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ABSTRACT Failure and recovery underlie many complex systems ranging from critical infrastructures
to organisms. In many real complex systems, the reliability of repaired components is improved due to
the exceeding recovery mechanism, and such systems typically have enhanced failure resistance. The main
motivation of this study lies in developing an exceeding recovery model to capture the exceeding recovery
mechanics of complex network systems. In the proposed model, cascading failure and exceeding recovery
perform concomitantly. The network resilience analysis is performed in the Barabási–Albert and Erdős–
Rényi networks by focusing on the exceeding recovery process from random and targeted attacks. The results
show that for a given initial failure size, there is a critical value of the exceeding recovery coefficient above
which the network can restore to the normal state, but below this value, the network abruptly collapses.
The proposed model is compared with the conventional recovery model. The comparison indicates that the
proposed model can recover to a significantly high level in a short recovery time and at a low recovery cost.
The exceeding recovery mechanism strongly affects the failure–recovery property, which is expressed as
reduced risk of a secondary failure at the micro level and enhanced heterogeneity of the load distribution at
the macro level. These findings provide a guideline to address the exceeding recovery problem of a network
and can help to design networks with better resilience against cascading failures.

INDEX TERMS Complex network, cascading failure, network recovery, network resilience.

I. INTRODUCTION
Cascading failure is a universal phenomenon of large–scale
failures that can lead to catastrophic events in many complex
network systems [1]–[3]. The dynamic mechanisms of a
cascading failure have received increasing attention in recent
years [4]–[6]. It has been demonstrated that spontaneous
recovery or deliberate repair is often accompanied by a
cascading failure [7]–[9]. Many models have been developed
to depict this recovery property of a network [10]–[12].
Buzna et al. [13] studied the effectiveness of recovery
strategies for a dynamic model and proposed a few recov-
ery strategies based on the network’s state and topology.
Shang [14] proposed a general model of localized recovery,
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where some of the neighboring nodes are repaired in
an invasive way from a seed node. Recently, to model
more realistic recovery adequately, scientists have paid
great attention to the dynamic recovery model, where
failure and recovery of system components usually occur
concomitantly and have a competing relationship [7]–[9],
[15], [16]. Di Muro et al. [7] proposed a model in which
the recovery process was applied from the first step of the
cascade of failures, capturing the competition between the
cascading failure and recovery of interdependent networks.
Wu et al. [17] have improved on this method and proposed
a new preferential recovery strategy based on connectivity
links to determine the recovery impact of mutual boundary
nodes in interdependent networks. Majdandzic [8] and
Böttcher1 et al. [9] developed a model where spontaneous
failure and recovery perform concomitantly; this model
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can mitigate a spontaneous failure and damage spread in
dynamical networks. La Rocca et al. [18] proposed a dynamic
recovery strategy where the isolated network component
is reconnected to the functional giant component with a
probability γ at each time-step of the cascading failure
process. Recent research has revealed that dynamic recovery
models are effective to improve network resilience against
abrupt spontaneous and cascading failures [15], [16], [19].

The existing studies on network recovery have beenmostly
based on the assumption that failed system components
can recover to their pre-failure levels of functioning [20],
[21]. However, in practice, a repaired system component
can be even more reliable than it was before the failure
occurred [22], [23]. There have been many examples of
this phenomenon. As described in the susceptible–infected–
recovered (SIR) epidemiological model [24], when infectious
individuals infect susceptible individuals, some of the suscep-
tible individuals recover and develop an enhanced protective
immunity to secondary infections. When a virus infects its
host, the arms race between the immune system and the virus
may enhance immunocompetence [25]. Due to the presence
of exceeding recovery mechanisms, such systems typically
have enhanced failure resistance and adaptability feature, but
this phenomenon has not been systematically explored yet.
Inspired by the mentioned phenomenon, this study develops
an exceeding recovery model (ERM) of a complex network
to capture the exceeding recovery mechanics of complex
network systems.

