is updated
and 5000 epochs are utilized to complete the training process.
However, to deal with the overfitting and the underfitting
issues of the ML models, the Keras early stopping function is
used. It is a regularization technique that enables the training
to be stopped automatically when the accuracy has stopped
improving. Under this function the input argument, ‘‘patience
value’’, is set to 20. It is the number of epochs without
improvement after which the model training is stopped. It not
only avoids overfitting and underfitting but also reduces the
training time. Therefore, even though the epoch values are
fixed to 5000 epochs but the training stopped in a smaller
number of epochs than this value for different ANN models
is listed in Table 3. More discussion of underfitting and
overfitting can be found in Appendices D and E. Hence, all
hyperparameters are set manually which provides the mini-
mum error and accurate prediction.

The biasing condition examined for generating the device
electrical characteristics are as follows: drain voltage is set at
VD = 0.7 V, the gate voltage VG is swept from 0 to 0.7 V
with a step size (1) of 0.02 V i.e. VG is discretized into
36 points. The VTH is defined at VG where drain current

ID = 3.2 × 10−8A/µm, IOFF is ID at VG = 0 V and ION
is ID at VG = VD = 0.7 V. The dataset of 1000 samples
is divided into training, testing, and validation set, where
80% of data is used for training the ANN model 10% is
used for validation, and 10% data is considered for testing
the accuracy of the model. The inputs are first transformed
into a suitable form by Min-Max Scaler from scikit-learn
[59] to fit them within a specific range before feeding into
the ANN model. A hypothesis, also called a fitness func-
tion, is developed for each case according to the relationship
between their inputs and corresponding outputs. During the
training phase, the ANN model optimizes this hypothesis by
constantly modifying weights and biases to minimize the loss
function. The model is trained until the loss function gets as
low as possible and is stabilized. The loss function figures out
how far we are from our desired solution or final convergence.
The loss function is defined in eq. 1.

IV. RESULTS AND DISCUSSION
The ability and the efficiency of the ML-based approach
are discussed in detail. The modeling results with respect
to three types of fluctuation sources and their effects are
studied comprehensively to understand the relation between
the device electrical characteristics and various fluctuations.
The variability caused by these fluctuation sources in impor-
tant key parameters such as VTH , IOFF , and ION is also
estimated by using the proposed ANN model. Therefore,
the performance of the model is evaluated using rmse [60]
and R2-score [61] after the successful training. The rmse is
the most common regression loss function and inquires how
close the predicted value is to the real value. The R2-score
(coefficient of determination) represents the goodness of the
fitting of explored ML model and is calculated as an eval-
uation technique. It defines the proportion of the variance
in the dependent variable that is predictable from the inde-
pendent variable. It varies between zero to 1. The higher
value of the R2-score shows that the input variables are
perfectly correlated, whereas, a value closer to 0 shows that
the ML model is not valid and suffering from many problems
related to train/test data split, noise in the data, unavailabil-
ity of tuned hyperparameters of the ML model, over fitting
and so on.

The rmse and R2 score are defined as:

rmse =

√
1
n

∑n

i=1
(Simulated i − Predicted i)

2,

=

√
1
n

∑n

i=1
(Yi − Ŷi)

2
, (1)

and

R2 = 1−
Residual sum of squares
A total sum of squares

= 1−

∑n
i

(
Yi − Ŷ

)2
∑n

i (Yi − Ym)
2 , (2)
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FIGURE 7. A comparison of ID-VG curves generated through device simulation and their respective predicted electrical characteristics through the
ML-based ANN models. (a), (b) and (c) represent the ID-VG curves utilized by training of the three independent ANN models while considering the
source of variations, i.e., WKF, RDF and ITF, respectively. Similarly, (e), (f) and (g) show the simulated and predicted ID-VG curves by testing the three
independent ANN models for WKF, RDF and ITF, respectively.

where Yi is the simulated value, Ŷ is the ANN predicted value
and Ym is the mean of the simulated values. In the same way,
we also calculate the error rate [62] in terms of the variance
of the simulated dataset and the ANN predicted values to
evaluate the performance of the model.

