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ABSTRACT Precision agriculture represents the new age of conventional agriculture. This is made possible
by the advancement of various modern technologies such as the internet of things. The unparalleled potential
for data collection and analytics has resulted in an increase in multi-disciplinary research within machine
learning and agriculture. However, the application of machine learning techniques to agriculture seems
to be out of step with core machine learning research. This gap is further exacerbated by the inherent
challenges associated with agricultural data. In this work, we conduct a systematic review of a large body
of academic literature published between 2000 and 2022, on the application of machine learning techniques
to agriculture. We identify and discuss some of the key data issues such as class imbalance, data sparsity
and high dimensionality. Further, we study the impact of these data issues on various machine learning
approaches within the context of agriculture. Finally, we identify some of the common pitfalls in the machine
learning and agriculture research including the misapplication of machine learning evaluation techniques.
To this end, this survey presents a holistic view on the state of affairs in the cross-domain of machine learning
and agriculture and proposes some suitable mitigation strategies to address these challenges.

INDEX TERMS Agriculture, digital farming, intelligent agriculture, machine learning, precision agriculture,
precision farming.

I. INTRODUCTION

The term precision agriculture (aka digital farming or
intelligent agriculture) has been used to describe the incor-
poration of various technologies into traditional farm-
ing practices, to improve agricultural productivity and
sustainability [1]-[3]. Modern technologies such as the Inter-
net of Things (IoT) paves the foundation of precision agri-
culture that enables the minimisation of human labour and
cost as well as improving agricultural productivity. IoT gen-
erates large volumes of data which can be used for practices
such as crop monitoring or disease detection. The analysis
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and interpretation of this data enable the understanding of
relationships between various agricultural factors such as soil
characteristics and climatic variables. This facilitates timely
and informed decision making and planning [1]. Typically,
such decision support systems have been used in bio-security
applications, quality assurance, farm and resource manage-
ment, and land usage [4]. Machine learning (ML) plays a
central role in these decision support systems by modelling
the complex patterns that may exist in the data. Figure 1
illustrates a typical precision agriculture scenario where deci-
sion support may be used. The figure represents a three-tiered
precision agriculture architecture adapted from [5]. The first
tier is the physical layer which represents the hardware that
is in proximity with the farm elements. This layer is mostly
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FIGURE 1. The precision agriculture ecosystem.

made of sensors and actuators. The second tier which is the
edge layer represents the computing devices which may be
used either on premise or remotely to analyse or interpret the
data collected in the physical layer. This layer is often made of
devices with low to medium computing resources. The third
tier is the cloud layer which represents the IT infrastructure
that supports the storage, processing and analysis of the data.
The cloud layer is often made of computing resources with
high throughput and storage capacity. The cloud layer sup-
ports the edge layer for decision making about the farm based
on data collected by the physical layer.

The use of IoT within the agricultural domain is
increasing due to its ability to support increased produc-
tion capabilities and analytics. The application of IoT can
be categorised into monitoring, predict/forecast, control and
logistics/documentation tasks [6]-[8] with devices occur-
ring at different levels including field, vehicular, aerial, and
satellite [7], [9], [10]. Monitoring provides automatic data
collection of various parameters including soil data such as
moisture and chemistry, crop data including leaf area and
plant height, and weather data including rainfall and humid-
ity [7], [9], [10]. For example, [11] monitored crop storage for
moisture and temperature to reduce crop damage, while [12]
monitored the crop using a wireless sensor network (WSN)
to protect the potato crop against a fungal disease. Data
collected through the devices along with historical data is
used to predict or forecast, and to provide knowledge and
tools to support decision making. Often ML is used to provide
this analysis. Work by [13] used soil sensors to monitor
soil moisture and processed the data with a variation of a
decision tree to facilitate irrigation planning. IoT devices
known as actuators provide remote control to modify the
process or environment. Common applications within agri-
culture include irrigation, fertiliser and pesticide application,
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illumination and access [6]. [14] applied IoT to optimise
greenhouse growing conditions such as humidity, luminosity
and irrigation. IoT has enabled the flow of information from
producers to consumers and include post farm processes
such as handling, packaging, transportation, and distribution.
In the works of [15], the conditions during transport are
assessed to improve value through reduced food spoilage,
energy costs and increased product quality.

There have been several propositions on how ML can
be applied to the agricultural domain for decision support.
In particular, much attention has been given to the crop, water,
and soil sectors. However, there is a lack of consensus within
the research community on the best practices in employ-
ing ML techniques. This is no trivial issue as agricultural
data possess some of the most challenging characteristics of
datasets encountered within the ML domain. That is, agri-
cultural data are often imbalanced, sparse, and riddled with
noise [16]—-[23]. For example, in disease prediction, data are
often imbalanced leading to poorer classification models,
and sometimes overly optimistic model performance esti-
mates [24], [25]. Further, the commentary on critical aspects
such as model trustworthiness is very limited. Trustworthi-
ness is essential for the uptake of ML driven precision agri-
cultural practices by the farming community, and its effective
application by researchers. However, the ML literature within
the agricultural domain suggests little consideration has been
made to model trustworthiness. Indeed, a larger emphasis has
been placed, sometimes erroneously, on model accuracy.