In this work, the ERM is developed following three
fundamental assumptions: (i) a node’s failure and recovery
are alternated, (ii) the recovery process follows the exceed-
ing recovery rule that repaired nodes have an improved
node capacity, (iii) the load redistribution follows the
preference rule that repaired nodes are assigned more
additional load than failure nodes. The interplay between
these three assumptions results in a phase diagram of
network resilience, where the network state switching is
observed. In addition, compared with the conventional
recovery model, the proposed ERM can achieve a high
level of functional recovery in a short recovery time and
at a low recovery cost. The correlation analysis of the
proposed ERM is performed, and the results indicate that
lower secondary failure probability and higher heterogeneity
of the load distribution are effective in improving the network
resilience against cascading failures. The proposed ERM
model provide a useful insight into designing a highly reliable
network. The main contributions of this study are as follows:
1) an exceeding recovery model of networks to capture the
exceeding recovery mechanics of complex network systems
is proposed; 2) a network resilience indicator considering
both the structure and the nodal load is developed; 3) the
effectiveness of the exceeding recovery for improving the
network resilience against cascading failures is verified.

The rest of this paper is organized as follows: In Section II,
we describe ERM model in detail and give the theoretical
analysis of the recovery strategy. In Section III, we develop

four performance assessment metrics, including network
capability (Q(t)), network resilience (R), secondary failure
percentage (psf ), and recovery cost (Rc). The numerical
examples and characteristics analysis of ERM model are
discussed in Section IV. Section V concludes the work.

II. METHODOLOGY
A. ERM MODEL
In many real–world networks, the load and capacity of a node
are positively correlated with the node degree. For instance,
on the Internet [26] (transportation [27] or wireless sensor
networks [28]), a router with a larger number of connection
edges (corresponding to the large node degree) allows more
information (corresponding to the larger load) to be routed
through it, and it is often more powerful (corresponding to
the larger capacity) to process information flow to avoid
crowding phenomena. Many load–capability models based
on the local information have been developed to capture
the association between the node load and capacity and
node degree [29], [30]. Motivated by these, in this study,
the initial load Li (0) of the ith node is correlated with its
degree ki, which is expressed is as Li (0) = kαi , and node
capacity CN

i has a linear relationship with the initial load,
which is expressed as CN

i = (1+ β)Li (0); α reflects
the heterogeneity of the node load, and β represents the
redundancy of the load capacity. The ratio Li (0)

/
CN
i is

defined as a nodal load rate lr , and it is calculated by lr =
1
/
1+ β. The initial random removal of nodes will trigger a

cascading failure, and load of failed nodes is redistributed to
the neighbor nodes according to the following rule:

1ji =
Lj (0)∑

n∈0i
Ln (0)

Li (0) , (1)

where 0i denotes a set of neighboring nodes of node i, and
node j belongs to 0i.

After the first round of load redistribution, we assume that
the load of node y is greater than its capacity. Here, we define
these overloaded nodes that have not been removed from the
network as NTF. Before node y redistributes its load to its
normal neighboring nodes, the proposed exceeding recovery
model performs a recovery process to avoid or delay the
collapse of the network. In this process, failed nodes are
repaired as follows:

1) A fraction ρ of failed nodes, which are neighbors of the
NTF, are repaired in descending order of the node degree.
Here, we define the recovery strategy as KBS.

2) The repaired nodes are reconnected to the remaining
normal nodes according to the initial network topology.

3) The load and node capacity of the repaired nodes at time
t are respectively calculated as follows:

Li (t) = 0, (2)

CR
i = (1+ γ ) · C

N
i , (3)

where γ is the exceeding recovery coefficient reflecting the
node recovery ability.
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After the recovery process, NTF redistributes its load to
neighbors and switches from the to–be–failed state to the
failed state. To maximize the potential of the repaired nodes
and thus reduce the impact of the cascading failure, an NTF
redistributes load to its neighbors following the preference
rule, which is defined as follow:

1jy =



(1+ γ )Lj (0)
(1+ γ )

∑
i∈Vy

Li (0)+
∑
n∈0y

Ln (t)
Ly (t) j ∈ Vy

Lj (t)
(1+ γ )

∑
i∈Vy

Li (0)+
∑
n∈0y

Ln (t)
Ly (t) j /∈ Vy

,

(4)

where 0y is the set of neighboring nodes of node y, and node j
belongs to it, andVy represents the set of repaired nodes in0y.
When j ∈ Vy, an NTF redistributes load to node j according
to the load weight, so the node load rate lr is the same as
its initial value of lr = 1