The error rate is defined as follows:

Error Rate =
σSim − σPred

σSim
× 100, (3)

where, σSim and σPred represent the standard deviation of the
simulated and the ANN predicted test dataset, respectively.

The training set of simulated and predicted I-V curves for
various fluctuation sources (WKF, RDF, and ITF) are shown
in Figs. 7(a)-(c), in both linear and logarithmic scales. The
predicted training I-V curves for each fluctuation source show
that the ANNmodels learn the variations accurately and there
is a good agreement between ANN models predictions and
simulated data. To further ensure this, the statistical measures
such as rmse and R2-score are also calculated from eq. 1 and
eq. 2, respectively, and summarized in Table 4. It can be
observed from the table that, for all ANNmodels, the training
fitting parameter R2 score is more than 98% which ensures
that the models get trained efficiently. The minimum rmse is
also achieved for the train as well as the test dataset. In addi-
tion to this, to determine the true performance of the models,
the validation is done on the unseen test dataset for unbiased
evaluation. Figs. 7(d)-(f) show the simulated and predicted
test ID-VG curves. It can be observed from the test results that
the predicted values are closely flowing with simulated val-
ues. The models predict the test data with R2-score more than
90% and error rates are less than 3% for every case. The test
error is likely to be higher than the training error for obvious
reasons. Similarly, Figs. 8(a) and (b) show the training and

TABLE 4. R2-score and RMSE values of the training and testing of various
ann models with respect to their input source of variations such as WKF,
RDF, ITF and CF, respectively.

testing results for CF with R2-score of 0.9941 and 0.9138 for
train and test results, respectively.

From the analysis of the electrical characteristics
(in Figs. 7 and 8), special attention is drawn to the fact that
the effect of every fluctuation varies differently. The ITF
induced very less variations on the device characteristics.
The fluctuation induced by random dopants is moderate but
has a low impact as compared to WKF. However, the device
characteristics are majorly affected due to WKF. The varia-
tion, on electrical parameters, VTH , IOFF , and ION , caused
by WKF is approximately five times more than ITF and
RDF. The impact of CF on device characteristics has smaller
variations than WKF because of the counterbalancing effect
among fluctuation sources. Here at this point, it is interesting
to note that despite the differences in the nature of fluctuation
sources and their effects, the ANN model is efficient in
modeling these effects on electrical characteristics of GAA
Si NS MOSFETs. This shows the generality, robustness and
the prediction capability of the proposed ANN model.

To further inspect the model accuracy, we extract the pre-
dicted parameters VTH , IOFF , and ION and compare them
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FIGURE 8. (a) and (b) show the comparison of training and testing results
for simulated and predicted ID-VG curves of the ANN model using the
combined fluctuations among WKF, RDF, and ITF of GAA Si NS MOSFETs.

with the true simulated values by calculating the relative stan-
dard deviation which is useful when comparing the predicted
results with the actual simulated data. The small differences
between the simulated and predicted RSD represent, theANN
predicted the data more precisely. In Fig. 9, the RSD between
actual and predicted VTH , IOFF , and ION , is shown using a bar
graph for all fluctuation sources. The RSD, also known as the
coefficient of variance, is a measure of deviation of simulated
and predicted values from the mean values. The smaller is
the deviation the closer will be the predicted values to the
simulated values. The yellow bar shows the actual simulated
RSD values represented as ‘‘true’’ and other colors i.e. green,
orange, and blue bars show the predicted RSD value for VTH ,
IOFF , and ION , respectively. It can be observed from the bar
chart that the RSD of predicted values is very close to the
actual simulated values.