At the same time, the survey literature to the best of our
knowledge, does not provide a holistic perspective on these
aforementioned challenges. They mostly focus on only one
aspect at a time. Recent surveys that reviewed the use of
ML within specific agricultural applications namely yield
prediction [26]-[28] and honey origin prediction [29]. While
the works of [30], [31] reviewed the use of specific algo-
rithms within agriculture namely support vector machines
and Bayesian networks. Other recent surveys focused on
reviewing the use of ML within agriculture [1], [32], [33],
and soil science [34]. Of these works [26], [28], [32], [33]
covered performance metrics while [34] mentioned model
interpretability. Consequently, a literature review that juxta-
poses these challenges with the advances in ML in a more
holistic manner is warranted.

This work has three contributory parts. The first part iden-
tifies the trends within the machine learning and agriculture
(ML & Agriculture) literature. We find that there has been
an increase in the number of publications within the cross-
domain of ML & Agriculture over the last two decades, while
the type of ML techniques used has changed.

The second part reviews how ML has been applied within
the agricultural domain. We identify and contextualise the
commonly used ML techniques within agriculture. Tech-
niques of note are decision tree (DT), k-nearest neighbour
(kKNN), random forest (RF), support vector machines (SVM),
and neural networks (NN). This contextualisation focuses
on the strengths and weaknesses when the aforementioned
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data issues are encountered as well as their interpretability
within this context. Next, some of the key data issues encoun-
tered within agricultural data are covered. Issues include
class imbalance (CI), sparsity, and high dimensionality (HD).
Lastly, a brief overview of some applications of ML within
the agricultural domain is provided.

The third part investigates the evaluation of ML models in
the agricultural setting. Methods used to assess ML models
are often geared towards the measurement of classification
accuracy [35]-[37]. Classification accuracy serves the dual
purpose of identifying the optimal classifier for a situation
and to assess the ability of the classifier to complete a task.
We argue that, within the context of agriculture, other impor-
tant factors such as trustworthiness through interpretability
are equally important, and in some cases preferable. For
example, [38] reviewed the barriers to adopting ML within
the agricultural domain and identified lack of model trust-
worthiness as the fundamental barrier for the adoption of ML.
Our work reviews the various model evaluation metrics and
discusses their suitability for the ML techniques within the
context of agriculture.

The rest of this paper is organised as follows.
Section 2 presents the methods, defines the research questions
and the search process. Section 3 reports the results from the
systematic literature review to address the research questions.
Section 4 presents some open research challenges within
ML & Agriculture research. Finally, Section 5 presents a
conclusion.

il. METHOD

This study provides a multifaceted view of the application
of ML within the agricultural domain. To facilitate this
study, research questions were developed along with a search
process.

A. RESEARCH QUESTIONS
The overarching motivation of this study was to review
whether ML is being effectively applied to the domain of agri-
culture. As such, this study addresses the following research
questions and sub-questions:
o RQ1 What are the literature trends in the cross-domain
of ML & Agric?
— RQ1.1 What are the publication trends over time?
— RQ1.2 What are the thematic trends of publications
over time?
« RQ2 How is ML being applied within the agricultural
domain?
— RQ2.1 What are common ML algorithms used?
— RQ2.2 What data issues are encountered within
agricultural datasets?
— RQ2.3 What are some applications of ML within
agriculture?
+ RQ3 What methods are used to evaluate ML model per-
formance, and are they appropriate for the agricultural
domain?
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— RQ3.1 What are the main methods to evaluate ML
model performance?

— RQ3.2 What metrics are used to measure classifi-
cation accuracy within the agricultural domain?

— RQ3.3 What is the importance of using model inter-
pretability to evaluate ML performance?

RQ1 aims to analyse the trends of ML & Agriculture over
the last 20 years. Through a two-tiered approach focusing on
the volume of works published and the content of the works.
RQ2 explores the application of ML within the agricultural
domain, identifying the common ML algorithms and data
issues that are present within agricultural datasets impacting
the selection of ML algorithms. RQ3 addresses how the
performance of ML models are evaluated.

B. SEARCH PROCESS

The review of the literature within the cross-domain of
ML & Agriculture was varied and interrogated at differing
depths. The overall literature search methodology is depicted
in Figure 2. To identify the literature trends over the last
20 years, both the publication and thematic trends were used.
The publication trends identified the number of papers within
the cross-domain published for each year. The data were
obtained from Google Scholar with the search term Machine
learning AND Agriculture. Next, data for identifying the-
matic trends were obtained through searching Google Scholar
and Web of Science with the search term Machine learning
AND Agriculture. The title and abstract of each of these
papers were collected. Further, an in-depth analysis of the
literature was carried out to identify the evaluation trends and
ML techniques. The data was obtained from Google Scholar
with variations of the search terms agriculture, machine
learning and classification. An exclusion criteria were cre-
ated to limit the scope of this work. Some exclusion criteria
include the use of regression and image analysis.

Ill. RESULTS

In this section, the results of the study are discussed. First, the
literature trends over the last 20 years are presented (RQ1).
Next, the results of how ML is applied within the agricul-
tural domain is discussed (RQ2). Lastly, how ML model
performance is evaluated is assessed, providing experimental
examples on the various methods (RQ3).

A. LITERATURE TRENDS (RQ1)

1) PUBLICATION TRENDS (RQ1.1)

The publication trends over 20 years were obtained through
Google Scholar searches. Using the search term Machine
learning AND Agriculture, the number of returned search
results were recorded. These trends are depicted in Figure 3.
While agricultural research remained relatively constant
through time, there has been an increase in ML research.
The cross-domain of ML & Agriculture saw over a 100-fold
increase, indicating an upward trend of multidisciplinary
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FIGURE 3. Publications over time, obtained through Google Scholar!.

research. Other domains such as medicine and finance cor-
roborate this trend of multidisciplinary research.

