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ABSTRACT In order to reduce the cost of candidate solution evaluation in the process of solving expensive
optimization problems, an expensive multi-objective optimization algorithm based on equivalence compo-
nent analysis was proposed to study the influence of decision space equivalence components on the prediction
accuracy of agent models. Based on the analysis of the equivalence of decision space attributes, a limit
learning network based on the equivalence components was constructed for Pareto dominance prediction
among candidate solutions. A multi-objective test problem with equivalent components was selected in
Pareto dominance prediction experiments, the results of which showed that the algorithm can effectively
improve the accuracy of Pareto dominance prediction among candidate solutions. Successively the candidate
solutions were scored with multiple ELM (Extreme Learning Machine) models, selected for evaluation and
updated, and integrated into the Pareto-based multi-objective evolutionary algorithm. Through comparative
experiments on the test problem, the method could achieve a better Pareto approximation solution under the
limitation of a limited number of evaluations, and the goal of reducing the cost of expensive multi-objective
optimization calculations.

INDEX TERMS Expensive multi-objective optimization, equivalent components, Pareto dominance, surro-
gate model.

I. INTRODUCTION
Expensive multi-objective optimization problems (EMOPs)
[1] are prevalent in many fields such as industrial schedul-
ing [2], complex structure design [3], [4], and robotics
experiments [5], and are a hot research topic in engineering
applications. When evolutionary algorithms are evaluation
of a large number of candidate solutions is required, which
leads to a serious computational cost disaster. Therefore,
how to reduce the number of costly evaluations of candidate
solutions in multi-objective evolutionary algorithms [6] has
attracted a lot of attention from scholars.

Surrogate-assisted evolutionary algorithms (SAEAs)
[7], [8] is one of the main approaches to solve EMOPs, which
can effectively reduce the number of expensive evaluations
of candidate solutions. Ji et al. [9] proposed a two-population
cooperative particle swarm optimizer to explore/exploit mul-
tiple modalities simultaneously. Subsequently, a modality-
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guided two-level cooperative surrogate model was con-
structed, capable of reducing individual evaluation costs.
Liu et al. [10] used the R2 metric of the utility function
to select candidate solutions for the evaluation, taking into
account the diversity of populations, convergence, predic-
tion expectation and prediction mean square error, which
enhances the ability of populations to detect the space and can
obtain solution sets with excellent convergence and distribu-
tion. Gu et al. [11] used a Gaussian model to approximate
the objective function, and then projected the individuals
in the objective space to the radial space and selected the
appropriate solution for realistic evaluation based on the
crowding level of individuals in the radial space, which was
able to obtain a better solution. Li et al. proposed the sur-
rogates assisted particle swarm optimization (EAPSO) [12]
algorithm, which uses multiple trial positions for each par-
ticle in the population. And the optimal solutions of the
polynomial regression model and the radial basis function
model are evaluated in the convergence state of the particles.
Meanwhile the superiority of integration and uncertainty are
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used to select promising positions to improve the convergence
speed of the particles. Lucas and Pavelski et al. combined
decomposition-based MOEA (Multi-objective Evolution-
ary Algorithm) and ELM regression models to propose
the ELMOEA/D (Extreme Learning Surrogate Models in
Multi-objective Optimization based on Decomposition) algo-
rithm [13], [14], which contains only one ELM per agent
model instead of a set of radial basis function networks and is
able to reduce the computational resources consumed by the
model. However, this algorithm can only select one solution
for each evaluation, and the complexity of the algorithm is
high. Cai et al. proposed an adaptive multitask population
collaborative search algorithm (AMMCS) [15], which uses
similarity metrics to detect evaluated individuals in real
time to obtain the relationship between subproblems so that
it adaptively divides tasks, which can improve prediction
accuracy and sampling efficiency. However, the algorithm
uses a fixed direction vector, which is generally effective
for multi-objective problems with irregular Pareto fronts. For
expensive multi-objective optimization problems, scholars
have carried out fruitful researches on SAEAs algorithms,
but since the design of SAEAs is an integrated process, there
is still a lack of proven general models for agent objective and
model selection, candidate solution selection evaluation and
model management in the iterative evolution process.

