
Received 7 June 2022, accepted 23 June 2022, date of publication 4 July 2022, date of current version 15 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3188392

Supermodal Decomposition of the Linear Swing
Equation for Multilayer Networks
KSHITIJ BHATTA 1, (Graduate Student Member, IEEE),
AMIRHOSSEIN NAZERIAN 2, (Graduate Student Member, IEEE),
AND FRANCESCO SORRENTINO 2, (Senior Member, IEEE)
1Department of Mechanical and Aerospace Engineering, Univeristy of Virginia, Charlottesvile, VA 22903, USA
2Mechanical Engineering Department, University of New Mexico, Albuquerque, NM 87131, USA

Corresponding author: Francesco Sorrentino (fsorrent@unm.edu)

ABSTRACT We study the swing equation in the case of a multilayer network in which generators andmotors
are modeled differently; namely, the model for each generator is given by second order dynamics and the
model for each motor is given by first order dynamics. We also remove the commonly used assumption
of equal damping coefficients in the second order dynamics. Under these general conditions, we are able
to obtain a decomposition of the linear swing equation into independent modes describing the propagation
of small perturbations. In the process, we identify symmetries affecting the structure and dynamics of the
multilayer network and derive an essential model based on a ‘quotient network.’ We then compare the
dynamics of the full network and that of the quotient network and obtain a modal decomposition of
the error dynamics. We also provide a method to quantify the steady-state error and the maximum overshoot
error. Two case studies are presented to illustrate application of our method.

INDEX TERMS Modal decomposition, multi-layer networks, quadratic eigenvalue problem, swing
equation.

I. INTRODUCTION
Modeling and analysis of power grid dynamics have been
the subject of many papers [1], [9], [12], [13], [15], [16],
[20], [21], [26], [29], [34], [35], [38], [39], [41], [48].
A fundamental tool to describe the dynamics of power grids is
the swing equation. In the presence of small disturbances, this
equation can be approximated by the linear swing equation,
which can be decomposed into independent modes [2], [5],
[19], [24], [37], [46]. However, most papers in the literature
introduce two unrealistic assumptions in order to derive a
modal decomposition: 1- the same model is used for both
generators and motors, while they are intrinsically different
and 2- all the individual systems are characterized by the
same effective damping. An exception to 2 is provided by
Tyloo et al. [46] who relax the constant inertia to damping
ratio assumption and show that their derivation is still valid
with heterogeneous dynamical parameters. Here we remove

The associate editor coordinating the review of this manuscript and

approving it for publication was Yang Tang .

both assumptions 1 and 2. We introduce intrinsically differ-
ent mathematical models for generators and motors, where
motors have typically negligible inertia compared to gener-
ators and we allow for the damping terms to be arbitrarily
chosen. After removing both assumptions 1 and 2 we show
that a modal decomposition of the linear swing equation can
still be obtained.

While performing this analysis we also look for the
effects of symmetries in the network topology. Symme-
tries play a significant role in the study of networked
systems. References [3], [6], [11], [14], [17], [31], [33], [36],
[43]–[45], [49] have proposed tools based on graph theory
and group theory to analyze the dynamics of complex net-
works with symmetries. A recent paper [10] has proposed
indices for the characterization of symmetries in complex
networks. Reference [7] has discussed how the analysis of
symmetries may be used to explore associations in image
features to infer similarities/dissimilarities among features.

The presence of symmetries in power grid networks has
been documented in [14], [45]. Reference [22] has analyzed
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how network symmetries may affect the synchronization
modes of power grid networks, while [18] has studied struc-
ture and dynamics preserving reduction methods for power
grids using a graph theoretical approach. Reference [5] has
analyzed the effect of symmetries in networks using the linear
swing equation and developed techniques for easy calculation
of maximum flow and error using a modal decomposition.
Reference [27] has found that certain heterogeneous param-
eters enhance the stability of power grid networks, which
provides a motivation for us to remove the assumption of
homogeneous parameters. Many real systems do not possess
exact symmetries but approximate symmetries. Recent work
has investigated the presence of such approximate symme-
tries in both natural and engineering systems and found that
approximate symmetries are widespread in these systems,
see e.g., [28], [30]. Reference [42] has shown a connection
between the stability of symmetric states and approximately
symmetric states.

Different from large part of the literature, in this paper
we model powergrids as multilayer networks, where one
layer is entirely made up of generator nodes and the other
layer of motor nodes (‘loads’). We first obtain a simplified
description of the multilayer network dynamics in terms of its
quotient network. This description is useful as it provides an
essential model for the dynamics in which redundancies due
to symmetry are ‘removed’ [44], under the assumption that
symmetric nodes produce/absorb the same amount of power.
In what follows, we withdraw this assumption and quantify
the error/deviation dynamics between the quotient network
model and the full network model. Further, we develop a
method to compute the maximum overshoot of the aforemen-
tioned error dynamics.

The are several novel contributions of this paper, which we
briefly review next. They are: (i) a study of the linear swing
equation applied to a multilayer network in which loads and
generators are modeled differently, (ii) a dynamical reduc-
tion of the dynamics in the case of heterogeneous damping
coefficient based on the solution of the quadratic eigenvalue
problem, (iii) an expansion of the solution in terms of first
order supermodes and second-order supermodes, and (iv) a
characterization of the error dynamics of the quotient network
when compared to the full-network in terms of supermodes.

The rest of the paper is organized as follows. Section II
covers the modeling of a powergrid as a multilayer network
using the linear swing equation and block diagonalization of
the network equation into its quotient block and transverse
block using the IRR transformation. Section III describes
the block-diagonalization of the error dynamics. Section IV
deals with the maximum error computation using the concept
of a ‘supermode’ and Section V provides validation using
one example network and one real-life power grid network.
Finally, conclusions are given in Section VI.

II. NETWORK MODEL
Several alternative models of the swing equation have been
proposed [25], [32]. For this paper, we specialized Bergen

and Hill’s Structure Preserving Model [4], [32] to multi-
layer networks. The power grid is formed of a collection of
rotating machines (‘nodes’) connected by transmission lines
(‘edges’). Nodes can be of either one of two types: generator
nodes which produce power, and motor nodes (or loads)
which consume power and have typically a lower inertia than
generator nodes.