2) THEMATIC TRENDS (RQ1.2)
The literature from the last 20 years covering over 20 thou-
sand papers was analysed to identify the themes and how they

ISearch terms are combinations of Agriculture, Machine Learning (ML),
Medicine and Finance.
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KAgriculrure (RQ2)

changed over time. Literature was collected through Google
Scholar 2 and Web of Science. Both search engines used the
search phrase Machine learning AND Agriculture to identify
the literature. The title and abstract of over 20 thousand
papers were collated into 5 year intervals i.e. 2001-2005,
2006-2010, 2011-2015, and 2016-2020. We adopted a 5 year
interval since we believe it is a sufficient time period for a
research area to fully mature. Natural language processing
techniques such as stop word removal, lemmatization and
stemming were applied to the corpus. Finally, word clouds
were created using the top ten frequent words of the current
and the previous time interval. Figure 4 comprises of four
word clouds, one for each five year interval. The words clouds
identified a change in ML techniques over time. “SVM”
and “DT” decreased while “RF” and ‘“‘deep [learning]”
increased, this indicates a shift in the types of techniques
used. Further, “‘regression’ increased in frequency in the last
ten years. This shift in ML techniques can be attributed to
a change in the problems addressed and types of data used.
Expanding on the problems addressed, there was an increase

2The corpus of literature was identified by the software Publish or Per-
ish(PoP) which collected the first thousand results of each year.
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FIGURE 4. Thematic trends of ML & Agriculture literature over two decades.

in frequency of words “predict”, “detect” and decrease in

“mining”, “statistics” and ‘“knowledge”. This indicates the
change in the application of ML from an overall gathering
of statistics and knowledge to a range of tasks including
prediction and detection problems. This can be attributed to
the wider range of agricultural problems that ML is used
for. The word cloud further identified a shift in agricultural
sectors applying ML. Words such as “yield” and “‘plant”
increased while “water” and “‘genetic”’ decreased. These
words indicate the spread of ML throughout the agricultural
sectors. Lastly, words such as ‘“‘remote-sensing”” and image”
increased in frequency. This indicated the rise in various
data collection methods and types, of note remote sensing
technology such as IoT.

B. ML IN THE AGRICULTURAL DOMAIN (RQ2)

To understand how ML is used within the agricultural
domain, 100 papers were analysed to identify the common
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ML techniques and the agricultural problems ML is used to
solve.

1) ML ALGORITHMS (RQ2.1)
The commonly used ML algorithms within the agricultural
domain are decision tree (DT), k-nearest neighbour (kKNN),
random forests (RF), support vector machine (SVM), and
neural networks (NN). These techniques can be categorised
by their level of interpretability i.e. the inherent characteristic
within the learning technique that allows a user to explain
the resulting classifier [39]. The two major categories are
interpretable white box models and non-interpretable black
box models. It is important to note that this categorisation is
not strictly binary. That is, if a white box is complex enough it
becomes non-interpretable, while a typically black box model
if simple enough can be interpretable [39].

The review of the literature found a change in type of ML
used: transitioning from white box to the less interpretable
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high accuracy black box techniques. Figure 5 shows the
proportion of papers using white or black box techniques for
each time interval. Of note, RF has significantly increased
in occurrence over the last 20 years to become the most
prevalent method.

A white box model is characterised by a high level of
inherent interpretability of the classifier. Coincidentally, these
are also characterised by relatively lower classification accu-
racies. These techniques, which are usually rule-driven, are
common within the agricultural setting for their simplicity.
DT and kNN are the most common of these techniques.
DT is a tree like structure which aims to generate correct
classifications by partitioning the dataset to improve the
homogeneity of the classes at each subsequent level. While
DT is praised for its simplicity, it can be prone to producing
locally optimised solutions [39]. Also it can be overfitted to
the data, generating complex models that are not applicable
to unseen data, and so decrease interpretability [39]. DT has
been applied within the agricultural domain to predict disease
in cherry fruit [40] and the risk of disease in boysenberry [41],
to forecast climatic events such as draught [42], and the
prediction of soil fertility [43]. kNN is a simple but robust
technique which relies on the most prevalent class within the
closest k points to classify an instance. Similar to DT, kNNs
are a non-parametric classification technique. kNN is known
to have relatively higher computational costs since it is a
lazy learner: that is, no model is built. Rather a prediction is
made for each new test instance by comparing it to historical
data every time. However, the use of data structures such as
KD trees can improve efficiency. With the shift to real time
analysis within the agricultural domain, other techniques such
as DT could be more efficient. A few applications of kNN
within the agricultural domain include the prediction of frost
events that will impact crops [44] and the forecast of wheat
yields [20], [24].