For better visual analysis of simulated and ANN predicted
values, the violin plots for the three electrical characteristics
are shown in Fig. 10. These plots are used to analyze the dis-
tribution of regression data. They are especially useful when
the objective is to compare multiple outputs from multiple
models. The plots have peaks, tails, and, valleys for every
predicted and simulated value and show how close the values
are. The x-axis represents parameters VTH , IOFF , and ION
values for simulated and ANN predicted data whereas the
y-axis represents observed output values. The plots clearly
show that the peaks, tails, and valleys of the outputs predicted
by the ANN models have almost identical position and shape
as for simulation data. Thewidth of each curve correlates with

FIGURE 9. A RSD comparison between the device simulation values and
the predicted values of ML-based ANN model, i.e., σ/µ of (a) VTH ,
(b) IOFF , (c) ION , using the testing dataset.

the approximate frequency of the data points in each region.
These plots show one more way to confirm that the ANN
models predicted the output efficiently.

The selection of independent variables plays a crucial
role in the accuracy of the ML model. Fig. 11 shows the
importance of each input parameter in predicting the impact
of fluctuation sources on device characteristics. The feature
importance is the measure of the relative importance of input
features. A feature is important if a change in its value esca-
lates the model error rapidly. The ML model firmly depends
on such input features for high predictive accuracy. Likewise,
a feature will be less important if the change in its value does
not have much impact on the model output. The inputs can
be classified into three separate categories: WKF, RDF, and
ITF as marked on the y-axis. Features with higher values for
this score are more important than features that have small
values. We can see that the WKF category inputs are more
important than the others. This is an expected outcome as the
WKF has a predominant effect on the transfer characteristics.
The second important category is the RDF, where the random
dopant in the channel, source/drain extensions, and channel
penetration affect the output significantly. The last category
is the ITF inputs with minimum score and therefore, have less
effect in predicting the fluctuation variations.
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FIGURE 10. Illustrations of the violin plots for the simulated and
predicted values for (a) VTH , (b) IOFF , and (c) ION , using testing dataset.

To ensure the dataset requirement in training the ANN
models, the training rmse is calculated against the different
dataset sizes (number of samples). The model is trained
with different sample sizes and the corresponding rmse is
recorded. The plot of rmse versus different dataset sizes is
shown in Fig. 12. The rmse value decreases abruptly as the
number of samples is increases. The error reached satura-
tion at around 800 input samples. Results indicate that the
ANN-based ML models learned the trends successfully even
from the different fluctuation datasets with high predictive
accuracy and have a good performance on both training and
testing datasets. Moreover, the ML model can be a time-
efficientmethod for fluctuation analysis. In this work, simula-
tions take approximately 30mins/sample. In order to generate

FIGURE 11. Comparing all sources of variation, permutation score
determines the most important parameter contributes the modeling and
prediction of the ANN model. The higher value of WKH and WKL show
that WKF has a greater impact on the electrical characteristics of GAA Si
NS MOSFET.

FIGURE 12. Comparison of the rmse values versus the number of
required training size for all ANN models with respect to different sources
of variation.

4000 samples, approximately 83 days have been taken. How-
ever, with the same computing resources, the ANN model is
trained in only 180 seconds. This shows that the ML is much
faster than simulation and the best alternative to accelerate
the device modeling process.

Here an important point to note is that to train the ML
model we need the simulated data one time. Once themodel is

VOLUME 10, 2022 71365



R. Butola et al.: ML Approach to Modeling Intrinsic Parameter Fluctuation of GAA Si NS MOSFETs

well trained then we can predict as many devices as we want
and can save time by avoiding further device simulations.
In addition to this, transfer learning (TL) is one more promis-
ing way to avoid the need to train a model from scratch. The
TL uses the knowledge of the trained ML model from the
dataset of one specific device and applies them to evaluate
other devices with similar characteristics. This way the ML
development reduces the resources and required time to train
new models. We can share the generalized knowledge of one
ML model for different devices.

Furthermore, the leverage of the ML model can be
extended to the circuit simulation as with every new advanced
device, it takes just too long to extend the compact models or
come up with a completely new model for a specific device.
Therefore, in the future, our focuswill be on the application of
the ML model in the circuit simulation to minimize the huge
computational power and time. Our purpose is to integrate
the ML model into circuit simulation to accelerate the opti-
mization and evaluation of the semiconductor manufacturing
industry.