We thus consider a multilayer network with two layers:
the generator layer denoted G with nG nodes and the load
layer denoted L with nL nodes. The nodes in G are modeled
as second order oscillators, with dynamics described by the
following equation,

θ̈i + γiθ̇i = qGi −
nG∑

j=1,j6=i

ÃGij sin(θi − θj)

−

nL∑
j=1

ÃGLij sin(θi − φj), i = 1, 2, . . . nG (1)

where θi(t) is the nodal displacement of generator node i,
γi > 0 is the damping coefficient of generator i and qGi > 0 is
the power produced at generator node i. The nodes in L are
modeled as first order oscillators which obey the following
equation,

φ̇j = qLj −
nL∑

i=1,i6=j

ÃLji sin(φj − φi)−
nG∑
i=1

ÃLGji sin(φj − θi),

j = 1, 2, . . . nL , (2)

where φj(t) is the nodal displacement of motor node j, and
qLj < 0 is the power consumed at load j.
Definition 1: The network is said to be balanced if∑nG
i=1 q

G
i +

∑nL
j=1 q

L
j = 0.

We assume the network is balanced throughout the paper
unless specified otherwise. The multilayer network can be
represented using the ‘Supra-Adjacency matrix’ which is an
n × n matrix, n = nG + nL ,

Ã =
[
ÃG ÃGL

ÃLG ÃL

]
,

where the nG × nG-dimensional symmetric matrix ÃG =
{ÃGij } (the nL × nL-dimensional symmetric matrix ÃL =

{ÃLij}) describes the intra-layer connectivity of layer G (L.)
Namely, ÃGij = ÃGji > 0 if generator nodes i and j are
connected and ÃLij = ÃLji = 0 otherwise. Analogously, ÃLij =
ÃLji > 0 if motor nodes i and j are connected and ÃLij = ÃLji = 0
otherwise. The interlayer connectivity is given by the nG ×
nL-dimensional matrix ÃGL = {ÃGLij } and by the the nL × nG-

dimensional matrix ÃLG = {ÃLGij }, Ã
LG
= ÃGL

T
. If generator

node i and motor node j are connected (not connected), then
ÃGLij = ÃLGji > 0 (ÃGLij = ÃLGji = 0.)
Like in the case of single-layered networks, multilayer

networksmay be affected by the presence of symmetries [14].
In general, a symmetry is a permutation of the network
nodes that results in a network that is isomorphic to the
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original one. The symmetry group S is the set of all sym-
metries with the operation composition. The set of all sym-
metries in the group will only permute certain subsets of
nodes (the orbits or clusters) among each other. The nodes
in each subset are mapped into each other by application of
one or more symmetries in S; however, there is no symmetry
in S that will map into each other nodes in different subsets.
We refer to such subsets of nodes as ‘clusters’ or ‘orbits’ of
the symmetry group [5].

For the case of multilayer networks, with layers composed
of nodes of different types, the above definition of symmetry
needs to be specialized to account for the fact that symmetries
may only move nodes (may not move nodes) from the same
layer (from different layers.)

We first introduce the group of symmetries for each layer:
sG ∈ SG for layer G which satisfies,

sGÃG = ÃGsG (3)

and sL ∈ SL for layer L, which satisfies,

sL ÃL = ÃLsL . (4)

Definition 2: A symmetry P ∈ S for the set of (1) and (2) is
defined as a block diagonal permutation matrix of the form,

P =
[
sG 0
0 sL

]
with sG ∈ SG, sL ∈ SL , and such that PÃ = ÃP
and sGγγγ = γγγ , where the nG-dimensional vector γγγ =
[γ1, γ2, . . . , γnG ].
In addition to the equalities (3) and (4), the equation

PÃ = ÃP also requires satisfaction of the following two
conjugacy relationships [14],

sL ÃLG = ÃGLsG (5a)

sGÃGL = ÃLGsL . (5b)

By using (5a) and (5b), we can define the following two
subgroups of SG and SL [14],

HG
= {sG ∈ SG|sGÃGL = ÃGLsL and,

sL ÃLG = ÃLGsG for sL ∈ SL}
HL
= {sL ∈ SL |sL ÃLG = ÃLGsG and,

sGÃGL = ÃGLsL for sG ∈ SG}

Following [14] we can prove that the two setsHG andHL are
subgroups of SG and SL , respectively.
The symmetry group S partitions the set of nodes of the

generator layer into a set of lG clusters, CG
k , k = 1, . . . , lG

and the set of nodes of the load layer into a set of lL clusters,
CL
k , k = 1, . . . , lL . For each layer, each cluster is formed

of nodes that are mapped into each other by application of
all the symmetries in S; however there is no symmetry in S
that maps into each other nodes in different clusters. We call
l = lG + lL the total number of clusters. In what follows we
call i∗ the cluster to which generator i belongs, and j∗ the
cluster to which motor j belongs.

Lemma 1: A flow invariant synchronous solution θi(t) =
θi∗(t), φj(t) = φj∗(t) is induced by the automorphism
group S.

Proof: Assume θi(0) = θi∗(0) and θ̇i(0) = θ̇i∗(0) for
all i’s in cluster i∗ and for all clusters i∗ = 1, . . . , lG and
φj(0) = φj∗(0) for all j’s in cluster j∗ and for all clusters j∗ =
1, . . . , lL . It follows that θ̈i(0) is the same for all i’s in cluster
i∗ and φ̇j(0) is the same for all j’s in cluster j∗.
Next we assume convergence of the flow invariant solution

on the fixed points, θ ssi∗ for all i’s in cluster i∗, and φ
ss
j∗ for all j’s

in cluster j∗. The linearized swing equation, whichmodels the
propagation of small disturbances (e.g., affecting the initial
condition or affecting the power supplied/demanded at differ-
ent nodes) [46], is obtained by linearizing (1) and (2) about
the stable fixed point θ ssi∗ , i = 1, . . . , nG, φssj∗ , j = 1, . . . , nL ,

ϑ̈i + γiϑ̇i = pGi +
nG∑
j=1

LGij ϑj +
nL∑
j=1

ÂGLij ϕj − d
GL
i ϑi,

i = 1, 2, . . . nG (6)

ϕ̇j = pLj +
nL∑
i=1

LLjiϕi +
nG∑
i=1

ÂLGji ϑi − d
LG
j ϕj,

j = 1, 2, . . . nL (7)

where ÂGij = ÃGij cos(θ
ss
j∗ − θ

ss
i∗ ), Â

GL
ij = ÃGLij cos(θ ssj∗ − φ

ss
i∗),

ÂLji = ÃLji cos(φ
ss
j∗ − φ

ss
i∗), Â

LG
ji = ÃLGji cos(θ ssj∗ − φ

ss
i∗). The

Laplacian matrices LG = {LGij } with entries LGij = ÂGij −
δij
∑

j Â
G
ij and L

L
= {LLji } with entries LLji = ÂLji − δij

∑
i Â

G
ji ,

where δij is the Kronecker delta. Also, dGLi =
∑nL

j=1 Â
GL
ij

represents the total connectivity between generator i and the
L layer and dLGj =

∑nG
i=1 Â

LG
ji represents the total connectiv-

ity between load j and the G layer. Each term pGi and pLi on
the right hand side of (6) and (7) represents a small power
deviation.
Definition 3: A symmetry for the set of (6) and (7) is