Algorithms labelled as black box are characterised
by inherently low interpretability. This makes them less
amenable to interpretation albeit with relatively higher clas-
sification accuracies. These techniques are usually based
on complex mathematical functions, often with non-linear
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relationships between the features of the dataset and the target
variable [39]. RE, SVM and NN are the commonly used
black box models within the agricultural domain. RF can
produce highly accurate classifiers which are robust even in
the presence of outliers and noisy data. RF are an ensemble
of DT, which mitigates overfitting and produces more robust
classifiers when compared to individual DTs. However, this
model is hard to visualise and interpret, thus many within the
ML research community consider it black box [45]. Some
applications of RF within the agricultural domain include
nutritional diagnosis in peach orchards [17] and the predic-
tion of soil classes [18]. SVMs are effective yet simple tech-
niques which identify a hyper plane to distinguish classes.
SVMs are generally difficult to interpret due to the kernel
transformations that obfuscates the relationships between the
features and the target variable [46]. Applications of SVM
within the agricultural domain include the classification of
soil quality [47] and type [48] and the classification rice
origins [49]. NN simulate the neural network systems of
the human brain. NN develop links between input features
and the target variable through the iterative adjustments of
the node weightings to minimise classification error [50].
The multiple non-linear transformations between the input
features and target variable makes it non-interpretable. That
is, it is impossible to establish the relationship between input
features and the target variable. Applications of NN include
the prediction of wheat yields [51] and the tracing of honey
origins [16], [52].

2) DATA ISSUES (RQ2.2)

Agricultural data are often riddled with data issues, including
CI, sparsity and HD [16]-[23]. The ML techniques previously
discussed can behave differently in the presence of these data
issues. A dataset is said to have CI when there is a disparity in
the representation of one or more classes in the dataset [53].
For instance training data used to predict diseased shellfish
farms in [54] had an overwhelming imbalance ratio of 9:1 of
healthy to diseased shellfish farms. This has been shown to be
quite a common occurrence in agricultural data with 76 % of
the papers reviewed presenting some degree of CI 3. Figure 6
presents a breakdown on the CI by the level of severity: the
categories are arbitrarily defined by ratios with imbalance
less than 3:1 as slight, between 3:1 and 10:1 as moderate
and greater than 10:1 as severe. The impact of CI can be
significant and even considered to be the major obstacle to
building accurate classifiers [55]. Several applications of ML
techniques in the agricultural setting focus on the maximi-
sation of accuracy. However, these techniques often assume
equal class distributions. Unfortunately, as seen in Figure 6,
this assumption is rarely realistic. A classifier built with a
class imbalanced dataset can produce high testing accuracy,
but perform poorly in real world applications [53], [56]. This
problem is further exacerbated by the small sample sizes

3Interestingly of the 100 papers reviewed 34 did not include any descrip-
tion of class distribution.
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that characterise agricultural data [56], [57]. Indeed, from the
100 papers in the cross-domain of ML & Agriculture studied
in this survey the average dataset size was 797 . CI is primar-
ily determined based on the distribution of class representa-
tions within dataset [55]. The most common metric measures
the frequency of instances within each class. Some techniques
have been proposed to mitigate the problem of CI but these
are not widely adopted in the agricultural domain. One such
technique is the use of oversampling and undersampling [56],
[58]. This technique works by manipulating the training data
distribution to reduce imbalance. Oversampling duplicates
the instances of the minority class. In contrast, undersampling
eliminates instances from the majority class. Another tech-
nique is to impose higher cost on the learning process, such
that models are penalised more heavily for misclassifying the
minority class. In this way the learning parameters can be
optimised to minimise the cost of misclassifying the model
performance on both minority and majority classes. This is
sometimes referred to as cost sensitive classification.
Sparsity of a dataset refers to its incompleteness [59], [60].
Sparsity is often measured by the number of zero attribute val-
ues in the dataset [59], [61]. For instance, yield data collected
from different locations over time often have missing values
for some for the features. A binary value for the presence or
absence of frost is irrelevant for tropical regions. While ML
models built on such data can give optimistic testing results,
the model performs poorly when deployed [59], [62]. Such
models can be characterised by unreliable weightings and
high asymptotic errors [57], [60]. The common methods to
mitigate the impacts are imputation and deletion. Imputation
techniques generally apply to scenarios where the data spar-
sity is a result of missing value: that is, a situation where an
attribute value is expected but none is available. An example
of imputation technique is to replace the missing value with
a mean or mode of the attribute value calculated from the
other instances in the dataset. Deletion on the other hand
removes attributes or instances from the dataset depending
on the severity of the sparsity across instances or attributes

4Note this number excludes spectral datasets which produce extreme
outliers in this study.
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respectively. Where possible, increasing the dataset size can
increase the amount of information available. However, this
approach is not always feasible within agricultural settings.
Although the issue of sparsity is present in the agricultural
setting, very few considerations are given to its potential
impacts in the cross-domain of ML & Agriculture research.

High dimensionality (HD) occurs when the number of
features within a dataset is similar or greater than the num-
ber of instances [63]-[65]. HD is measured by dividing the
number of features (columns) by the number of instances
(rows) [63], [65]. HD degrades the classifier quality as rela-
tionships between features and the target variable become
more complex. This can lead to low classification accuracy
and classifier performance on real world datasets [63]-[65].
Additionally, the number of features increases the complexity
of the classifier which can reduce interpretability [64]. There
are two main approaches to mitigate the impact of HD on
classifiers. The first is to increase the dataset size, but this
is not always feasible [65]. The second approach is to adopt
feature engineering practices such as feature selection and
transformation. Within the agricultural domain HD is more
prevalent within hyperspectral datasets that are often utilised
in remote sensing [66], [67].

3) APPLICATIONS OF ML (RQ2.3)

The widespread application of ML for the analysis of agricul-
tural data provides insights into the research in various agri-
cultural sectors. These applications include disease detection,
soil classification and produce analysis. The reader is referred
to Table 1 for the list of papers reviewed grouped by their
sector and application.