/
1+ β. When j /∈ Vy, an NTF

redistributes load to node j, referring to the actual node load
weight. The larger the value of γ is, the more additional load
from an NTF is redistributed to the repaired nodes. For the
overall execution, in addition to setting the initial failure as a
separate time step, it is assumed that a time step corresponds
to one failure–recovery–redistribution cycle, in which the
overloaded nodes are first removed from the network (failure
stage); then, some of the failed nodes are repaired (recovery
stage), and finally, the overloaded nodes redistribute load to
their normal neighboring nodes (redistribution stage). The
current–moment load of repaired nodes is Lj (t) = 0, so the
node load at the next time moment (t + 1) is:

Lj (t + 1) =

{
1jy j ∈ Vy
Lj (t)+1jy j /∈ Vy

. (5)

The above procedure is repeated until an equilibrium
state is reached, where no more new failure nodes occur.
The schematic illustration of the failure propagation and
exceeding recovery processes is presented in FIGURE 1. The
specific steps are as follows:

Stage 1: An initial attack is added to the second and sixth
nodes, and their load is redistributed to their neighboring
nodes according to the rule given by Eq. (1).

Stage 2: The second and sixth nodes fail, and all edges
connected to them are removed. The load of the first and
fifth nodes exceeds their node capacity due to the load
redistribution, and they are converted into NTFs.

Stage 3: Before the NTFs (i.e., the first and fifth nodes)
affect other normal nodes’ states by redistributing their load,
the second node is repaired according to the KBS.

Stage 4: The load of NTFs (i.e., the first and fifth nodes) is
redistributed following the preference rule given by Eq. (4),
and the node load is updated by Eq. (5). If at least one of
the zeroth and second nodes fail, the failure–recovery process
continues; otherwise, this process terminates.

FIGURE 1. The schematic illustration of the failure propagation and
exceeding recovery processes; blue, red, and gray nodes represent
normal, NTF, and failed nodes, respectively. A node with a large area
represents a repaired node having a large node capacity. Solid lines
indicate the edges between nodes, and arrows show the flow directions
of the load. The width of the solid lines indicates the relative amount of
load redistributed through the edges. Dotted lines represent the failed
edges.

B. THEORETICAL BASIS OF RECOVERY PROCESS
When failed nodes are repaired, the KBS gives priority to
failed nodeswith the greater degree. Here, assume node y fails
at time t , and its load is redistributed to its neighboring nodes
according to Eq. (4). Then, the failure force of node y is given
by:

FS (t) =
Ly (t)∑

n∈0y
Cn − Ln (t)

, (6)

where Ly (t) is the actual load of node y, and
∑
n∈0y

Cn − Ln (t)

represents the sum of the capacity redundancies of all
neighboring nodes of node y. If FS (t) > 1, some of the
neighboring nodes can fail, and the larger the value of FS (t)
is, the greater the influence of the failure of node y is. Thus,
the value of FS (t) should be minimized as much as possible
by repairing important failed nodes. Combining Eqs. (3), and
(6), we have:

FS (t) =
Ly (t)∑

i∈Vy
γ (1+ β)Li (0)+

∑
n∈0y

(1+ β) kαn − Ln (t)
.

(7)

The values of Ly (t) and Ln (t) are certain at time t , FS (t) can
be calculated as

FS (t) ∝
1∑

i∈Vy
γ (1+ β)Li (0)

. (8)
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By substituting Li (0) into Eq. (8), we obtain:

FS (t) ∝
1∑

i∈Vy
kαi
. (9)

According to Eq. (9), there is an inverse relationship
between FS (t) and ki. In addition, the local maximum
degree node plays a crucial role in maintaining the network
connectivity [31]. Thus, failed nodes with the greater node
degree should be repaired preferentially.

III. ERM PERFORMANCE MEASUREMENT
To measure the network resistance to failure, the following
performance indexes are introduced: network capability, net-
work resilience, secondary failure probability, and recovery
cost.