defined as a block diagonal permutation matrix of the form,

P =
[
sG 0
0 sL

]
,

with sG ∈ HG, sL ∈ HL , and such that PÂ = ÂP, where the
matrix,

Â =
[
ÂG ÂGL

ÂLG ÂL

]
,

and sGγγγ = γγγ .
Lemma 2: The set of Eqs. (1) and (2) have the same set of

symmetries as Eqs. (6) and (7).
Proof: We need to prove that (a) a matrix P ∈ S that

commutes with Ã, commutes also with Â and (b) viceversa.
We first prove (a). The matrix P permutes with one another
nodes in layer G and permutes with one another nodes in
layer L. For all v,w = 1, . . . , n, Ãvw = Ãv′w′ , where v′(w′)
is the node that v(w) is mapped to by P. Now as v is mapped
to v′, then v∗ = v′∗; and as w is mapped to w′, then w∗ =
w′∗. From this it trivially follows that: (i) if v,w ∈ G, then
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cos(θ ssv∗ − θ
ss
w∗) = cos(θ ssv′∗ − θ

ss
w′∗), (ii) if v,w ∈ L, then

cos(φssv∗ − φ
ss
w∗) = cos(φssv′∗ − φ

ss
w′∗) and (iii) if v ∈ L and

w ∈ G, then cos(θ ssv∗ − φ
ss
w∗) = cos(θ ssv′∗ − φ

ss
w′∗). Thus for

all v,w = 1, . . . , n, Âvw = Âv′w′ , where v′(w′) is the node
that v(w) is mapped to by P. The proof for (b) is analogous.
We start from the observation that Âvw = Âv′w′ where v′(w′)
is the node v(w) is mapped to by P, and then by using
properties (i), (ii), and (iii) we can prove that for all v and w,
Ãvw = Ãv′w′ .

We now consider the vectors ϑϑϑ = [ϑ1, ϑ2, . . . ϑnG ],
ϕϕϕ = [ϕ1, ϕ2, . . . ϕnL ], p

G
= [pG1 , p

G
2 , . . . , p

G
nG ], p

L
=

[pL1 , p
L
2 , . . . , p

L
nL ] to rewrite (6) and (7) as,

ϑ̈ϑϑ + 0ϑ̇ϑϑ = pG + LGϑϑϑ + ÂGLϕϕϕ − DGLϑϑϑ, (8)

ϕ̇ϕϕ = pL + LLϕϕϕ + ÂLGϑϑϑ − DLGϕϕϕ, (9)

where the diagonal matrix 0 = {0ij} with diagonal entries
0ii = γi is the damping matrix for the generators, DGL is
the degree matrix of the generators with respect to the loads
and DLG is the degree matrix of the loads with respect to the
generators. DGL is defined as the nG × nG diagonal matrix
where DGLij =

∑nL
k=1 Â

GL
ik , if i = j and 0 otherwise. DLG is

defined similarly.
We introduce the vector XT

= [ϑϑϑT ,ϕϕϕT ] and rewrite (8)
and (9) in the compact form,

MẌ̈ẌX + CẊ̇ẊX + KXXX = f (10)

where K =
[
LG − DGL ÂGL

ÂLG LL − DLG

]
, f =

[
pG

pL

]
, M =[

InG×nG 0nG×nL
0nL×nG 0nL×nL

]
, and C =

[
0 0nG×nL

0nL×nG InL×nL

]
.

From knowledge of the group of symmetries S , we can
compute the irreducible representations (IRRs) of the sym-
metry group of the network. This defines a transformation T
into the so-called IRR coordinate system (see Ref. [36]). The
transformation matrix T is orthogonal. Each one of the rows
of the matrix T is associated with a specific layer. If a row of
the matrix T is associated with layer k , all the i entries of that
row are zero for i not in layer Sk .

Therefore, the matrix T can be cast in the following block
diagonal form,

T = ⊕
k=1,2,...

T k , (11)

where each block T k is an nk -dimensional square matrix
associated with layer k and the symbol ⊕ indicates direct
sum of matrices. We will represent these blocks as TG for the
generator layer and T L for the load layer giving a matrix T of
the form:

T =
[
TG 0
0 T L

]
.

Premultiplying (8) and (9) by T , we obtain,

ξ̈ξξ (t) = −0ξ̇ξξ (t)+ VGξξξ (t)+
∗

AGLκκκ(t)− DGLξξξ (t)+ rG,

(12)

and

κ̇κκ(t) = V Lκκκ(t)+
∗

ALGξξξ (t)− DLGκκκ(t)+ rL. (13)

where ξξξ = TGθθθ , κκκ = T Lφφφ, rG = TGpG, rL = T LpL, VG
=

TGLG(TG)T , V L
= T LLL(T L)T ,

∗

AGL = TGÂGL(T L)T ,
∗

ALG = T L ÂLG(TG)T . Due to the specific diagonal structure
of the matricesDLG,DGL and 0, they remain unchanged after
the transformation.
Remark 1: Bothmatrices TG and T L can in turn bewritten

as block-diagonal matrices with the number of blocks equal
to the number of clusters in either layer. For our case, TG is a
matrix with lG blocks and T L is a matrix with lL blocks such
that T can be viewed as a block-diagonal matrix with a total
of l blocks.

If we define the vector ���T
= [ξξξT ,κκκT ], (12) and (13) can

be recast as,[
InG×nG 0nG×nL
0nL×nG 0nL×nL

]
�̈̈�̈�+

[
0 0nG×nL

0nL×nG InL×nL

]
�̇̇�̇�

−

[
VG
− DGL

∗

AGL
∗

ALG V L
− DLG

]
��� =

[
rG

rL

]
, (14)

which is in the familiar form,

M̃�̈̈�̈�+ C̃�̇̇�̇�+ K̃��� = f̃. (15)

It is to be noted that the n × n matrix K̃ , is block diag-
onal and is equal to the direct sum ⊕Uu=1Ku, where Ku is a
(generally complex) pu × pu matrix with pu the multiplic-
ity of the uth IRR in the permutation representation, U the
number of IRRs present and du the dimension of the uth IRR,
so that

∑
u dupu = n. The matrix T contains information on

which perturbations affecting different clusters get mapped
to different IRRs [40]. Due to the block-diagonal structure of
the matrix K̃ , (14) can be decoupled into a number of lower-
dimensional equations, where each equation corresponds to a
block of the matrix K̃ . There is one representation (labeled
u = 1) which we call trivial and the associated block of
the matrix K̃ corresponds to the dynamics of the quotient
network.
Definition 4 (Indicator Matrix): The n × l indicator

matrix E has entries E(i, j) = 1 if node i belongs to the
cluster j and 0 otherwise,
Definition 5 (Quotient Network): A Quotient Network is a

reduced network where redundancies due to symmetries are
removed. The dynamics of the quotient network is obtained
by pre-multiplying (10) by ((ETE)−1ET ), yielding,

Mq
¨̂X¨̂X¨̂X + Cq

˙̂X˙̂X˙̂X + KqX̂̂X̂X = fq (16)

where the n × 1 vectors X̂(t) = ((ETE)−1ET )X(t) fq =
((ETE)−1ET )f, and the matrices

Mq = ((ETE)−1ET )ME,

Cq = ((ETE)−1ET )CE,

Kq = ((ETE)−1ET )KE .
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FIGURE 1. (a): Full network, (b): Quotient network. Generators are
represented by green squares and loads are represented as red circles.

