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ABSTRACT In recent years, deep-learningmodels have resulted in significant progress in insect recognition.
However, training deep neural networks requires a large amount of data, and data collection and labeling are
time consuming and labor intensive. This study proposes a method for establishing a synthetic image dataset
of stored-product insects to provide well-labelled image data for insect detection tasks. Proxy virtual worlds
are leveraged to obtain synthetic data with annotations. A dynamic generation approach was presented to
generate synthetic images with diverse insect targets, various backgrounds, and changing lighting conditions
by using a camera module in the constructed virtual scene. The coordinates of the bounding boxes and
the category labels of insect targets in each synthetic image were obtained by calculating the geometrical
relationships between the insect targets and the camera module. A texture translation network was developed
to conduct image-to-image translation and launch to enhance the verisimilitude of the synthetic images.
A synthetic image dataset was established for three insect species, Cyptolestes ferrugineus (Stephens),
Sitophilus oryzae (Linnaeus), and Tribolium castaneum (Herbst).A set of assessments was introduced to
evaluate the synthetic image dataset, including the statistical characteristics and experimental verification.
The experimental results demonstrated that the use of synthetic data reduces the demand for real data. The
proposed method may provide a novel solution for providing training data with correct annotations for insect
detection, without tedious image collection and manual labeling.

INDEX TERMS Dynamic generation, insect detection, stored-product insect, synthetic image dataset,
texture translation, virtual world.

I. INTRODUCTION
Infestation by stored-product insects is one of the most
common causes of grain storage loss. This results in the
loss of grain quantity, fungal growth, and quality degra-
dation. Hence, the effective monitoring of stored-product
insects is essential. In recent years, with improved hardware
computing capability, computer vision techniques based on
deep learning have achieved remarkable progress in general
object detection [1] and other computer-vision-related studies
[2], [3]. Because deep learning methods can avoid rule-based
segmentation pipelines and labor-intensive feature engineer-
ing, many insect detection tasks have adopted achievements
from general object detection tasks [4]–[7].
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A growing number of studies have applied deep learning-
based methods to process images or videos to monitor stored-
product insects [8]–[12]. Recently, an increasing number of
grain depots have been equippedwith high-definition security
cameras and insect-monitoring devices that collect images
or videos to detect the occurrence of insects on the surface
of grain piles. Therefore, image recognition based on deep
learning for insect detection has significant practical appli-
cations. However, learning deep hierarchical representations
requires a large amount of accurately labeled data, which
is the main limitation of using deep convolutional neural
networks for insect detection [13].

Our previous study established an image dataset of stored-
product insects for specific insect detection devices and appli-
cation scenarios [14]. However, image collection and labeling
are time-consuming, error prone, and laborious. Collecting
and labeling insect images is more tedious than collecting
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generic images (pedestrians, vehicles, or familiar objects
in our daily lives) because of their millimeter-level body
size, similar appearance, and scattered distribution in gra-
naries. Furthermore, experts with professional backgrounds
are required to guarantee the accuracy of annotations.
All these problems remain a crucial bottleneck for insect
image recognition.

The use of synthetic images has become an effective
method for training and evaluating deep neural networks for
certain computer vision tasks where it is difficult to collect
ground truth labels. There are two main technical categories:
synthesis methods based on computer graphics and gen-
eration methods based on generative adversarial networks
(GANs) [15].

Synthesis methods leverage computer graphics to acquire
fully labeled, dynamic, and photorealistic synthetic images
in proxy virtual worlds. Gaidon et al. [16] constructed
a synthetic dataset (Virtual KITTI) using the Unity3D
game engine, and automatically generated annotations
for object detection, tracking, depth, and optical flow.
Tremblay et al. [17] proposed a synthetic dataset containing
images with accurate annotations using Unreal Engine 4
(UE4) to combine 3D models with a complex background.
Synthesis methods have two significant advantages:1) virtual
environments and objects can be selected and designed to
control the quantity and variety of synthetic images; and
2) synthetic images are snapshots taken by the virtual stereo
camera system, so annotations including object category,
bounding box, pixel category, depth, and optical flow can be
obtained by computing the geometrical relationship between
objects and the camera system in virtual worlds.

Generation methods apply GANs and their variants to
acquire synthetic images for data augmentation [18]. Gener-
ation methods have been successfully applied in some clas-
sification tasks related to agriculture [19]–[21]; they have
improved recognition performance by using GANs for data
augmentation in their studies. In addition, Abbas et al. [22]
adopted the conditional GAN [23] to generate synthetic
images of tomato plant leaves and improve network gen-
eralizability using transfer learning with synthetic images.
Cabrera and Villanueva [24] used generation models to syn-
thesize image patches of pests and stick them to actual images
to enhance the training dataset, with the aim of facilitating the
training of insect detection models.