A. NETWORK CAPABILITY
Network capability, which reflects the real network per-
formance affected by some internal and external factors,
is related to both the network structure and node load. This is
because the structural integrity of a network is fundamental
for maintaining normal network operation, and a node’s
capability is usually expressed in the form that includes the
node load. As mentioned in the ‘‘Model’’ section, the node
function and failure propagation are performed in the form
of a node load, while edges are used only to characterize
the interrelationships between nodes. Therefore, the network
capability is estimated only from the perspective of nodes.
Considering both the network structure and node load, the
normalized network capability function at time t is defined
as follow:

Q (t) =


G (t) · S (t)

S (t) =

∑
i∈Vn

Li (t)

N∑
i
Li (0)

, (10)

where G (t) and S (t) are related to the network structure and
node load, respectively;G (t) indicates the relative size of the
giant component at time t , which is usually related to network
connections. G (t) is typically used to measure the structural
integrity of networks. S (t) represents the ratio between the
total load of the normal nodes and the total load of all nodes
at the initial time, which is used to measure the functional
integrity of nodes. From the definition of Li (t) and Eq. (10),
S (t) is related to the node degree. Vn is a set of normal nodes;
N is the network size; Q (t) = 1 at the initial time of t = 0.

B. NETWORK RESILIENCE
Network resilience reflects the recovery ability of the
network, which is usually quantified according to the
performance response process after a perturbation. A time-
dependent metric proposed by Reed et al. quantifies the
network resilience based on the network capability and
recovery time of the network [32]. This definition reflects

not only the level of network recovery but also the speed
of network recovery. On this basis, we propose a resilience
indicator according to the integral of the Q (t) with respect to
t as follow:

R =

∫ T ∗
t0

Q (t) dt

T ∗ − t0
, (11)

where R represents the network resilience; T ∗ is the end
time of the failure–recovery process; t0 denotes the initial
moment, and t0 = 0. Network resilience usually varies
with some underlying factors such as disturbance magnitude
and place of impact. During the framing of the network
resilience, no direct connection is modeled between the
network resilience and these factors, but an indirect influence
is assumed via network capability Q(t).

C. SECONDARY FAILURE PROBABILITY
During the failure–recovery process, repaired nodes face the
risk of a secondary failure. A severe secondary failure can
cause wastage of recovery resources and reduce recovery
efficiency. To measure the risk of a secondary failure of
repaired nodes, indicator Psf is defined as follows:

Psf =

∑
i∈Vf

F if −
∥∥Vf ∥∥∥∥Vf ∥∥ , (12)

where F if indicates the failure frequency of a node i, which
represents the total number of failures of node i during the
entire cascading failure process, is actually a measurable
value. In both simulation experiments and real systems, the
value of F if can be obtained directly by recording the number
of failures of node i, and F if ≥ 2 when the node i is a
secondary failure node; Vf is a set of failed nodes, and

∥∥Vf ∥∥
represents the number of failed nodes.

D. RECOVERY COST
During the exceeding recovery stage, repaired nodes are
given a larger node capacity, which results in a higher
recovery cost. The recovery cost Rc is calculated as follow:

Rc =

∑
i∈Vr

(1+ γ ) (1+ β)Li (0) · F ir

N∑
i
(1+ β)Li (0)

, (13)

where Vr is a set of repaired nodes, and F ir is the recovery
frequency of node i. γ represents the exceeding recovery
coefficient, and β represents the redundancy of the load
capacity. Li (0) is the initial load of node i. N represents the
network size. The recovery cost relates to all failed nodes
being repaired, including secondary failed nodes.

IV. NUMERICAL SIMULATIONS
The numerical simulations are conducted on Barabási–
Albert (BA) and Erdős–Rényi (ER) networks, which have
been commonly used to depict real–world network systems.
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The BA network is one of the most familiar growing network
models for generating scale-free networks, where the degree
distribution follows a power law. The ER network is a
typical random graph model, where N labeled nodes are
connected with L randomly placed links [33]. In this paper,
the BA and ER networks are generated using NetworkX
(https://networkx.org/), which is a Python package for
the construction, manipulation, and analysis of complex
networks. The networks contain 10,000 nodes, and the
average degree is 〈k〉 = 10. The load heterogeneity parameter
is set to α = 1.3, and the node capacity parameter is set to
β = 0.5. The recovery fraction is fixed to ρ = 0.02 and
ρ = 0.05 in the BA and ER networks, respectively. The
results are averaged over 3,00 iterations.