Hence, the trivial representation is associated with all
the clusters. However, it is possible that other IRR rep-
resentations are only associated with some of the clusters
(not all of them.) Each one of these other representations
u > 1 describes the deviation/error dynamics of either an
isolated cluster or a group of intertwined clusters [36]. A sim-
ple interpretation of isolated vs. intertwined clusters is the
following. If a cluster is isolated, a perturbation affecting the
power of any one of its nodes will not affect the deviation
dynamics of other clusters. On the contrary, when a set of two
or more clusters are intertwined, a perturbation affecting the
power of any of the nodes in a cluster will affect the deviation
dynamics of the remaining clusters in the set.

III. DIAGONALIZATION
The quotient network provides a minimal representation of
the full network. Our goal here is to describe the error
dynamics between the full network dynamics and the quotient
network dynamics.

e(t) = X̂j(t)− Xi(t) (17)

where Xi(t) is the dynamics of node i which belongs to
cluster j of the entire network and X̂j is the dynamics of node
j of the quotient network, which corresponds to an average of
the dynamics of all nodes in cluster j.
To quantify this error, we present an approach to diagonal-

ize the blocks of the matrix K̃ with u > 1 and size m > 1.
We consider an m-dimensional transverse block from (15),
with dynamics,

M̂ η̈̈η̈η + Ĉη̇̇η̇η + K̂ηηη = f̂ (18)

where M̂ is an m × m diagonal block of the M̃ matrix,
Ĉ is the corresponding m × m block of the C̃ matrix and
K̂ is the corresponding m × m block of the K̃ matrix.
ηηη and f̂ are the corresponding m × 1 vectors from the��� and
f̃ vectors, respectively. In what follows, we will distinguish
between three possible cases: 1) The block represents the
error dynamics of intertwined clusters within the generator
layer. This means that the M̂ matrix will be a diagonal matrix
with all non-zero elements in the main diagonal and the
matrix Ĉ can either be homogeneous, i.e, it is a multiple of the
identity matrix, or non-homogeneous. This is equivalent to a
single layer network with either same or different damping

coefficients which has already been studied in [5]. 2) The
block represents the error dynamics of intertwined clusters
within the load layer. This means that the M̂ matrix is a zero
matrix and the Ĉ matrix is the identity matrix. This is a simple
case that allows a trivial decomposition. In this paper, we also
consider a third, more complex case; 3) The block represents
the error dynamics of intertwined clusters in different layers.
This means that the M̂ matrix is a diagonal matrix with both
zero and non-zero elements along the main diagonal, i.e.,
it is a singular matrix different from the zero matrix. The
matrix Ĉ can be non-homogeneous. To diagonalize such a
system, we use the method described in [23]. The advantage
of this method is that it is a direct generalization of the modal
decoupling for the case that the M̂ matrix is invertible, i.e,
case 1. Should the system have an invertible mass matrix
and be classically damped, i.e, satisfies the commutativity
relationship, ĈM̂−1K̂ = K̂ M̂−1Ĉ [8], [23], this method
reduces to classical modal analysis. The method is summa-
rized below. We consider the associated quadratic eigenvalue
problem (QEP):

(M̂λ2 + Ĉλ+ K̂ )v = 0 (19)

The solution of this QEP yields a total of 2m eigenvalues,
of which σ = m + r are finite and ε = m − r are
infinite, where r is the rank of the matrix M̂ and m is its size.
We randomly assign 2r finite eigenvalues to conjugate pairs:
λi and λ̂i where i = 1, 2, 3, . . . , r , and we denote the remain-
ing ε unpaired eigenvalues, called the ‘‘lone eigenvalues’’ by
µ [23]. We now construct the matrices 3 and 3̂ which are
diagonal matrices of dimension r × r and the matrix4which
is of dimension ε × ε. We also construct the matrices V , V̂
and W whose columns are the eigenvectors of the matrices
3, 3̂, and 4, respectively: vi, v̂i, i = 1, 2, 3, . . . , r and wi,
i = 1, 2, 3, . . . , ε.

3 =
r
⊕
i
λi 3̂ =

r
⊕
i
λ̂i 4 =

ε
⊕
i
µi

V = [v1| . . . |vr ] V̂ =
[
v̂1| . . . |v̂r

]
W = [w1| . . . |wε] ,

where here and in what follows, C = [A|B] symbolizes
concatenation of two vectors/matrices with the same number
of rows. We can now construct the diagonalized matrices:

A2 = Ir ⊕ 0ε, A1 = (3+ 3̂)⊕−4, A0 = 33̂⊕42,

In order to find consistent initial conditions, we also need to
define,

Jxf = Jpf = 3⊕ 3̂⊕4, Vxf = [V |V̂ |W ],

Vpf = [Ir |Ir ]⊕ Iε .

Multiplying (19) by β2 = 1/λ2 yields:

(M̂ + Ĉβ + K̂β2)v = 0. (20)

The ε infinite eigenvalues from (19) correspond to ε zero
eigenvalues in (20), β = 0. These ε zero eigenvalues and
their corresponding eigenvectors must satisfy:

M̂Vx,∞ + ĈVx,∞Jx,∞ + K̂Vx,∞J2x,∞ = 0n×ε (21)
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where Jx,∞ is an order ε Jordan matrix of eigenvalues β = 0,
and Vx,∞ is is a n × ε matrix of the associated eigenvec-
tors. Since (18) is nondefective, Jx,∞ = 0ε , which implies
M̂Vx,∞ = 0n×ε . Therefore,Vx,∞ is thematrix of eigenvectors
in the null space of M̂ . Now, the transformation matrix S can
be defined as,

S =
[
Vxf 0n×ε
Vxf Jxf Vx,∞

] [
Vpf 0n×ε

Vpf Jpf Vp,∞

]−1
(22)

where S is a 2m-dimensional real orthogonal matrix, and
Vp,∞ is the matrix of eigenvectors in the null space of A2
(analogous to the case of M̂ and Vx,∞). If system (18) is
written in the symmetric state space realization,[