In terms of pattern-based classification studies,
Guo et al. [16] used pattern recognition methods to directly
predict the Pareto dominance relationship among candidate
solutions, clarify the agent objectives and reduce the number
of agent model constructions in expensive multi-objectives,
and proposed Pareto dominance nearest neighbor prediction
based on the weighted sum of binary bit strings in decision
space and Pareto dominance nearest neighbor prediction
by generalized regression neural networks. Subsequently,
to improve the accuracy of Pareto dominance prediction near-
est neighbor classification methods, Guo Guanqi et al. pro-
posed Pareto dominance prediction based on cross-similarity
of equivalent components [17] and Pareto dominance predic-
tion based on decision space transformation nearest neighbor
method [18]. However, the Pareto dominant nearest neighbor
prediction method suffers from the difficulty of convergence
of the optimization algorithm when dealing with EMOPs
with large comprehension spaces, therefore Li et al. proposed
the Pareto dominant prediction method that combines the
sequential relational predictive agent model with the decision
space transformation method [19]. Since the nearest neighbor
method is difficult to truly measure and distinguish the
distance between candidate solution samples when facing
problems such as high-dimensional decision space or non-
linear characteristics among decision space attributes, it is
easy to have the problem of large individual differences
between nearest neighbors in decision space and target space,
which affects the prediction accuracy. Therefore, consider-
ing that the target space and decision space are potentially
linked when performing Pareto dominance prediction, this
paper introduces the decision space equivalence component

similarity into Pareto dominance prediction, investigates the
relationship between the existence of equivalence compo-
nents in the decision space and the accuracy of the agent
model, designs an extreme learning machine model based
on equivalence components to predict Pareto dominance
among candidate solution samples, and interacts with an
expensive multi-objective optimization algorithm. The main
innovations are as follows:

1) Propose an equivalence component analysis method
and apply it to improve model prediction accuracy in
agent model construction.

2) Propose a multi-model co-decision method for evaluat-
ing the selection of new candidate solutions to explore
the unknown decision space.

3) A comparison was made of the performance of the
proposed algorithm against state of the art frameworks
on several benchmark test MOPs.

The remainder of the paper was as follows: Section II intro-
duces some of the basic concepts used in the paper. Section III
performs the Pareto dominance prediction. Section IV
presents an expensive multi-objective optimization algorithm
based on equivalent component analysis and gives compar-
ative experimental results. Section V the conclusions of the
full paper are drawn.

II. RELATED BACKGROUND
A. EQUIVALENT WEIGHT
For a multivariate function f (x) = f (x1, · · · , xi, · · · , xj,
· · · , xn), if xi, xj (i ∼= j) in the decision variables have
the same scope and the exchange yields f

(
X ′
)
=

f (x1, · · · , xj, · · · , xi, · · · , xn), if f (X) = f
(
X ′
)
, then xi, xj

is said to be an equivalent component of the function f (X).
In the multivariate function f (X), the following properties

exist for the equivalent components:

1) Self-referential: if xi is a set of equivalent components
of f (X), f (X) = f

(
x1, · · · , x i, · · · , xj, · · · , xn

)
=

f (x1, . . . , xi, · · · , xj, · · · , x1).
2) Symmetry: if xi, xj is a set of equivalent components

of f (X), f (x) = f
(
x1, · · · , x i, · · · , xj, · · · , xn

)
=

f (xn, . . . , xj, . . . , x i, . . . , x1).
3) Transferability: if xi, xj is a set of equivalent

components of f (X), xj, xk is a set of equiv-
alent components of f

(
X ′
)
, according to sym-

metry, there is another set of equivalent compo-
nents of f (x1, · · · , xi, · · · , xj, · · · , xk , · · · , xn) =