Inspired by these studies, a method to establish a synthetic
image dataset of stored-product insects is proposed by com-
bining synthesis and generation methods and launching to
provide a large amount of well-labelled image data for insect
detection without tedious collection and labeling. In this
study, we usedCyptolestes ferrugineus (Stephens), Sitophilus
oryzae (Linnaeus), and Tribolium castaneum (Herbst) adults
as examples to illustrate the proposed method and verify
the effectiveness of the synthetic image dataset. The main
contributions of this study are as follows:

1) A dynamic generation approach is proposed to simul-
taneously generate synthetic images of multiple detection

scenarios and export annotations by calculating the geometric
relationship between insect targets and the camera system in
the proxy virtual world.

2) A texture translation network was developed based on
cycle-consistent adversarial networks (Cycle-GAN) [25] to
enhance the verisimilitude of synthetic insect images.

3) A synthetic dataset was established for the three species
of stored-product insects. A set of assessments was intro-
duced to evaluate the synthetic image dataset, including the
statistical characteristics and experimental verification.

II. METHODOLOGY
Establishing the synthetic image dataset consists of three
stages (Fig. 1):

1) Manually design 3Dmodels to match the insect’s geom-
etry and joint structures.

2) Construct virtual scenes according to the proposed
dynamic generation approach and simultaneously generate
synthetic images with accurate annotations.

3) Implement image-to-image translation to make syn-
thetic images more photorealistic using the developed texture
translation network.

A. 3D MODELING OF INSECTS
Fig.2 shows the steps for building a 3D model of an insect.
First, we carefully observed the shapes of insects and crawl-
ing postures under high-definition micro-devices. Second,
we manually constructed a high-precision mesh with the
same proportion of the actual insect and built the body, head,
horns, legs, and wings separately to further simulate the
postures of insects by designing skeletal animation. Third, the
texture was designed using high-definition images of insects,
and normal mapping was adopted to map the texture onto the
mesh to form a 3D model of insects. Fig.3 shows pictures
of 3D models of C. ferrugineus, S. oryzae, and T. castaneum
adults. In this study, 3Dmodeling of insects was implemented
using the 3Ds Max software.

B. DYNAMIC GENERATION OF SYNTHETIC IMAGES
1) CONSTRUCTION OF THE VIRTUAL SCENE
The virtual scene includes four parts: background, insect
targets, environment variables, and camera module, as shown
in Fig.4. The background was a rectangular static mesh tex-
tured with background images that exhibited insect detection
scenarios, such as sticky boards and bulk grain surfaces. The
insect targets are 3D models of stored-product insects.
The environmental variables were the brightness and color of
the light source. The camera module placed above the insect
targets in the virtual scene captures snapshots and controls the
snapshot resolution, shooting angle, and field of view. This
study constructed a virtual scene using UE4.

2) DYNAMIC GENERATION APPROACH
Owing to the various insect detection devices applied in
insect monitoring practices, there are apparent differences in
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FIGURE 1. Block diagram for establishing the synthetic image dataset.

FIGURE 2. Steps for building a 3D model of a T. castaneum adult. (a) A high-definition image of
an actual insect. (b) The constructed mesh of a 3D model. (c) The 3D model mapped with the
texture.

FIGURE 3. 3D models of three species of stored-product insects.
(a) A C. ferrugineus adult. (b) A S. oryzae adult. (c) A T. castaneum adult.

the insect images. Specifically, insects always have diverse
positions, poses, and scales owing to different detection envi-
ronments and shooting distances.Moreover, different lighting
conditions and cameras lead to different brightness, hues,
background, and resolution of the insect images. Therefore,
a dynamic generation equation (1) was proposed to generate
insect targets with various scales, postures, and positions on
diverse backgrounds with different lighting conditions in the
virtual scene to simulate complex situations in the field.

D(t) = Bac(t)+ Ins(t)+ Env(t) t = 0, 1, 2, . . .T (1)

where D(t), Bac(t), Ins(t), and Env(t) represent the vir-
tual scene, background, insect targets, and environmental

FIGURE 4. Structure of a virtual scene.

variables at time t , respectively. The virtual scene is updated
at each time step t . The pseudocode explaining the flow of this
approach is shown in Algorithm1. Details regarding the gen-
eration of the background, insect targets, and environmental
variables are provided below.

a: BACKGROUND
Background images were collected from practical insect
detection scenarios, such as sticky boards, collectors of radi-
ally fluted plate traps, and surfaces of bulk grains. Because
background images are collected from real insect-monitoring
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Algorithm 1 The Flow of the Dynamic Generation Approach
Input:

The overall running time of the dynamic generation
process, T ;
The number of insect species,M ;
The number of insects of the kth species, Nk ;
The 3D model of insects, Insect, whose data structure is
class, initialized with the species index k;
The set of background images, BD;

Output:
The snapshot of the virtual scene at each time step t;
Annotations of the snapshot.