A. NETWORK RESILIENCE ANALYSIS
Network resilience usually varies with the size and location
of the disturbance. In this section, we perform the network
resilience analysis under the different initial failure sizes and
failure modes (i.e., random attack and targeted attack).

We first test the network resilience under the random
initial failure. The correlation between the network resilience
(R) and the initial failure size (q) for different values
of the exceeding recovery coefficient (γ ) is presented in
FIGURE 2(a) and 2(b). The results show that when γ = 0
(i.e., failed nodes are repaired with the initial node capacity),
R decreases most as q increases. However, as γ increases,
there is a gradual increase in R. This indicates that the
network resilience can be enhanced by increasing the
exceeding recovery coefficient. To examine the effect of
the exceeding recovery coefficient on the network resilience
further, the change in R with γ is analyzed, as shown in
FIGURE 2 (c) and 2(d). The results showed that for a fixed
value of q, R gradually increases with γ , and when the value
of γ reaches a certain value, the increase in R is not obvious.
This is because that the effect of the recovery is close to
saturation.

Next, the resilience analysis is performed under targeted
attacks ordered by the node degree to verify the effects of
the attack location on the network resilience. As shown in
FIGURE 3(a) and 3(c), for the BA network, R is almost
the same for different γ when q is fixed. This is because
when hub nodes are attacked, the BA networkwill completely
collapse within a few steps [34], which restricts the full usage
of the recovery process. For the ER network, FIGURE 3(b)
and 3(d), the results are similar to those under the random
initial failure, i.e., R decreases with q, and R can be enhanced
by increasing γ . In addition, by comparing the results in
FIGURE 2 and FIGURE3, we find that the network possesses
better resilience under random attacks compared to targeted
attacks.

To further validate the effect of γ and q on R, the phase
diagrams under the random initial failure are shown in
FIGURE 4. In this study, the critical value of the network
resilience is set to Rc = 0.25, but it can differ among
application scenarios and network properties. Here, the

FIGURE 2. Network resilience under the random attack; R, q, and γ

represent the network resilience, the initial failure size, and the
exceeding recovery coefficient, respectively. (a), (b) The correlation
between R and q for different values of γ ; (c), (d) The correlation between
R and γ under different values of q.

FIGURE 3. Network resilience under the targeted attack. (a), (b) The
correlation between R and q for different γ ; (c), (d) The correlation
between R and γ under different q.

network will be considered to fail completely as the real
network resilience is less than Rc; otherwise, it is able to
maintain essential functions. The results showed that there
are three regions delimited in FIGURE 4 by the solid yellow
curve, which represents the critical value of γ as a function
of q, and the dashed orange line, which represents the critical
value of q for γ = 0. The leftmost region (Normal) indicates
the network does not crash for any value of γ . In the middle
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FIGURE 4. Phase diagrams in the γ − q plane for BA (a) and ER (b)
networks. The solid yellow line represents the critical value of γ as a
function of q; the dashed orange line represents the critical value of q
for γ = 0.

region (Recovery), the minimum γ is needed to prevent the
network from falling out completely. Finally, in the rightmost
region (Collapse), the exceeding recovery model cannot
avoid network collapse. In FIGURE 4, the solid yellow curve
corresponds to the minimum value of the exceeding recovery
coefficient γ , which ensures the network will not collapse.
The results indicate that the exceeding recovery model
can effectively improve the network resilience performance,
thus making the network more resilient against cascading
overload failures. The presented results provide a suitable
foundation for the calculation of the optimal exceeding
recovery coefficient to keep a network functional.