f (x1, · · · , xj, · · · , xi, · · · , xk , · · · , xn), f (x1, · · · ,
xi, · · · , xj, · · · , xk , · · · , xn) = f (x1, · · · , xi, · · · , xk ,
· · · , xj, · · · , xn) and f (x1, · · · , xi, · · · , xk , · · · , xj,
· · · , xn) = f (x1, · · · , xj, · · · , xi, · · · , xk , · · · , xn),
due to xj, xk is a set of equivalent components,
so f (x1, · · · , xi, · · · xk , · · · , xj, · · · , xn) = f (x1, · · · , xj,
· · · , xi, · · · , xk , · · · , xn) = f (x1, · · · , xk , · · · , xi, · · · ,
xj, · · · , xn). Therefore,according to the definition of
equivalence, xi, xk equivalent, i.e. xi, xj, xk is equivalent
to each other.
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B. EQUIVALENT COMPONENT ANALYSIS
In expensive optimization problems, it is difficult to directly
exchange decision component evaluation to identify the exis-
tence of equivalent components due to the high cost of objec-
tive function evaluation, so a method is designed for this type
of problems to identify equivalent components in expensive
optimization problems at the least possible cost. The method
is as follows:

Step 1: Analyze the scopes of decision variables, find
decision components with the same scope, and put them into
the set S.

Step 2: Equation (1) is used to calculate the correlation
coefficient between each decision component (xi) in S and
the objective function y = f (X ),and the decision components
with the same or similar correlation coefficients to the objec-
tive function f (X ) are put into the set S1.
Step 3: Swap the decision components xi,xj(i ∼= j) in the

set S1, compare the objective function values before and after
the swap, and identify the equivalent components.

rxiy =
Cxiy
SxiSy

=

∑
(xi − x)(y− y)
NSxiSy

=
N
∑
xiy−

∑
xi
∑
y√∑

x2i −
(
∑
xi)2
N

√∑
y2i −

(
∑
yi)2
N

(1)

where Cxiy is the covariance of xi and y, and SxiSy is the
product of the standard deviation of the two. If xi, yare not
correlated, then rxiy= 0,It is usually assumed that there is no
linear relationship between x and y, but it is not excluded that
other relationships may exist between x and y.

In a classification or regression problem, if a sample set M
of size N is given, assume that the corresponding function on
the sample set is f (X ), and there exists xi,xj(i ∼= j) that is
an equivalent component on its decision space. Exchanging
xi,xj, since xi,xj is equivalent, the corresponding f (X ) remains
unchanged, which is equivalent to the increased known sam-
ple setM (as in Figure 1). The blue circle in Figure 1 indicates
the original sample M, and the red triangle indicates the
sample setM’ resulting from the exchange of equivalent com-
ponents, that is, multiplying the number of known samples.
Similarly, it can be seen that if more equivalence components
exist, the corresponding number of known samples multiplies
more, such as 3 components equivalence in the decision
space, the exchange is equivalent to expanding the always
sample to 5 times of the original. The formula for calculating
the number of sample increase is as in equation (2), where
Q is the sample expansion multiplier and Ak

k denotes the full
arrangement of k equivalent components.

Q = Akk − 1 (2)

If there are equivalent components in the decision space
of the expensive optimization problem, the number of known
samples can be increased by exchanging equivalent compo-
nents, so if the application of equivalent components is con-
sidered in the process of constructing the machine learning
agent model, the spatial features can be more fully learned,

FIGURE 1. Schematic diagram of the equivalence component sample
multiplication relationship.

FIGURE 2. ELM network structure diagram.

which is beneficial to improve the model prediction accuracy.
Therefore, this paper study how to improve the accuracy of
the prediction of the Pareto dominant agent model of the
multi-objective optimization problem using the property of
equivalence components in the extreme learning machine
network model.

C. ELM MODEL BASED ON EQUIVALENCE COMPONENTS
For the limit learning machine f (x;w), where the input
is an l-dimensional vector x(x = ( x1 . . . xl )) and the
limit learning machine weight parameter is w. We find that
for an equivalent dimensional subset of the learning task
xi1 , . . . , xik }1≤i1<...<ik≤l , if the weight parameters wij asso-
ciated with xij are equal in the range 1 ≤ j ≤ k , then the limit
learning machine f (x;w) must have f (x;w) = f (x′;w) hold
for any new l-dimensional input vector x′ obtained by disrupt-
ing an equivalent dimensional subset. Therefore, we intro-
duce the equivalence dimension information in the training
process of the limit learning machine by setting the weight
parameters corresponding to any two equivalence dimensions
to be equal in order to improve the learning generalization.