V. CONCLUSION
In summary, this study has comprehensively analyzed the
potential of the ANN-based ML strategy in modeling the
effect of fluctuation sources on electrical characteristics of
GAA Si NS MOSFETs. A total of 4000 fluctuated devices
are simulated, with intrinsic parameter fluctuation sources
(WKF, RDF, ITF, and their combination), to collect a com-
plete dataset for the training and testing of ANN models.
Their independent as well as combined effects have been
analyzed successfully bymodeling the variations of threshold
voltage, on-state current, and off-state current. The developed
ANN models show good agreement for training and testing
data with small rmse and high R2-score for every case. The
ANN models are effectively able to predict the variations
from a microscopic change (caused by ITF) to a compara-
tively larger change (caused byWKF). This demonstrates the
generality and the powerful prediction capability of the ANN
model.

In addition, we applied ML to measure the influence of
each input feature (of intrinsic parameter fluctuation sources)
on predicting the transfer characteristics while analyzing their
combined effect. Based on these scores, we inferred that
the WKF inputs have a greater impact on device character-
istics than other fluctuation inputs. Furthermore, the ANN
model speeds up the process considerably by taking only
a few minutes to train and effectively minimizes the time
and complexity challenges associated with full numerical
device simulation. As a result, we believe that ML modeling
technique has tremendous potential to enhance the design and
fabrication of semiconductor nano-devices in the near future.

APPENDIX
A. DETAILS OF GENERATION OF WKF SAMPLES
The device we explored is the GAA Si NS MOSFET
with TiN/HfO2 gate stack which has an EOT of 0.6 nm.

To generate the WKF-simulated devices, random high and
low WKs on the gate area of the explored device are statis-
tically assigned according to the material property of metal
gate. First, we partitioned the gate area of the NS device
into several small sub-regions, as shown in Fig. 3(a’). The
device consists of TiN as a material for metal gate and we
set the grain orientations of TiN as TiN<111> for high
WK and TiN<200> for low WK, as shown in Fig. 3(a’’).
Different probabilities of occurrence are assigned to high
and low WK. High WK has a probability of 60% and low
WK has a probability of 40%. The work function of high
WK has 4.6eV and low WK has 4.4 eV and the effective
work function is 4.52 eV. The metal grains are fixed to
80 grains for all WK-fluctuated devices. The grain size is
calculated as follows: (1) Total gate area = 2[WNS+ tSIO2+
tHfO2] + [HNS+ tSIO2+ tHfO2]×LG = 2(29.6 + 9.6) ]×12 =
940.8 nm2;and (2) Number of grain= gate area / grain area=
940.8/3.92× 3= 80 MG. This way a total of 1000 randomly
generated samples are picked up by our Monte Carlo (MC)
program and devices are simulated to examine the WKF.
Furthermore, in Fig. 3(a’’’) the histograms show that the
sub-planes are following the Gauss distribution.

B. DETAILS OF GENERATION OF RDF SAMPLES
We illustrate in Fig. 3(b) various regions of the GAA Si NS
MOSFET with different types of random dopants appearing
at channel (CH), source extension (SEXT ), drain extension
(DEXT ), and penetration from the S/D extensions into the
channel (PE) where random dopants are generated. First,
1725, 19396, and 1718 dopants were randomly generated
in a large cuboid consisting of 1000 small cuboids, where
the equivalent doping concentration are 5 × 1017 cm−3,
1.1 × 1019 cm−3, and 3.36 × 1017 cm−3 for the CH, S/Dext ,
and PE, as shown in Figs. 3(b’)-(b’’’’), respectively. The
Gaussian distribution is involved to generate the dopants,
as shown in the histograms in Figs. 3(b1)-(b4). These cuboids
are partitioned into 1000 sub-cuboids for RDF devices.