1: for t = 1; t < T ; t ++ do
2: Bac(t) = BD [t % len(BD)];
3: Ins(t) = [];
4: for i = 1; i < M × Nk ; t ++ do
5: insect(i) = Insect.init(k);
6: for each Jointkij in insect(i) do
7: Trans (Jointkij ,t);
8: end for
9: Ins(t) ∪ LSR(insect(i),t);

10: end for
11: Env(t) = Light(t) + Color(t);
12: D(t) = Bac(t) + Ins(t) + Env(t);
13: end for

environments, there are interference factors affecting insect
detection, such as powder, foreign matter, damaged grains,
and other objects that are not insects. The store addresses
of the background images are listed using a long list (back-
ground database, BD). Background Bac(t) was textured with
the selected background image according to the selection rule
defined in (2).

Bac(t) = BD[t%len(BD)] (2)

where len(BD) represents the length of the list BD, and %
is the remainder operator. According to the result (r) of the
reminder operation, the r th background image is selected
and textured onto the background mesh in the virtual scene.
In this study, approximately 1,000 background images were
collected.

b: INSECT TARGETS
Because there are differences among individual insects and
complex crawling behaviors of insects, insects usually exhibit
diverse appearances and postures in images captured in prac-
tice. To ensure the diversity and validity of insect targets,
each body part was taken as the basic unit for the dynamic
generation of each insect target to diversify the posture.
The generation pipeline for insect targets was designed as
shown in (3).

Ins(t) =
M∑
k=1

Nk∑
i=1

LSR(Trans
P∑
j=1

(Jointkij(t)) (3)

TABLE 1. Constraints of Trans and LSR operations.

where M is the number of insect species, Nk is the number
of insects of kth species, P is the number of body parts of an
insect target, and the Jointkij(t) is the jth body part of the ith
insect target belonging to the kth species. Trans is the skeletal
animation performed on each body part of the insect targets to
simulate the moving behavior of real insects. The operation to
controls insect target location, scale, and rotation angle (head
direction).

First, the Trans operation was performed on each body
part of each insect target by stretching and rotating the sep-
arable body parts (Fig.5a). After the Trans-operation, insect
targets with various postures were generated (Fig. 5b and 5c).
Second, the LSR operation was implemented on each insect
target in the virtual scene at time t . Through the LSR opera-
tion, insect targets with different positions, scales, and rota-
tion angles were generated (Fig.5d). The generation process
is executed at time t to update the state of all insect targets
in the virtual scene. Thus, insect targets are not static, but
move and change within the background area in the virtual
scene. To guarantee the rationality and naturalness of insect
targets, we set constraints for the Trans and LSR operations,
as described in Table 1.

c: ENVIRONMENT VARIABLES
The environment variables are the light intensity and color
in the virtual scene (Fig.6). We simulated different detection
environments by varying these variables. The definition of
Env(t) is shown in (4), where Light (t) represents light inten-
sity and Color (t) represents light color at time t .

Env(t) = Light(t)+ Color(t) (4)

3) SYNTHETIC IMAGES AND ANNOTATIONS
In a virtual scene, the insect targets, background, and environ-
ment variables change dynamically according to the dynamic
generation equation. The camera module in UE4 is pro-
grammed to capture snapshots of insect targets, as shown
in Fig.4, and to control the resolution, shooting angle, and
field of view of snapshots at the same time. After calculating
the geometrical relationships between insect targets and the
camera module, the coordinates of the bounding boxes and
the category label of insect targets in each snapshot were
obtained. Snapshots are exported as original synthetic images
in the JPG format, and the corresponding annotations are
stored in a JSON file. After testing, an average of 53 original
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FIGURE 5. Generation process of insect targets. (a) Different body parts of a 3D model of a C. ferrugineus adult. (b) Top
views of insect targets with different postures. (c) Side views of insect targets with different postures. (d) A synthetic
image contains insect targets with different positions, scales, and rotation angles.

FIGURE 6. Synthetic images under different environmental settings.
(a) Examples of different light intensities; (b) Examples of different light
colors.

synthetic images were output per second using NVIDIA
1080ti.

C. TEXTURE TRANSLATION NETWORK
The texture translation network, named TextureNet, is pro-
posed based on Cycle-GAN, which minimizes the difference
between synthetic and real images. TextureNet can learn
the cross-domain mapping from synthetic images (X from
domain A) to real images (Y from domain B) and conduct
image-to-image translation to make synthetic images contain
more details similar to the real images.