The following details some of these specific applications
seen in the literature. ML has been used to predict natu-
ral events such as famine [146], drought [42], [121] and
frost [44], [120]. Indeed the work in [44] aimed to minimise
the damage frost causes to crops through early prediction.
By identifying the relationships between weather factors,
a decision system was designed to make early binary predic-
tions on frost events.

In [106] the authors presented a feasibility study on the use
of novel e-nose for the detection of basal stem rot disease in
oil palm. The various odours collected via the e-nose were
analysed using NN to classify trees as healthy or infected.
It was found that the novel system along with the integrated
ML was able to recognise infected plants at a high rate of
accuracy. Prior to this approach, the manual observations of
visual signs were the predominant approach, but these signs
present late in the disease life cycle leaving little time for
treatment. Another work by [115] monitored the presence
of a toxigenic fungus in maize. The authors compared the
performances of logistic regression and DT, which performed
similarly. Also identified were the features which contributed
most to the contamination, this enabled improved manage-
ment by farmers to reduce contamination risk. Other works
such as [25], [40], [41], [107], [111], [116] also apply a
variety of ML techniques for the detection of crop diseases.
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TABLE 1. A summary of the reviewed ML and agricultural literature.

Agricultural sector ~ Application ML algorithm References
Soil Soil type prediction DT, BN, LogR, SVM [48], [68], [69]
Soil texture prediction DT, RF, SVM, NN [70], [71]

Soil taxonomy prediction
Soil properties prediction
Soil map production

kNN, DT, LogR, RF, SVM, NN, Other
DT, RF, SVM, Other
Dt, RF, SVM, Other

[18], [19], [21], [72], [73]
[43], [47], [71], [74], [75]
[74], [76]-[78]

Produce analysis

Origins prediction

Cultivar / type classification
Ripeness / maturity classification
Quality prediction

Nutrition prediction

kNN, DT, RE, SVM, NN, Other
DT, LogR, SVM, NN, Other
kNN, DT, RE, SVM, NN, Other
kNN, BN, LogR, RF, SVM, NN
RF

[16], [49], [52], [79]-86]
[87]-[91]

[891], [92]-[96]

[801, [97]-[100]

(17]

Storage conditions prediction NN [101]
Yield Yield prediction kNN, DT, BN, RF, SVM, NN, Other [20], [24], [51], [96], [102], [103]
Yield contributor identification DT, Other [104]
Harvest time prediction RF [105]
Pest Management Disease prediction / detection DT, BN, LogR, RF, SVM, NN, Other [40], [41], [106]-[114]
Fungus prediction / detection DT, LogR, RF, NN [25], [115]
Pest prediction / detection kNN, DT, BN, RF, SVM, NN, Other [108], [116]-[118]
Herbicide resistance prediction DT [119]
Natural events Frost prediction kNN, DT, BN, RF [44], [120]
Drought prediction DT, RF, Other [42], [121]
Flood prediction kNN, RF, SVM, NN, Other [122]-[124]
Landslide susceptibility prediction DT, RF, Other [125]
Other Groundwater potential map production DT, BN, LogR, RF, SVM, Other [126]-[130]
Plant stress identification DT, RF, NN [131], [132]
Land cover classification LogR, RF, SVM, NN, Other [133]-[135]

Crop type classification
Land suitability classification
Irrigation assessment

Stream flow modelling
Heterotic classification

kNN, RF, SVM, NN
DT, RF, SVM, NN
DT, Other

DT, NN, Other

BN, SVM, Other

[23], [136]-[139]
[3], [140], [141]
[13], [142], [143]
[144]
[145]

ML is often used in the soil sector on a variety of problems
including the classification of soil type and class. In one
study, [48] investigated the suitability of SVM to classify
soil type and properties based on the chemical and physical
features of the soil. The current methods of collecting phys-
ical and chemical data are laborious and time consuming.
This success in applying SVM has high economic value. The
authors of [19] compared DT, RF, kNN, NN and SVM to
identify the best classifiers for the prediction of soil taxo-
nomic groups. The authors found that kNN and SVM had
the highest accuracy. Further works that apply ML to the soil
sector include [18], [21], [43], [47].

ML classification has also been utilised in various aspects
of crop yields including the forecasting of overall volume,
marketable yields, yield variability and maturity of pro-
duce [20], [24], [51], [102], [103]. Work by [103] used SVM
to develop a predictive models for rice yield and protein
content. These models were used by farmers in management
decision making to regulate growth conditions to achieve
yield and protein content targets. The works in [89], [92],
[93] also compared a variety of ML techniques for classifying
the maturity of fruit, which helps with storage logistics and
export of produce.

C. EVALUATION OF ML MODEL PERFORMANCE (RQ3)

Effective model assessment is key to the selection of the
best ML classifier. The selection of the best method for
model assessment should be directed by the objective of the
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task [34], [147]. That is, if the most accurate model is the
objective than classification accuracy is appropriate. How-
ever, if the objective is to understand why a prediction was
made then model interpretability is of greater importance.
The most commonly used method to evaluate performance
is classification accuracy. There have been recent moves
to also account for model interpretability. While there has
been utilisation within other domains, the literature review
observed little adoption from the agricultural domain.