There are many expensive multi-objective optimization
algorithms based on agent model, and neural network is a
common agent model. ELM [14], [20], [21] has the charac-
teristics of fast training speed and good generalization ability.
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TABLE 1. Correlation coefficient between decision attributes of the test problem and the objective function.

TABLE 2. Equivalent components of the test problem at a given point.

Therefore, elm is used as an agent model to reduce the time
of real function evaluation in this paper. Extreme learning
machine has three layers: input layer, hidden layer and output
layer. Compared with other neural networks, the weights of
hidden layer nodes are given randomly and do not need to be
updated. Only the output weights are calculated. Its network
structure is shown in Figure 2.

There are any N samples (Xi, ti), where Xi =

[xi1, xi2, · · · , xin] ∈ Rn, ti = [ti1, ti2, · · · , tim]T ∈ Rn. For
a single-hidden layer neural network with L hidden layer
nodes [22] can be expressed as:∑L

i=1
βig(Wi · Xj + bj) = oj, j = 1, 2 . . . ,N (3)

where g(x) is the activation function,Wi = [wi1,wi2, · · · ,win]T

is the input weight, βi is the output weight, bi is the bias of
the i-th hidden layer unit.

For the components present in the decision space, their
relationships are linearly correlated, equivalently and nonlin-
early correlated. In the ELM network, they should be consis-
tent with the other components, so the equivalent components
are set in the implied layer weights as: wi1 = wi2 = · · · =
win, the randomness of the ELM is changed to improve the
accuracy of the extreme learning network.

III. PARETO DOMINANT PREDICTION EXPERIMENT
This section describes the effect of equivalent compo-
nent analysis Pareto dominance prediction, and the selected
multi-objective optimization test problems are ZDT1, ZDT2,
ZDT3, ZDT6, UF1, UF2, DTLZ1 and DTLZ2, and n is
the number of decision space dimensions. The correlation
coefficients of the decision components and the objective
function are calculated according to equation (1), and the
decision components with approximate correlation coeffi-
cients are selected to exchange the objective function, and
the equivalent components are identified by the exchanged
objective function values. The correlation coefficients of
the decision attributes and the objective function for each
test problem are shown in Table 1. By exchanging the
objective functions of the components with similar cor-
relation coefficients in Table 1, the equivalent compo-
nents of each test problem can be derived, as shown in
Table 2.

Three different algorithms are adopted: Nearest neigh-
bor classification based on Euclidian distance measurement,
ENNC [23], Nearest neighbor classification based on equiv-
alent similarity, ESNNC and Gaussian process, GP [7] to
compare the prediction accuracy of the algorithms. Each
algorithm is run 20 times independently.
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TABLE 3. Average prediction accuracy of ECA, ENNC, ESNNC and GP.
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From table 3 that the prediction accuracy of ECA algo-
rithm is higher than that of the other three algorithms on
problems ZDT 1, ZDT2 and ZDT3. On zdt6, UF1 and uF2,
the prediction accuracy of ECA algorithm is similar to that
of comparison algorithm. On the test questions DTLZ1 and
DTLZ2, the prediction accuracy of ECA algorithm is higher
than ENNC and GP algorithm, which is similar to ESNNC
algorithm.

IV. EMOEAS ALGORITHM BASED ON EQUIVALENCE
COMPONENT
A. EXPENSIVE MULTI-OBJECTIVE OPTIMIZATION
ALGORITHM DESIGN
The agent model based on equivalence components can effec-
tively improve the Pareto dominance prediction accuracy
among samples, so an expensive multi-objective optimiza-
tion algorithm (ECA-EMO) based on equivalence compo-
nent analysis is designed. Since the known sample space is
increasing in the evolutionary iteration process, how to select
individuals for evaluation is the key to model management
and another key point for the success of the algorithm, so this
paper studies the equivalence between decision attributes
to obtain the mapping relationship from decision space to
target space to ensure the distributivity of the population in
the target space, then the classification is carried out by the
distance from the population to the weight, and selects the
Pareto non-dominated individuals for evaluation. In order to
improve the model quality, the evaluated liberation is updated
into the model after each iteration.