B. ERM RECOVERY SUPERIORITY ANALYSIS
The contrast experiments under random initial failure are
conducted to examine the recovery properties of the ERM.
The ERM will degenerate into the conventional recovery
model (CRM), characterized by repaired nodes with the
initial node capacity, and this model is used as a reference
model in the comparison. The comparison results of the
CRM and ERM under different γ values are presented in
FIGURE 5, where the dashed blue line indicates the CRM,
and solid colored lines correspond to the ERM; Q (T ∗)
represents the network capacity at the end time of the failure–

recovery process T ∗, and Rc denotes the recovery cost.
According to the results in FIGURE 5(a), Q (T ∗) decreases
monotonously with the increase of the initial failure size
(q). Furthermore, compared with the CRM, Q (T ∗) of the
ERM recoveries to high levels, and a larger Q (T ∗) meant a
better network capability to recover. The total duration and
recovery cost of the failure–recovery process are presented
in FIGURE 5(c) and 5(e), respectively, where it can be seen
that under the same model parameters, the ERM requires
shorter recovery time and lower recovery cost to achieve a
stable state than the CRM; these advantages are even more
obvious as the value of γ increased. However, as shown in
the subgraph in FIGURE 5(e), when q increases, the results
were the opposite. We find that the larger γ lead to higher
consumption of recovery resources when q is larger than
the critical value, which could serve as a trigger to switch
the model to achieve the cost–minimization. That is, when
q is large than the critical value, the CRM is less costly
than the ERM; otherwise, the ERM performs better than
the CRM. Consequently, compared to the CRM, the ERM
could recover to a state with a significantly high network
capability in a short recovery time at a low recovery cost.
The same results are observed for ER networks, as shown
in FIGURE 5(b), 5(d), and 5(f).

C. ERM CORRELATION ANALYSIS
In the ERM, failed nodes with a greater node degree
are repaired preferentially, and they are given larger node
capacity and node load. The proposed recovery mechanism
profoundly affects the failure–recovery process at both the
micro level (node level) and the macro level (network level).
From the micro–level perspective, more recovery resources
are deployed at the early stages to alleviate the influence of
failed nodes before a network collapse occurs. In this way,
the risk of node failures, including both the initial failure of
normal nodes and the secondary failure of repaired nodes,
is significantly reduced. To validate this assumption, the
secondary failure probability (Psf ) of the ERM is evaluated
for the BA and ER networks. As shown in FIGURE 6(a)
and 5(b), Psf decreases monotonously with the increase
in γ under different q values, and Psf is almost zero
when γ is large enough. This indicates that the ERM has
an excellent performance to avoid the secondary failure,
which cannot only decrease the consumption of recovery
resources but also improve the network recovery efficiency.
In addition, as shown in FIGURE 6(b), the distribution line at
q = 0.2 significantly different from that at other q values.
The reasons for this are explained below. As mentioned
in the ‘‘Model’’ section, a time step corresponds to one
failure–recovery–redistribution cycle. As shown in FIGURE
5(d), the highest peak of the end time T∗ occurs near q =
0.2. This means that when q = 0.2, the network will
experience a larger amount of recovery than under other q
values. This allows the recovery model to exert its node repair
function fully to avoid or postpone a network crash and thus
avoid secondary failures efficiently. However, as shown in
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FIGURE 5. Diagrams of the BA and ER networks under different γ values:
(a), (b) Q(T∗)–q plane; (c), (d) T∗–q plane; (e), (f) Rc–q plane; T∗ is the end
time of the failure–recovery process; Q(T∗) denotes the network
capability at time T∗; Rc is the recovery cost. The dashed blue line
indicates the CRM; solid colored lines indicate the ERM.

FIGURE 6. Secondary failure probability of the ERM: (a) the BA network;
(b) the ER network.

FIGURE 5(b) and 5(d), when q is larger than 0.2, Q(T∗)
and T∗ decrease rapidly, which indicates that the network
will completely collapse within a few steps, and the effect
of recovery is no longer evident. Thus, as γ increases, the
secondary failure probability Psf at q = 0.2 decreases more
rapidly than that at other q values.
From themacro–level perspective, increased load will flow

to the repaired nodes with larger node capacity, contributing
greatly to the heterogeneity of the load distribution. The load
distributions of the BA and ER networks before and after the