Ĉ M̂
M̂ 0

] [
η̇̇η̇η

η̈̈η̈η

]
+

[
K̂ 0̂
0 −M̂

] [
ηηη

η̇̇η̇η

]
=

[
f̂
0

]
, (23)

the transformation S will produce the diagonal matrices
A0, A1, and A2,

ST
[
Ĉ M̂
M̂ 0

]
S =

[
A1 A2
A2 0

]
,

ST
[
K̂ 0̂
0 −M̂

]
S =

[
A0 0
0 −A2

]
. (24)

We now derive the two transformation matrices:

T1 = [(V 3̂− V̂3)(3̂−3)−1|W ]

T2 = [(V̂ − V3)(3̂−3)−1|0n×ε]. (25)

Using T1 and T2, we can calculate the transformed forcing
function,

g = T T1 f̂+ T
T
2
˙̂f. (26)

The diagonalized equation in χχχ coordinates can be found
using the A0, A1, A2 and g we have already calculated:

A2χ̈̈χ̈χ + A1χ̇̇χ̇χ + A0χχχ = g. (27)

The initial conditions in theχχχ coordinates also need to be cal-
culated from consistent initial conditions in theηηη coordinates,[
χχχ (0)
χ̇̇χ̇χ (0)

]
= ST

[
ηηη(0)

η̇̇η̇η(0)− Vxf Zxf f(0)

]
+

[
0

Vpf Zpf g(0)+ T T2 f(0)

]
, (28)

where the σ × m matrices Zxf ,Zpf are constructed as
described in [23]. In what follows, without loss of generality
we focus on the forced response and set the initial conditions
in the X -coordinates to zero. Hence, we have zero initial
conditions in the η-coordinates as well.
Lemma 3: Consider zero initial conditions in X-coordinates.

For unit step forcing f̂i, only the initial velocity for the second
order modes are non-zero; all other initial conditions are
zero, that is, if X(0) = 0, Ẋ(0) = 0, and f̂(t) ∈ U , where
U is the vector space for all unit step functions, then,

χi(0) = 0 for i = 1, 2, 3 . . . n
χ̇i(0) 6= 0 for i = 1, 2, 3, . . . , nG
χ̇i(0) = 0 for i = nG + 1, nG + 2, . . . , n.

Proof: We know that if f̂i ∈ U , f (0) = 0 and f̂ i(0) 6= 0.
Also, we have 0 initial conditions in the X and η coordinates.
So, we can calculate our modal initial conditions as:[

χχχ (0)
χ̇̇χ̇χ (0)

]
=

[
000

Vpf Zpf g(0)

]
. (29)

It is now obvious that χi(0) = 0 ∀ i. Since the non zero
term of (29)

χ̇̇χ̇χ (0) = Vpf Zpf g(0),

it follows that g = T T2
˙̂f when f̂ = 0 (from (26)). From (25),

we can see that the last ε columns of T2 are zeros whichmeans
that the last ε rows of T T2 are zeros. Therefore,

T T2
˙̂f(0) = [χ1, χ2, . . . , χnG , 0, 0, . . . 0]

T

After pre-multiplying the expression by Vpf Zpf , we get the
modal initial velocities of the system. This results in the last
ε elements of χ̇̇χ̇χ (0) to be zero which corresponds to the first
order modes, thereby completing the proof.

Note that we can use the transformationmatrices to recover
the displacements in η coordinates,

ηηη = T1χχχ + T2χ̇̇χ̇χ − T3 f̂, where T3 = T2T T2 . (30)

We see that (27) can be broken intom independent equations,
the solutions of which are called the ‘modes’ of the system.

(A2)iiχ̈i + (A1)iiχ̇i + (A0)iiχi = gi. (31)

i = 1, . . . ,m. The linear combination of all of the modes,
their derivatives, and the forcing function provides the solu-
tion for the error as shown in (30).

After diagonalization, the first r modes we obtain are
second order modes, (A2)ii 6= 0, i = 1, . . . , r , and the
remaining m − r modes are first order modes, (A2)ii =
0, i = r + 1, . . . , r + n. In realistic systems with constant
damping and inertia, it has been found that all modes are
underdamped and propagate through the whole system with
D
λi
< γ−1, ∀i > 1 [46], [47]. Reference [5] has shown

that this assumption holds true even after the assumption
of constant damping is removed. We can then characterize
the modal responses in terms of well-known first order time
responses and underdamped second order time responses to
unit step forcing.

Each second order mode can be represented as,

χ̈i(t)+ 2ζiωiχ̇i(t)+ ωi2χi(t) = gi, i = 1, 2, . . . , r,

(32)

where ω2
i = A0ii and ζi = (A1)ii/(2ωi). The solution to (32)

can be written as,

χi(t) = χ̄i(t)+ ¯̄χi(t), (33)

where χ̄i(t) is the free evolution and ¯̄χi(t) is the forced evolu-
tion. χ̄i(t) is given by:

χ̄i(t) = e−ζiωit (Xm)i cos(ωi
√
1− ζ 2i t − ψi) (34)
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where, (Xm)i =
√
(B1)2i + (B2)2i andψi = tan−1

( (B2)i
(B1)i

)
. (B1)i

and (B2)i are constants that depend on the initial condition of
the modes and can be calculated as follows:

(B1)i = χi(0) (B2)i =
χ̇i(0)+ ζiωiχi(0)

ωi

√
1− ζ 2i

We know from Lemma 3 that only χ̇i(0) are nonzero for
second order modes. Therefore we have,

(B1)i = 0 (B2)i =
χ̇i(0)

ωi
√
1− ζ 2

We can use this into (34) and obtain,

χ̄i(t) =
χ̇i(0)e−ζiωit

ωi
√
1− ζ 2

sin(ωi
√
1− ζ 2i t) (35)

The underdamped forced solution is given by,

¯̄χ i(t) =
gi
ω2
i

[
1−

e−ζiωit√
1− ζ 2i

sin
(
ωi

√
1− ζ 2i t + cos−1 ζi

)]
,

(36)

i = 1, 2, . . . , r . The full response is the sum of (36) and (35).
On the other hand, each first order mode can be represented

as,

χ̇i(t)+
χi(t)
τi
= ĝi(t) i = r + 1, r + 2, . . . ,m, (37)

where, ĝi(t) =
gi(t)
(A1)ii

and τi =
(A1)ii
(A0)ii

. The solution is equal to,

χi(t) = τiĝi(t)(1− e−t/τi ) i = r + 1, r + 2, . . . ,m. (38)

IV. LINEAR COMBINATION OF MODES FOR MAXIMUM
ERROR QUANTIFICATION
As stated in the previous section, for a unit step forcing, f̂,
the linear combination of the modes, their derivatives, and
the forcing function can be used to calculate the deviations
using (30), Here to ease this calculation, we introduce the
concept of a ‘supermode.’
Definition 6: A supermode is a linear combination of

modal displacement and velocity. Supermodes can be of two
types: First order supermode and second order supermode.