1) METHODS TO EVALUATE PERFORMANCE (RQ3.1)

The most commonly used method to evaluate performance
as seen in the reviewed literature is classification accuracy.
Within the reviewed literature, all the papers use some form
of classification accuracy as a metric in the model evalua-
tion. To the best of our knowledge the papers reviewed did
not involve interpretability within their evaluation criteria.
However, as will be discussed interpretability is critical when
consequential decisions are based on model outputs [148].
As such interpretability for decision support systems has
warranted its discussion in this work.

2) CLASSIFICATION ACCURACY (RQ3.2)

Classification accuracy is the measure of how well a model
performs in correctly labelling a data instance. There are
several metrics used to measure this, such as overall accuracy
(OA), recall, and precision. The most commonly used metric
observed within the literature is OA by over 70% of papers.
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FIGURE 7. Performance metrics used in the reviewed ML and agricultural
literature.

TABLE 2. Description of the datasets. Note: I - number of instances,
C - number of classes, F - number of features, M - percent missing data.

Dataset Data issue 1 C F M

Abalone Severe CI 4177 28 8 0

Seeds Balanced 210 3 7 0

Soybean Mod CI & Mod 307 19 35 6
sparsity

Figure 7 provides a breakdown of the metrics used within the
100 papers. OA is the percentage of correct predictions with
respect to the total number of predictions. It is often chosen
due to its simplicity and ease of interpretation [35]. While
the use of this metric is appropriate for balanced datasets
due to lower risk of learning bias, it can be inappropriate
when CI is prevalent. Indeed, further analysis of OA found
44% of papers using OA presented with some level of CI,
which may impact the validity of the reported accuracies.
It is conceivable that the use of other metrics such as sen-
sitivity, specificity, kappa, and F score are more appropriate.
For contextualisation, the papers using OA with CI present
were further analysed by looking at the datasets and paper
objectives to identify whether there could have been other
suitable alternative metrics. For example, it has been sug-
gested in [41], and widely accepted in [17], [25], [120] that
binary classification tasks where there is CI in the dataset,
sensitivity and specificity are preferable models.

To further illustrate this, we conducted an experiment to
compare classifier performance rankings based on a variety
of performance metrics. The datasets used were obtained
from the UCI repository [149] namely Abalone, Seeds and
Soybean (Table 2). For all datasets, the data was split into
70% for training and 30% for testing, and six ML algo-
rithms run. The algorithms included were: logistic regression
(LogR), DT, kNN, naive bayes (NB), RF, SVM, and NN.
For each algorithm hyper parameter selection occurred using
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Performance ranking

a) Average all metrics b) OA
FIGURE 8. Classifier performance rankings based on datasets described
in Table 2.

TABLE 3. Performance rankings for Abalone dataset described in Table 2
(Best - 1, Worst - 7).

Metric LogR DT kNN BN RF SVM NN
OA 3 4 7 5 6 1 2
Kappa 3 4 7 5 6 1 2
F1 5 6 7 3 4 2 1
Precision 2 7 6 4 5 1 3
Recall 7 1 4 5 6 3 2

GridSearchCV with k-fold cross validation (k=10). The test
data were used to obtain the metrics OA, kappa, F1, precision,
and recall.

The results showed that for each dataset, the ML classifier
rankings differed. Figure 8 ranked the performance of the
classifiers from best to worst, using an average of all five
metrics, and OA. The first dataset Abalone, with severe CI,
reported SVM as the best and NB as the worst technique.
However, whether OA or an average were used changed the
ranking of the other techniques. This illustrates the impact
the selection of a metric has on comparing ML techniques.
The second dataset, Seeds was balanced and resulted in the
rankings of techniques remaining the same for the two per-
formance metrics. This emphasises that OA can be an appro-
priate metric when the dataset is balanced. The third dataset,
Soybean presenting with moderate CI and sparsity, returned
SVM as the best technique and NN the worst, while the other
techniques changed rankings between the two performance
metrics. Review of the Abalone classifier rankings found that
rankings varied with the different metrics (Table 3). It is worth
pointing out that, the original objective for the generation
of the Abalone dataset was to build a classifier which can
predict the number of rings on the shell without the need to cut
open and stain the shell. This process of manual counting is
time-consuming, prone to error and laborious. The ability to
know the age (i.e. young or old) is important to breeders who
keep the young abalones for breeding while harvesting the
older ones. The selection of the best model is dependent on
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which metric is used to assess performance. The best metric
to select is dependent on the aim of the model. If the aim of
the model is to identify the abalone to keep for breeding, i.e.
the young, then it is important to identify all breeding stock.
In this case recall would be preferred, which ranks DT as the
best model. However, if the aim is to identify the abalone to
harvest, i.e. the old, it is important to minimise false positives
which would diminish the breading stock. The best metric in
this case is precision which ranks SVM as the best model.
Further, if the aim is to have a balance between recall and
precision than F1 is the best metric to use which ranked NN
as the highest.

3) MODEL INTERPRETABILITY (RQ3.3)

Model interpretability within the agricultural domain is rarely
considered, in fact within the review of ML & Agriculture
carried out in Section 3, no papers were found to mea-
sure interpretability. However, understanding ML models
is critical when consequential decisions are made based on
the model output [148]. The first step in understanding a
prediction is to establish the relationships between input
features and the target variable. Interestingly, understanding
of a model enables users to trust the model. This trust is
essential for effective uptake and application of ML driven
practices [147], [150], [151]. Within the agricultural domain
this enables the use of ML driven precision agriculture prac-
tices within the farming community. There are two main types
called interpretability and explainability which are expanded
upon below [152]-[155].