Algorithm 1 ECA-EMO Algorithm.
Step1: Initialize the weight vector W, the number of nodes
N, maximum evolutionary algebra Emax;
Step2: Initial population Pop of size NN was generated
using Latin hypercube sampling and evaluated using the
true function;
Step3:Using ELMmodel to evaluate populations to gener-
ate progeny solutions and merge parent-child populations;
Step4: The merged parent and child populations were
selected to get the best individuals into Pop;
Step5: Selection of non-dominated individuals for assess-
ment using multi-model shared decision making and dis-
tributed distance assessment;
Step6: Update Pop and Evaluating populations using test
functions;
Step7: If Size < Q, the loop continues; otherwise, the
algorithm end;
Step8: Update model;
Step9: If the evolutionary algebra gen > Emax, the algo-
rithm ends; otherwise, turn to Step 5;
Step10: Output the Population Pop.

In Algorithm 1, the initial population of size M is first
generated in the initialization phase by first generating the
weight vectorW, the number of nodes N, and the evolutionary

FIGURE 3. Flow chart of expensive many-objective evolutionary
algorithm based on Equivariate Component Analysis.

algebra EMax, and using Latin hypercube sampling [24].
The population is then evaluated using the true function.
In the main loop, firstly, the ELM model is used to evalu-
ate the subpopulation and then merge the parent and child
populations, and select some outstanding individuals in the
merged population into Pop. By building multiple ELMmod-
els and finding the set of candidate solutions to be evaluated
using the multi-model joint decision making method, and
then combining the distributional distance evaluation to select
non-dominated individuals in the set of candidate solutions
to be evaluated to update the population Pop. Judge whether
the maximum evolutionary generation is reached, and if not,
return to continue the operation of evaluating the subpopula-
tion; otherwise, stop the evolution. The algorithm flow chart
is shown in Figure 3.

1) CANDIDATE SOLUTION SELECTION
In order to improve the distribution and convergence speed of
ECA-EMO, an evaluation strategy and model management
method of new candidate solutions based on multi-model
common decision support were designed based on the high
accuracy of ECA algorithm in Pareto dominance predic-
tion. Using k trained models of ELM and the distributed
distance method to decide the new candidate solution by
voting. The classifier model can predict Pareto non-dominant
individuals more accurately, so as to evaluate new candi-
date solutions more accurately, which can reduce the eval-
uation times of expensive objective function in the process
of evolution, and save expensive evaluation resources. The
candidate solution selection method can search the decision
space of the optimization problem to a greater extent, and
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FIGURE 4. The approximate Pareto front obtained by ECA-EMO algorithm and four comparison algorithms on ZDT1,ZDT2,ZDT3,ZDT6,UF1 and
UF2.

ensure that MOEAs drives the candidate solution population
to approach the real Pareto optimal surface gradually. The
process is: (1) The new sample is constructed by connecting
the new candidate solution with the known sample; (2) K
trained classification models were used to classify the new
samples; (3) Statistical classification results, find the can-
didate solution to be evaluated, and calculate the distribu-
tion distance; (4) Evaluate the new candidate solution found
in step 3.

This section analyzes the complexity of the ECA-EMO
algorithm. The main computational cost of the algorithm

comes from the creation of the agent model, the generation
of the population and the selection of the evaluation solution.
Let the population size be N and the target dimension be M.
The time complexity of building the agent model is O(MN 3).
In the process of population generation selection and, if all
individuals in the population are not dominated by each other,
the time complexity of non-dominated sorting is O(MN 2).
In the selection of evaluation solutions, the time complexity
of selecting individuals for evaluation is O(kMN 2). There-
fore, the time complexity of the ECA-EMO algorithm is
O(MN 3).
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TABLE 4. ECA-EMO, KRVEA, MOEA/D, CSEA, MOEA/D-EGO algorithm average and standard deviation of IGD performance index.