Each supermode can be expressed by the equation,

χ̂ij = χi + κijχ̇i, i, j = 1, 2, . . . ,m, (39)

where κij is a real constant. We note that ηηη from (30) can be
obtained as a linear combination of the χ̂ij, i, j = 1, 2, . . . ,m,
from (39). Our definition of supermode in (39) is general,
as κij can be seen as a variable parameter that determines each
supermode. In what follows we will see how first order super-
modes and second order supermodes can be parameterized in
a minimal number of parameters.

A. FIRST ORDER SUPERMODES
First order supermodes, i = r+1, r+2, . . . ,m, are obtained
by plugging (38) in (39), yielding,

χ̂ij = τiĝi + ĝie
−

t
τi (κij − τi), (40)

which converges to the steady state,

χ̂SSij = τiĝi. (41)

It can be seen from (40) that a first order supermode is com-
pletely parameterized by the constant (κij), modal forcing (ĝi)
and time constant (τi).

B. SECOND-ORDER SUPERMODES
Second order supermodes, i = 1, 2, 3 . . . , r , are obtained
by plugging (36) in (39). We take the first derivative of the
solution to get,

χ̇i =
e−ζiωit

%i

[
gi sinωi%it + χ̇i(0)

(
%i cos %it − ζiωi sin %it

)]
where %i = ωi

√
1− ζ 2i . So, we can simplify (39) as follows,

χ̂ij =
e−ζiωit

%i

[
Q[1]
ij sin %it + Q

[2]
ij cos %it

]
+

gi
ω2
i

, (42)

where,

Q[1]
ij =

(
κij −

ζi

ωi

)
gi +

(
1− ζiωiκij

)
χ̇i(0),

Q[2]
ij =

(
κijχ̇i(0)−

gi
ω2
i

)
%i

This converges to a steady state

χ̂SSij =
gi
ω2
i

. (43)

The peak time can be calculated by setting ˙̂χi(t) = 0,

˙̂χij(t) =
−ζiωie−ζiωit

ρi

[
Q[1]
ij sin ρit + Q

[2]
ij cos ρit

]
+
e−ζiωit

ρi

[
ρiQ

[1]
ij cos ρit − ρiQ

[2]
ij sin ρit

]
, (44)

therefore, all the local extrema of the supermode are at,

tpij =
(
tan−1

[Q[1]
ij %i − ζiωiQ

[2]
ij

Q[2]
ij %i+ζiωiQ

[1]
ij

]
+ kπ

)
1
%i
, k = 0, 1, . . .

(45)

which can be plugged into (42) to find the associated super-
mode peak value, χ̂p

ij . Since there is damping in the system,
one may expect the first peak to always be the global max-
imum. However, it is also possible that this local maximum
point is preceded by a local minimum point. So it becomes
necessary to check (45) for k = 0, 1, to determine the
supermodal peak.

By calculating ˙̂χij(0),

˙̂χij(0) = ρiQ
[1]
ij − ζiωiQ

[2]
ij , (46)
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an analytical condition can be found to determine the
supermodal peak. If ˙̂χij(0) is positive (negative), then the
first (second) peak is the supermodal peak. If instead
˙̂χij(0) = 0, the curvature of the supermode at t = 0 should be
assessed,

¨̂χij(t) =
ζ 2i ω

2
i e
−ζiωit

ρi

[
Q[1]
ij sin ρit + Q

[2]
ij cos ρit

]
+
−2ζiωie−ζiωit

ρi

[
ρiQ

[1]
ij cos ρit − ρiQ

[2]
ij sin ρit

]
+
e−ζiωit

ρi

[
− ρ2i Q

[1]
ij sin ρit − ρ2i Q

[2]
ij cos ρit

]
.

(47)

Since ˙̂χij(0) = Q[1]
ij ρi − ζiωiQ

[2]
ij = 0,

¨̂χij(0) = −
(
ζiωiQ

[1]
ij + ρiQ

[2]
ij

)
. (48)

Therefore, if the supermode is convex at t = 0
( ¨̂χij(0) > 0), the next peak corresponding to k = 1 is
the global peak. If the supermode is concave at t = 0
( ¨̂χij(0) < 0), the peak corresponding to k = 2 is the global
peak. In summary, the global peak is found at,

k =


0, if ˙̂χij(0) > 0,

1, if

{
˙̂χij(0) < 0, OR
˙̂χij(0) = 0, ¨̂χij(0) > 0,

2, if ˙̂χij(0) = 0, ¨̂χij(0) < 0,

(49)

where ˙̂χij(0) and ¨̂χij(0) are defined in (46) and (48),
respectively.

Equation (42) shows that a second order supermode can
be completely parameterized by its constant (κij), natural
frequency (ωi), damped frequency (ζ ), modal forcing (gi),
and initial condition (χi(0)).

C. LINEAR COMBINATION OF SUPERMODES
Each ηi can be written as a linear combination of supermodes
and of the forcing function, f̂i,

ηi =

m∑
j=1

(C [1]
ij χ̂ij − C

[2]
ij f̂i) (50)

in the coefficients C [1]
ij and C [2]

ij which denote how much
a certain supermode affects the error dynamics. We note
that κij from (39) and C [1]

ij , and C [2]
ij from (50) are variable

constants that can be arbitrarily assigned. These constants can
be chosen based on the specific purpose of the analysis. For
example, one can pick κij = T2(i, j)/T1(i, j), C

[1]
ij = T1(i, j),

and C [2]
ij = T3(i, j), where i, j = 1, . . . ,m, to obtain ηηη

from (30).
Since the expressions for steady state values of the super-

modes have been derived, we can calculate the steady state
error as,

ηSSi =

m∑
j=1

(C [1]
ij χ̂

SS
ij − C

[2]
ij f̂i) (51)

For peak times, we use a slightly modified version of the
technique described in [5]. First we take the sum of the super-
modal peak values and non-transformed forcing functions for
all supermodes. We call this ηL,

ηL = χ̂
p
ij − C

[2]
ij f̂i, (52)

For first order supermodes, the peak is given by χ̂p
ij = χ̂SSij ,

i = r + 1, . . . ,m, and the peak time can be approximated
with the settling time equal to tpij = 4τi. The ηLs calculated
from (52) are then cumulatively added in ascending order of
peak time and the peak time corresponding to the largest of
these cumulatively added values is then used as the initial
guess in the equation:

m∑
j=1

˙̂χij = 0

which can be expanded into:

r∑
i=1

e−ζiωit

%i

[
Q̂[2]
ij cos %it − Q̂

[1]
ij sin %it

]
+

m∑
i=r+1

τi − κij

τi
ĝie
−

t
τi = 0 (53)

where,

Q̂[1]
ij = ζiωiQ

[1]
ij + %iQ

[2]
ij and Q̂[2]

ij = %iQ
[1]
ij − ζiωiQ

[2]
ij .