Model interpretability has various levels of definitions
between domains and applications [147]. However, a com-
mon theme is the ability for the human user to understand and
engender trust [152], [156]-[162]. The inherent interpretabil-
ity associated with interpretable models stems from the rela-
tively simple structures that are used to represent knowledge
within data. However, the simplicity in these structures mean
that highly complex patterns in the data may be missed. This
primarily makes such models less effective in discovering
complex patterns and thus produce relatively lower accura-
cies compared to their non-interpretable counterparts. On the
other hand, explainability refers to the post-hoc approach to
confer information to the user rather than precisely how a
model works [147], [155]. Used to primarily address the non-
interpretable ML models, there are two common types of
explainable models. The first model aims to render specific
models understandable, while the second is model agnostic
and aims to render any model understandable. Common tech-
niques include LIME, COVAR and Anchor [163], [164]. The
literature according to [34], [39], [155] recommend the use
of interpretable models over non-interpretable models, which
require additional models, where possible. For this reason we
focus on interpretable models.

SHowever, [18] assigned models into groups based on their interpretabil-
ity. While [91], [139] commented on the complexity of ML models.
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TABLE 4. Performance of decision trees (Figure 9) using the Seeds
dataset described in Table 2.

Dataset Number of OA Size Time
features

All features 7 0.9206 9 0.475

Selected features 3 0.9206 6 0.475

Due to the range in definitions, requirements and appli-
cations of interpretability there is no widely applied metric
to allow for measuring and comparing model interpretability.
Throughout the wider computer science domain there are two
metrics used to infer interpretability, often applied on rule
based models such as DT. The first metric is a measure of
model complexity developed by [165]. There are three parts
to this metric, the first looks at the number of rules. As the
number of rules increase, the likelihood of conflicting rules
and increased difficulties in understanding all rules occurs.
The second part measures the conditions per rule to account
for the complexity and length of the rules. Thirdly, the con-
ditions per classifier measure the overall complexity of the
classifier regardless of the rules [165], [166]. The second
metric is model size. This is a measure of the number of
rules within a model. As model size increases, interpretability
decreases [167].

To further illustrate the importance of considering inter-
pretability an experiment was conducted. Using the Seeds
dataset (Table 2), two datasets were created, the first dataset
had all 7 features, while the second dataset used the top 3 fea-
tures. These features were selected using feature importance
rankings [168]. The datasets were split into 70% for training
and 30% for testing and using GridSearchCV and 10-fold
cross validation. A DT for each dataset was produced with
the OA of both trees as 0.92 (Table 4). However, review of the
tree structures (Figure 9) found large differences. The dataset
with 7 features had a depth of five with nine rules (Figure 9.a),
while the dataset with 3 features had a depth of three and six
rules (Figure 9.b). If classification accuracy in the form of
OA was used to select a model, either of the models would
be suitable. However, if a more comprehensive assessment
included model interpretability in the form of model size, the
smaller model with three features would be selected due to
higher implied interpretability.

IV. OPEN CHALLENGES IN ML & AGRICULTURE
RESEARCH

In this section we discuss the challenges identified within
this research and propose some directions of future research.
Open and concerning challenge within the ML & Agriculture
literature include the methods used to assess model perfor-
mance, interdisciplinary research, application of IoT, and
cyber security.

A. MODEL PERFORMANCE
There is scope to suggest that both classification accu-
racy and model interpretability should be considered in
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FIGURE 9. Decision trees detailed in Table 4 with the same overall accuracy, using the Seeds dataset described in Table 2.

assessing performance. It was found within the literature
that there is a vast variation in the metrics used to assess
classification accuracy while interpretability was rarely mea-
sured or accounted for. A possible future research path is
the development of an assessment framework for bench-
marking classifier performance. The recent works by [169]
benchmarked the performance of models within the medical
domain. Focus was on evaluating interpretability, fairness.
Other recent works which benchmark interpretability focus
on time series [170], images [171] and topic modelling [172].
Further to benchmarking within this domain, there is a clear
need for interpretability in the cross-domain of ML & Agri-
culture. An interesting direction is how interpretability may
play centre stage in the applications of ML into agriculture.
In particular, can novel software tools which provide eviden-
tial support to the predictions of decision support systems be
developed? A challenge that will need to be addressed is how
to define a measure for interpretability within an agricultural
setting; as we have already seen, different application scenar-
ios may have different tenets with regards to interpretability.
However, we believe this is plausible given the advances
of ML research in developing meta learners for explaining
models.

B. INTERDISCIPLINARY RESEARCH

Interdisciplinary research which merges various domain
expertise with agriculture has resulted in rapid changes
and improved agricultural production. Recent examples of
successful interdisciplinary research include the scientific
domains of chemistry and biology which saw the utilisation
of nitrogen fertilisers and improved genetics. The current
application of ML with agriculture is a feature of the inter-
disciplinary research of computer science and agriculture.
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However, the full benefits of this new research are yet to
be fully realised as it experiences some fundamental barriers
between domains. A major barrier is a disconnect between
domain experts, limiting the effective uptake of new method-
ologies from the ML domain. Review of the literature found
a large variation in methodologies and methods reported in
agricultural research. Of note, only 44% of papers included
any mention about the methods of pre-processing, and 47%
on model optimisation techniques, while model trustworthi-
ness was rarely mentioned. [31] concluded that the steep
learning curve and lack of tools inhibit the uptake of ML tech-
niques by agricultural researchers. [173] reported the major
roadblock to ML application to be the lack of a fundamental
understanding on ML, and [1], [32] found that many ML
approaches were not well connected to the decision making
processes. We have found that the adoption of best practices
from the ML research domain is a key challenge in the
utilisation of ML within the agricultural domain.