The exact number of dopants is calculated as Number
of Dopants = (Length of large cuboid × width of large
cuboid × height of large cuboid× density of plain) / (dopant
length × dopant width × dopant height × dopant concentra-
tion). A step function NA is used to define the concentration
and position of dopants [16].

NA =
∑k

i=0
NADopant [H (x − x1, y− y1, z− z1)

−H (x − xu, y− yu, z− zu) (B1)

and

H (x,y, z) =
{
1, x ≥ 0, y ≥ 0, z ≥ 0
0, otherwise

}
, (B2)

where, (x1, y1, z1) and (xu, yu, zu) are the lower and upper
coordinates of a random dopant, respectively; k is the num-
ber of dopants in the device region. N dopant

A is the asso-
ciated doping concentration for a doping concentration for
dopant within a cuboid. In the generation of random dopants,
we mainly follow our earlier work [5].

71366 VOLUME 10, 2022



R. Butola et al.: ML Approach to Modeling Intrinsic Parameter Fluctuation of GAA Si NS MOSFETs

C. DETAILS OF GENERATION OF ITF SAMPLES
For the device simulation of the ITF source of variation,
2700 acceptor-type are generated randomly in a considerably
larger 2D plane. The plane size is 224 × 224 nm2 and its
concentration is 3 × 1013 cm−2, as shown in Fig. 3(c’).
Furthermore, the entire plane is segregated into many sub-
planes and each sub-planes are consisting of a random num-
ber of ITF. Predominantly, the number of RITs is uncertainly
ranging from 1 to 14, and, the average number of RITs
is 9. Whereas, the sub-planes having no RIT are counted as
the nominal cases inducing no threshold variability in the
explored device. Moreover, Fig. 3(c’’) illustrates the dimen-
sion of the sub-plane segment having the size of 25× 12 nm2

of the top as well as the bottom walls. The size of the side
walls is 12 × 5 nm2. Therefore, the dimension of each RIT
is 2 × 2 nm2 and the density concentration is varying in the
range of 1.5 × 1013 cm−2eV−1 to 7.6 × 1013 cm−2 eV−1.
In order to determine the density of RIT (Dit ) of the seg-
regated plane, it can be calculated by the relation of the
trap’s density and its corresponding trap energy, as depicted
in Fig. 3(c’’’). Additionally, we have considered the same
trap’s energy in the entire 3D device simulation process
for a rational outcome. Thus, using this simulation proce-
dure, 1000 randomly statistical 3D device simulations can
be performed to scrutinize the electrical characteristics of the
advanced nanodevices.

D. COMMENTS ON UNDERFITTING
The machine learning model underfits when it is not able to
capture the input-output relationship of the data. In this con-
dition, the model has high bias and low variance. In the case
of underfitting, the ML model does not train efficiently and
produces a high error and low R2-score on training data. The
underfitting is usually occurred due to less training dataset.
Therefore, to avoid the underfitting, we generated enough
data samples for training the ML model.

E. COMMENTS ON OVERFITTING
Overfitting occurs when the ML model performs well on
training data but has poor performance on test data. In this
condition, the model has low bias and high variance. These
models are too closely fit on the training data with very less
error and very high R2-score but on the contrary, they have
very high error and low R2-score on unseen test data. There
are a number of techniques to deal with the overfitting of
the ML model. Since our model is ANN which is trained
by an iterative process so we use the ‘‘Early Stopping’’
regularization technique from the sklearn machine learning
library. We want to train the ANN model accurately with
an appropriate number of epochs to let the model learn the
relationship between the inputs and outputs. If the number of
epochs is too high the model will get trained excessively on
training data and overfit, and if the model is trained with less
number of epochs then it will not learn the relationship prop-
erly and perform poorly. Therefore, we use ‘‘Early Stopping’’

which enables the training to be automatically stopped when
a chosen metric has stopped improving. One more advantage
of early stopping is that it also saves the training time and
makes ML model faster and more robust.
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