TABLE 5. ECA-EMO, KRVEA, MOEA/D, CSEA, MOEA/D-EGO algorithm average and standard deviation of HV performance index.

B. PERFORMANCE METRICS AND PARAMETER SETTING
To test the performance of the ECA-EMO algorithm,
four multi-objective algorithms, KRVEA, MOEA/D, CSEA
and MOEA/D-EGO, were selected for comparison. The
advantages and disadvantages of the Pareto frontier are first
compared, then the parameters and performance evaluation
metrics of the test functions are given, and finally the perfor-
mance of the ECA-EMO algorithm is analyzed by comparing
the IGD and HV metrics. The algorithms in this paper were
run on the Matlab platform. All the compared algorithms
were run in the multi-objective evolutionary algorithm plat-
form PlatEMO [25].

1) TEST PROBLEM AND ALGORITHM PARAMETER SETTING
In this paper, the ZDT,UF and DTLZ series of test func-
tions [26] are selected instead of the real functions for expen-
sive multi-objective optimization problems. The number of

objectives for the ZDT and UF series test function is 2, the
number of decision variables is 10, and the population size
is 100. The number of objectives for the DTLZ series test
function is 3, the number of decision variables is 10, and
the population size is 100. The symbols ’+’ in Tables 3 and
4 indicate that the ECA-EMOalgorithm results are better than
the comparison algorithm, the symbol ’-’ indicates that the
ECA-EMO algorithm results are inferior to the comparison
algorithm, and the symbol ’=’ indicates that the difference
between the comparison algorithm results and the ECA-EMO
algorithm is small.

In this paper, 2metrics, IGD andHV, are chosen tomeasure
the performance of the algorithm.

1) IGD Indicator
The IGD metric [27] is a composite metric to evaluate
the convergence and diversity of the algorithm, and its
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FIGURE 5. The change trend of IGD values between ECA-EMO algorithm and four comparative algorithms on ZDT1,ZDT2,ZDT3,ZDT6,UF1 and
UF2.

function is defined as:

IGD =

(
n∑
i=1

di)

n
(4)

where n denotes the number of individuals inPFtrue and
di denotes the Euclidean distance of each individual
obtained in the target space from the nearest individual
in PFtrue. Smaller IGD values indicate better conver-
gence and diversity of the algorithm.

2) HV Indicator
The HV metric [28] is a metric to evaluate the conver-
gence and diversity of the algorithm, and its function is
defined as:

HV = δ(Y |S|i=1vi) (5)

where δ denotes the Lebesgue measure [29], |S|
denotes the number of non-dominated solution sets,
and vi denotes the hypervolume composed of the
reference point and the i-th non-dominated solution.
A larger HV value indicates a better overall perfor-
mance of the algorithm.

C. SIMULATION EXPERIMENT RESULTS AND ANALYSIS
The comprehensive performance of the ECA-EMO algo-
rithm is verified by comparing with the simulation exper-
iments of KRVEA [30], MOEA/D [31], CSEA [32] and
MOEA/D-EGO [7] algorithms. The comprehensive perfor-
mance of the algorithm is evaluated by first comparing the
IGD and HV values of each algorithm on solving the ZDT,
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FIGURE 6. The change trend of HV values between ECA-EMO algorithm and four comparative algorithms on ZDT1,ZDT2,ZDT3,ZDT6,UF1 and
UF2.

UF and DTLZ test functions. The convergence performance
of the algorithm is then evaluated by comparing the effect of
each algorithm in approximating the real frontier of Pareto.
For each test function, the number of evaluations is set to 100,
and each algorithm is run 20 times.

1) PARETO FRONTIER COMPARATIVE EXPERIMENTS AND
ANALYSIS
The approximation effects of the five algorithms on the real
Pareto front for solving ZDT1, ZDT2, ZDT3, ZDT6, UF1
and UF2 problems are shown in Figure 4. The solutions
obtained by the other three comparison algorithms are mostly
far from the true Pareto front; on problem UF1, the solutions
of the ECA-EMO algorithm do not fully converge to the

true Pareto front, but the other four comparison algorithms
are farther from the true Pareto front. It can be concluded
that the ECA-EMO algorithm has the best approximation
of the true frontier, which indicates that the convergence of
the ECA-EMO algorithm is better than the other comparison
algorithms.