C. IoT CHALLENGES IN PRECISION AGRICULTURE

For a truly successful implementation of IoT in the agricul-
tural domain, several challenges need to be considered and
solved. While the major concern is interoperability there are
three main types of limitations, which are at the application,
network and device levels. Interoperability occurs at each of
these levels within different dimensions including technical,
syntactical, semantic and organisational. Limitations at the
application level include how the data is analysed, however,
due to the volume, diversity, and quality of the data, deriving
worth from the data can be challenging. The use of ML for
this analysis is rapidly increasing. Further, the data quality
and availability needs to be addressed. Poor quality limits
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understanding of the data and in some cases compromise the
success of IoT deployment.

At the network level, limitations include latency, in cloud
or edge computing. However, 5G has the potential to improve
peak throughput and increase data rates [7]. Further, commu-
nication range is of great concern in the setup of IoT systems
especially in large scale applications. Selection of wireless
or mesh technologies could improve this range. Network
size and management need consideration in terms of the
number of devices a network can handle and how they are
deployed [7]. At the device level, IoT devices are constrained
by power consumption and the hardiness of the device.
Power consumption solutions can include energy harvesting,
power efficient management and low power consumption
sensors. IoT devices are generally located in harsh environ-
ments where conditions can damage the internal workings,
this can lead to incorrect measurements, require unfeasible
maintenance and re-calibration. General challenges to the
successful application of IoT include a lack of products in
some agricultural sectors, the complexity of the system in
terms of the hardware and software, and the multifaceted
nature of the processes being monitored. The scalability and
flexibility for IoT to expand into various agricultural sec-
tors also needs consideration, while the diverse data sources
require standardisation to improve syntactical and semantic
interoperability [7], [8], [174].

D. CYBER SECURITY IN PRECISION AGRICULTURE
Cyber security is the protection of information from attacks
which impact confidentiality, integrity, availability and reli-
ability of data [175]. These cyber threats may impact
people, process, and/or technology, and originates from var-
ious actors. Actors include foreign governments, organised
crime syndicates, insiders, and issue motivated groups [175].
Recent cyber attacks within the agricultural domain include
the attack of Australian wool sales in 2020. Talman software
which supplies over 75% of the Australian wool industry, fell
victim to ransomware. This resulted in the shutdown of the
software which services the AUS$ 60-80 million per week
industry [175]. Another recent attack was against JBS Foods a
global meat processing company in 2021. The attack resulted
in the halting of operations ending once a ransom paid [176].
Cyber attacks can target various areas within precision
agriculture, including the ML model and various IoT tech-
nologies. The ML models can be vulnerable to attacks.
Namely, adversarial machine learning can decrease integrity
of the ML models. These attacks often occur during the
learning phase and can lead to missclassifications [177],
[178]. Further, the dynamic and complex nature of IoT can
lead to vulnerabilities [179]. A threat commonly observed
with the use of IoT in precision agriculture include denial of
service (DoS) attacks. DoS attacks can exhaust limited IoT
device resources such as network capacity. Attacks can occur
at the perception layer and may take the form of jamming,
battery exhaustion, and collusion [180]. Another threat is
ransomware, this is where attackers encrypt data rendering
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them unreadable until a ransom is met. Ransomware tar-
gets irreplaceable resources which increase willingness of
the victim to pay. To be successful, the victim is prevented
access [175], [181].

Cyber threats and vulnerabilities within the agricultural
domain needs to be understood and accounted for in effective
security strategies including proactive monitoring to deter
and prevent threats. A key strategy is to ensure that all stake
holders are aware and trained in mitigating common threats,
and help to improve resilience [175]. Further, solutions to
prevent unauthorised access, often seen with ransomware
attacks, include restriction of access commonly known as
effective access control [175], [181]. Protection of attacks on
the IoT technology need to consider scalability of the IoT net-
work and heterogeneity of IoT devices. Further, the solutions
should cover multiple layers of the IoT infrastructure [180].
Finally, issues around privacy in data sharing for machine
learning needs to be studied further. This is particularly chal-
lenging within the agriculture domain due to the complex
supply chains associated with farms. It is conceivable that
existing privacy preserving mechanisms such as [182] will
be relevant in such applications.

V. CONCLUSION

In this work, we investigated the research within the cross-
domain of machine learning and agriculture. We analysed the
trends within the ML & Agriculture literature with a focus
on the publications and thematic trends. Next, we discussed
how ML is applied within the agricultural domain and iden-
tified some key agricultural data challenges which inhibit
the effective application of common ML techniques. Also,
we reviewed some common applications of ML and the agri-
cultural problems they addressed. Further, we explored the
methods of effective model assessment, and identified vari-
ous pitfalls unbeknown to a large proportion of the literature.
In doing so, we proposed a paradigm shift towards the use
of alternative assessment metrics such as interpretability as a
means of evaluating ML models. Finally, we presented some
open challenges, key amongst these being the development
of a unified framework for evaluating ML models within the
agricultural domain; adoption of best practices from the ML
research domain for a better utilisation of ML techniques;
addressing the limitations associated with the implementation
of IoT technologies; and understanding and mitigating the
cyber security threat landscape within precision agriculture.
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