Solving (53) numerically using our calculated initial time
provides the time for the peak error tpeaki . It is also important
to note that the closer the peak times are, the more accurate
this initial guess is and the farther apart they are, the more
iterations will be required to converge to the actual solution.
Once the peak time is known, it can be plug back into (50) to
find the peak error.

η
peak
i =

m∑
j=1

(
χ̂ij(t

peak
i )− C [2]

ij f̂i
)
. (54)

Finally, the maximum error could either be the peak error (if
the second order supermode dominates) or the steady state
error (if the first order supermode dominates). Thus, we take
the largest value between ηSSi and ηpeaki as the maximum
error ηmax

i ,

ηmax
i = max(ηSSi , η

peak
i ) (55)

V. CASE STUDIES
In this section we provide 2 examples to demonstrate our
method: Example 1 shows how our method can be utilized
to find the maximum deviation error for a small network and
example 2 demonstrates application of the method to the case
of the IEEE 145-bus test grid.
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A. EXAMPLE 1
Our first example is the network in Figure 1 with nG =
4 nodes in the generator layer and nL = 2 nodes in the
load layer, with pG =

[
0.1 0.1 0.1 0.2

]T and pL =[
−0.2 − 0.3

]T .
The network dynamics is given by the following equation:
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 Ẍ+


0.9 0 0 0 0 0
0 0.9 0 0 0 0
0 0 0.9 0 0 0
0 0 0 0.9 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 Ẋ

−


−3 1 0 1 1 0
1 − 3 1 0 0 1
0 1 − 3 1 0 1
1 0 1 − 3 1 0
1 0 0 1 − 3 1
0 1 1 0 1 − 3

X =


0.1
0.1
0.1
0.2
−0.2
−0.3

 .
(56)

Using the IRR transformation matrix T ,

T =



0.5 0.5 0.5 0.5 0 0

0 0 0 0
1
√
2

1
√
2

0 0 0 0
1
√
2
−

1
√
2

0.5 − 0.5 − 0.5 0.5 0 0
0.5 0.5 − 0.5 − 0.5 0 0
0.5 − 0.5 0.5 − 0.5 0 0


,

(56) is transformed into,
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 η̈̈η̈η +

0.9 0 0 0 0 0
0 1.0 0 0 0 0
0 0 1.0 0 0 0
0 0 0 0.9 0 0
0 0 0 0 0.9 0
0 0 0 0 0 0.9

 η̇̇η̇η

−



−1
√
2 0 0 0 0

√
2 − 2 0 0 0 0
0 0 − 4

√
2 0 0

0 0
√
2 − 3 0 0

0 0 0 0 − 3 0
0 0 0 0 0 − 5

ηηη =


0.2500
−0.3536
0.0707
0.0500
−0.0500
−0.0500


(57)

The 2 × 2 diagonal block on the top left of the K̂
matrix of (57) corresponds to the quotient network dynam-
ics. The quotient network is depicted in Figure 1(b). The
other diagonal blocks represent the error dynamics between
the full network and the quotient network, which is what
we are interested in. The rightmost 2 blocks are simple so
we diagonalize the second 2 × 2 diagonal block from the
left to demonstrate our method. The dynamics of this one

FIGURE 2. Error vs. time for the network in figure 1. Each curve
represents the error dynamics due to the power not respecting the
symmetries in the two layers of the network.

block is,[
0 0
0 1

]
η̈̈η̈η +

[
1 0
0 0.9

]
η̇̇η̇η +

[
4 −

√
2

−
√
2 3

]
ηηη =

[
0.0707
0.0500

]
(58)

The 3 finite eigenvalues for this 2 × 2 system are, λ1 =
−0.5193 + 1.5232i, λ2 = −0.5193 − 1.5232i and λ3 =
−3.8615. Pairing λ1 and λ2 as conjugates and λ3 as the lone
eigenvalue, we can find the normalized eigenvectors,

v∞ =
[
1
0

]
v1 =

[
0.3457− 0.1544i
1.0170− 0.0077i

]
v2 =

[
0.3457+ 0.1544i
1.0170+ 0.0077i

]
w =

[
2.0327
0.1991

]
.

We can now compute the matrices 3, 3̂, V , V̂ , 4 and W ,

3 =
[
−0.5193+ 1.5232i

]
V =

[
0.3457− 0.1544i
1.0170− 0.0077i

]
,

3̂ =
[
−0.5193− 1.5232i

]
V̂ =

[
0.3457+ 0.1544i
1.0170+ 0.0077i

]
,

4 =
[
−3.8615

]
, W =

[
2.0327
0.1991

]
.

We then solve for T1, T2, and T3,

T1 =
[
0.2930 2.0327
1.0144 0.1991

]
T2 =

[
−0.1014 0.0000
−0.0050 0.0000

]
T3 =

[
0.0103 0.0005
0.0005 0.0000

]
.

We then calculate the decoupled coefficient matrices A2,
A1, A0, transformed power g, and initial condition χχχ (0),

A2 =
[
1 0
0 0

]
, A1 =

[
1.0385 0.0000
0.0000 3.8615

]
, g =

[
0.0714
0.1537

]
,

A0 =
[
2.5897 0.0000
0.0000 14.9108

]
, χχχ (0) =


0
0

−0.0074
0

 ,
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TABLE 1. Initial guess calculation using a linear combination of supermodes for η1. Supermodal peak time and peak for χ̂
p
ij − C [2]

ij f̂i found by solving the
linear ODE are in columns 2 and 3 from the left and the ones calculated using our approach are in columns 4 and 5. The table is arranged in ascending
order of peak time and column 6 is the cumulative peak added in that order. The bold peak time represents the initial guess to solve (53).

TABLE 2. Steady-state error and peak error calculation using an ODE solver in columns 2 and 3 whereas the same calculation using our approach is in
columns 4 and 5. The larger of these values is the maximum shown in column 6.