FIGURE 7. The load distribution before and after the failure–recovery
process: (a) the BA network; (b) the ER network. The node sequence is
arranged in ascending order of node load. Blue dots represent the load
distribution before the failure occurs, and the orange, green, and red dots
represent the load distributions at different γ values after the
failure–recovery process.

failure–recovery process are presented in FIGURE 7, where
blue dots represent the load distribution before failure, and
orange, green, and red dots represent the load distribution
at different γ values after the failure–recovery process. The
results show that the load is mostly concentrated in small
fractions of nodes after the failure–recovery process, and
the heterogeneity of the load distribution is more obvious
as the value of γ increases. In Section 4.2, a strong
positive correlation between the ERM performance and γ
is demonstrated. Hence, it could be concluded that higher
heterogeneity of the load distribution is effective in improving
the network performance against failures. In addition, the
results show that the BA network can recover to a high level
due to the high heterogeneity of the load distribution.

D. NETWORK RESILIENCE ANALYSIS CASE STUDY:
GNUTELLA NETWORK
The Internet offers a great case study for the exceeding
recovery of networks. For the Internet, the mismatch between
the network demand and the routing capacity caused by local
load perturbations will result in function losses of a router [3].
To avoid further crowding phenomena, failed routers can
resort to capacity expansion or backup facilities to ensure
they function properly [22], [23]. In fact, these contingency
mechanisms essentially aim at enhancing the capacity of
a failed router and making it more reliable to allow more
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FIGURE 8. Performance of ERM in the Gnutella network. Network
topology of the Gnutella network consisting of 6,301 nodes and 20,777
edges. (a) R–q plane; (b) Q(T∗)–q plane; (c) T∗–q plane; (d) Rc–q plane.
The dashed blue line indicates the CRM; the solid colored lines indicate
the ERM.

information to be routed through it. The proposed ERM
model can capture the exceeding recoverymechanics existing
on the Internet to a certain extent.

We test the performance of the ERM on the Gnutella
network (http://snap.stanford.edu/data/#p2p), which is an
actual Internet network based on the Gnutella routing
protocol. In this work, nodes represent hosts in the Gnutella
network topology, and edges denote connections between
the Gnutella hosts. The Gnutella network contains 6,301
nodes and 20,777 edges. The correlation between R and q for
different γ under a random attack is shown in FIGURE 8(a),
where it can be seen that the network resilience decreaseswith
the initial failure size, and it can be enhanced by increasing
the exceeding recovery coefficient. In addition, the results
in FIGURE 8(b)–8(d) are similar to those of the BA and
ER networks; that is, the ERM can recover to a state with a
significantly high network capability in a short recovery time
at a low recovery cost.

V. CONCLUSION
This study proposes the ERM to capture the exceeding
recovery mechanics of complex network systems. The
proposed ERM model is verified by simulations for two
network types. The simulation results show that for a given
initial failure size q, there is a critical value of the exceeding
recovery coefficient γ above which the network can restore to
the normal operating state, but below this value, the network
abruptly collapses. The results demonstrate that there are
three regions in the network resilience phase diagram: a
region where the network does not crash for any γ value,
a region where the network restores to the normal state,

and a region where even under the exceeding recovery,
network collapse cannot be avoided. In addition, with the
increase in γ , network resilience R gradually increases until
reaching a saturation value. This indicates that the exceeding
recovery mechanism can effectively improve the network
resilience, thus making the network more resilient against
cascading overload failures. The CRM, which represents
the degenerated ERM model at the exceeding recovery
coefficient of γ = 0, was used in the comparison
test. The results indicate that compared to the CRM, the
ERM can achieve high levels of functional recovery in a
short recovery time and at a low recovery cost, and these
advantages become even more obvious as the value of γ
increases. The exceeding recovery mechanism profoundly
affects the failure–recovery process, which is expressed
through the reduced risk of a secondary failure at the micro
level and improved heterogeneity of load distribution at the
macro level. The lower secondary failure probability and
higher heterogeneity of the load distribution are effective in
improving the network resilience against cascading failures.
In conclusion, the proposed ERM can be effective for
repairing the damaged complex systems and provide a useful
insight into designing a highly reliable network. Considering
that the available recovery resources are finite in the real
world, the optimal recovery strategies will be studied in future
work.
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