2) IGD AND HV VALUE COMPARISON EXPERIMENT AND
ANALYSIS
Tables 4 and 5 record the results of IGD values and HV values
obtained by ECA-EMO and the four comparison algorithms
under the ZDT, UF and DTLZ test functions, respectively,
containing the mean and standard deviation of IGD and HV
values. From Table 4, we can get that the IGD value of
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the ECA-EMO algorithm are all better than the other algo-
rithms under the test problem ZDT, which indicates that the
convergence and diversity of the solution set of the ECA-
EMO algorithm are better. It is only slightly worse than the
other algorithms for the UF problem. From Table 5, it can be
concluded that the ECA-EMO algorithm has better HV value
on UF and ZDT6 problems, slightly inferior to the MOEA/D
algorithm on ZDT1 and ZDT2 problems, but slightly worse
than other comparative algorithms on test problems ZDT1
and ZDT3, indicating that the algorithm has better overall per-
formance. Equivalent components can learn spatial features
more fully and ELM has better generalization ability, so the
ECA-EMO algorithm proposed in this paper can achieve
better results.

The trends of the IGD performance metrics of the
ECA-EMO algorithm and the other comparison algorithms
for the ZDT1, ZDT2, ZDT3, ZDT6, UF1, and UF2 problems
are shown in Figure 5. At the beginning of the ZDT1 and
ZDT2 problems, the IGDmetrics of the ECA-EMOalgorithm
are lower than all the other comparison algorithms, and the
IGD values of the ECA-EMO algorithm keep decreasing at
a uniform rate. At the end of the evaluation for all prob-
lems except ZDT6, the IGD values of the ECA-EMO algo-
rithm were lower than those of the comparison algorithms.
On problems ZDT3, ZDT6 and UF1, the IGD values of
CSEA, KRVEA, MOEA/D-EGO and MOEA/D algorithms
fluctuated greatly and were unstable under each test problem;
and four algorithms, CSEA, KRVEA, MOEA/D-EGO and
MOEA/D, fell into local optimum in the middle and late
stages of evaluation. It indicates that the ECA-EMO algo-
rithm has a better comprehensive performance.

Figure 6 reflects the variation of HV metrics between the
ECA-EMO algorithm and the other compared algorithms on
the ZDT1, ZDT2, ZDT3, ZDT6, UF1, and UF2 problems.
On the ZDT1, ZDT2, ZDT3 and UF1 problems, it can be
seen that the trend of HV values of the ECA-EMO algorithm
is smoother and the HV values are higher than the other
compared algorithms at the later stage of evaluation. On the
ZDT6 problem, only the HV values of the MOEA/D-EGO
algorithm and the ECA-EMO algorithm varied, and the trend
of the HV values of the ECA-EMO algorithm was smoother.
This indicates the excellent performance of the ECA-EMO
algorithm.

V. CONCLUSION
In this paper, an expensive multi-objective optimization algo-
rithm (ECA-EMO) based on equivalence component analysis
is proposed to improve the prediction accuracy by introduc-
ing decision space equivalence components in the Pareto
dominance prediction process, which is combined with the
fast running speed and generalization capability of ELM to
ensure the fast and efficient algorithm. Rotational equiva-
lence decision components are used in ELM to generate
calculation of implied layer thresholds and weights to ensure
the distributivity of populations. The candidate solutions to
be evaluated predicted by the ELMmodel are combined with

the weight class distributivity maintenance strategy to select
some of the candidate solutions for evaluation so that the
model is updated under the premise of a limited number
of evaluations. From the experimental results, it is shown
that the equivalent component analysis method outperforms
the Pareto dominance prediction results of existing nearest
neighbor classification algorithms and typical agent models,
and the convergence and distributivity of the solution set
obtained by the ECA-EMO algorithm is better than that of
the solution set of the comparison algorithm. The next work
is to use the ECA-EMO algorithm proposed in this paper to
try to solve more expensive multi-objective problems.
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