FIGURE 3. (a) Full network representation of IEEE145 test grid. (b) Quotient network representation of IEEE145 test grid.
Circles indicate load nodes/clusters and squares indicate generator nodes/clusters. Nodes belonging to the same
clusters are colored the same in (a) and the same colors are used for the clusters shown in (b). Nodes colored black
belong to a trivial cluster.

resulting in the following decoupled equation,[
1 0
0 0

]
χ̈̈χ̈χ +

[
1.0385 0.0000
0.0000 3.8615

]
χ̇̇χ̇χ

+

[
2.5897 0.0000
0.0000 14.9108

]
χχχ =

[
0.0714
0.1537

]
(59)

Equation (59) describes the dynamics of two supermodes,
a second order supermode (i = 1) and a first order super-
mode (i = 2). To calcuate the supermodal peak for each,
we extract some parameters from the diagonalized system:
ζ1 = 0.3227, ω1 = 1.6093, τ2 = 1

3.8615 , ĝ2 = 0.0398.
Table 1 provides information on the supermodal peak time

and associated peak calculated via our method and compares
it to the actual peak time and peak obtained by solving the lin-
ear ODE. We also cumulatively add the peaks to calculate the

initial guess. Table 2 provides information on the maximum
error values for our system calculated using our approach and
compares it to the error values obtained by directly solving
the linear ODE (rightmost column of the Table.) This is
also consistent with the plot of the error dynamics shown
in Fig. 2.

Using the IRR transformationmatrix we find how this error
corresponds to the dynamics of the full network and the quo-
tient network: η1 =

√
2(X̂2 − X6) and η2 = 2X̂1 − (X2 + X3)

where X̂1 =
X1+X2+X3+X4

4 and X̂2 =
X5+X6

2 are the dynamics
of the two nodes of the associated quotient network.

B. EXAMPLE 2
Our second example is an application to the IEEE145 bus
network with nG = 50 generator nodes, nL = 95 load nodes,

VOLUME 10, 2022 72667



K. Bhatta et al.: Supermodal Decomposition of the Linear Swing Equation for Multilayer Networks

TABLE 3. Initial guess calculation using a linear combination of supermodes for η1. Supermodal peak time and peak for χ̂
p
ij − C [2]

ij f̂i found by solving the
linear ODE are in columns 1 and 2 from the left and the ones calculated using our approach are in columns 3 and 4. The table is arranged in ascending
order of peak time and column 5 is the cumulative peak added in that order. The bold peak time represents the initial guess to solve (53).

TABLE 4. Calculation of steady-state and peak for all 3 ηs. In columns 2 and 3 we have the steady-state error and peak error calculated using an ODE
solver, whereas in columns 4 and 5 we report values calculated using our approach. Column 6 shows the maximum value between the calculated
steady-state and peak errors.

and 422 transmission lines [50]. The network is shown in
Fig. 3a and the corresponding quotient network in Fig. 3b.
We assume that the power produced by the generator nodes
is equal to qGi = 0.2 and the power absorbed by the load
nodes is equal qLi = −0.1053.
Using the IRR transformation, we obtain twentyfour trans-

verse blocks, of which nineteen are scalar, three are 2 × 2,
one is 3 × 3 and one is 4 × 4. These blocks represent
the deviation dynamics of the individual nodes compared to
their clusters. To demonstrate our method, we choose the
3 × 3 blocks, which corresponds to the error dynamics of
three intertwined clusters, with two nodes each. The first two
clusters are formed of load nodes {121, 122} and {76, 81},
while the third cluster is formed of generator nodes {21, 22}.
These three clusters can be seen in Figure 3, where their nodes
are represented as red circles, green circles and blue squares
on the top right of Fig. 3a, respectively. They map to similarly
colored and shaped nodes of the quotient network, all shown
in the bottom left of Fig. 3b.

In order to characterize the error dynamics, we increase the
power of node 76 to −0.2 to induce an asymmetry in power
within that cluster. We also increase the power of node 22 to
0.5053 in order to maintain the network balance. Since nodes
in the same clusters do not have the same power, it is expected
that the quotient network dynamics will not represent the full
network dynamics, which results in the aforementioned error
dynamics. As in the previous examples, we are interested in
characterizing themaximum overshoot of the error dynamics.
Our chosen 3 × 3 block is associated with the following
system of equations:0 0 0
0 0 0
0 0 1

 η̈̈η̈η +
1 0 0
0 1 0
0 0 0.9

 η̇̇η̇η +
19 −1 −1
−1 2 0
−1 0 1

ηηη
=

 0
0.0670
0.2159

 (60)

Using our method, we diagonalize this system,1 0 0
0 0 0
0 0 0

 η̈̈η̈η +
0.9040 0 0

0 1.9402 0
0 0 19.0557

 η̇̇η̇η
+

19 −1 −1
−1 2 0
−1 0 1

ηηη =
 0.2171

0.0991
−0.0144

 (61)

We also obtain the transformation matrices and initial
condition:

T1 =

0.0534 0.0832 4.3585
0.0174 1.3912 −0.2555
1.0003 0.0276 0.0126

,
T2 =

−0.0040 0 0
−0.0196 0 0
−0.0002 0 0


T3 = 10−03 ×

0.0163 0.0791 0.0008
0.0791 0.3833 0.0039
0.0008 0.0039 0.0000

,

χχχ (0) =


0
0
0

−0.0014
0
0

.

Using parameters taken from the diagonalized system and
applying the same method as in the previous example, we can
calculate the initial guess for each η, which is shown for η1
in Table 3. This initial guess is then used to compute the
maximum errors shown in Table 4. The values in the tables
are consistent with the error dynamics shown in Fig. 4.
Like in the previous examples, the ηs can be expressed in

terms of displacements of nodes of the full network and the
quotient network. η1 =

√
2(X̂95−X211), η2 =

√
2(X̂20−X76),

η3 =
√
2(X̂20−X21), where X̂i represents the displacement of
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FIGURE 4. Error vs. time for the network in figure 3. Each curve represents
the error dynamics in the 3 intertwined clusters presented in example 3.

the ith quotient node (the average of the displacements of the
individual nodes in that cluster), and Xi is the displacement
of node i of the full network.

VI. CONCLUSION
In this paper, we have specialized the structure-preserving
model of the swing equation to a multi-layer network with
two layers, one formed of generator nodes and one formed of
motor nodes. In the presence of symmetries, a lower dimen-
sional model for the dynamics is provided by the so-called
quotient network. However, such representation is often inex-
act when nodes in the same cluster generate or consume
different amounts of power, which makes it important to
characterize how much the actual network dynamics deviates
from that of the quotient network.

A main difference with large part of the literature is that
we have relaxed the commonly used assumption of homoge-
neous damping coefficients and considered the general case
that these can be different from node to node. By using a
combination of group representation theory and the solution
of the quadratic eigenvalue problem, we have reduced the
transient analysis of the linear swing equation in terms of a
set of independent first order and second order supermodes.
Each supermode is fully defined by a minimal set of param-
eters. This has led to a characterization of the transient error
dynamics for the individual nodes of the multilayer network
and the development of a method to compute the maximum
value of the transient error. We have presented application of
this method to two examples of interest, one of which is the
IEEE 145-bus test grid, and demonstrated how it can be used
to characterize the deviation between the dynamics of the full
network and that of the reduced quotient network.
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