TextureNet comprises two identical generators
(GAB and GBA) and two identical discriminators (DA and DB)
(Fig.7). GAB translates synthetic images (X ) to make them
closer to real images (Y ), whereasGBA reconstructs synthetic
images based on translated images. The DA discriminates
whether the input image is synthetic or reconstructed, andDB
discriminates whether the input image is real or translated.
After training TextureNet, the desired translated synthetic
images were generated.

1) GENERATOR
The generator model comprises four parts: Down-sampling
block, Transforming block, Up-sampling block, and Output

FIGURE 7. Overall structure of texture translation network.

FIGURE 8. Structure of the Residual block.

block (Table 2). There are three convolution layers (Conv2d)
and two transposed convolution layers (T_Conv2d) in the
Down-sampling and Up-sampling blocks, respectively. The
Transforming block is composed of nine stacked residual
blocks, and the structure of the residual block is shown
in Fig.8.

2) DISCRIMINATOR
The discriminator model adopts the structure of a Patch
GAN [26], which is composed of a series of convolution lay-
ers. In this study, Leaky ReLU was applied as the activation
function of the discriminator. The details of the discriminator
model are listed in Table 3.
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TABLE 2. Summary of the generator model.

TABLE 3. Summary of the discriminator model.

3) NETWORK TRAINING
The training process of TextureNet involves antagonism
between the generators and discriminators. Through adver-
sarial training using the losses defined in (5) and (6), gener-
ators output vivid fake images, whereas discriminators focus
on distinguishing between fake and real images. Because
synthetic images (X ) and real images (Y ) are un-paired, the
cycle consistency loss composed of the forward and back-
ward processes defined in (7) and (8), respectively, is added to
supervise the training process of the two generators. Adding
the cycle consistency loss can maintain the consistency of
the shape, size, posture, location, and rotation angle of insect
targets in the training process of generators. In addition, GAB
is designed to generate real images (Fake Y in Fig.9) based
on synthetic images (X ), so it should be able to generate
real images (Fake Y2 in Fig.9) even when real images (Y )
are sent as the input. Moreover, GBA should be capable of
generating synthetic images (Fake X2 in Fig.9) when syn-
thetic images (X ) are also sent as the input. Therefore, the
identity losses defined in (9) and (10), are added to con-
strain the outputs of the two generators. The overall loss

FIGURE 9. Training losses of texture translation network.

function (11) of TextureNet is the weighted sum of adver-
sarial loss, cycle consistency loss and identity loss, as shown
in Fig.9.

LGAN_AB(GAB,DB,X ,Y )

= Ey∼Pdata(y)[log(DB(y))]

+Ex∼Pdata(x)[log(1− DB(GAB(x)))] (5)

LGAN_BA(GBA,DA,X ,Y )

= Ex∼Pdata(x)[log(DA(x))]

+Ey∼Pdata(y)[log(1− DA(GBA(y)))] (6)

Lcyc_forward (GAB,GBA,X )

= Ex∼Pdata(x)[‖GBA(GAB − x)‖1] (7)

Lcyc_backward (GAB,GBA,Y )

= Ey∼Pdata(y)[‖GAB(GBA − y)‖1] (8)

Lidentity_AB(GAB,Y )

= Ey∼Pdata(y)[‖GAB(y)− t‖1] (9)

Lidentity_BA(GBA,X )

= Ex∼Pdata(x)[‖GBA(x)− t‖1] (10)

Ltotal = α(LGAN_AB + LGAN_BA)

+ γ (Lcyc_forward + Lcyc_backward )

+β(Lidentity_Ab + Lidentity_BA) (11)

LG(GAB,GBA,X ,Y )

= Ex,y∼Pdata(x,y)[‖y− GAB(x)‖1 − ‖x − GBA(y))‖1]

(12)

The generators and discriminators were trained jointly.
First, the parameters of the two discriminators were frozen,
and the two generators were trained by calculating the sum
of the identity losses, cycle consistency losses, and generator
loss defined in (12). The second step was to sequentially
train the two discriminators with the generator parameters
frozen. The previous two steps were then repeated until
convergence.
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FIGURE 10. Example images in the synthetic dataset. Ground truth boxes are drawn in different colors for the three species of
insects.

FIGURE 11. Distribution of the scale of insect targets.

TABLE 4. Experimental settings with various synthetic and real data ratios.

FIGURE 12. Distribution of rotation angles of insect targets.

III. SYNTHETIC DATASET AND EXPERIMENTS
A. SYNTHETIC DATASET
Based on the proposed method, a synthetic dataset named
Virtual Insect was established for the three species of insects.

FIGURE 13. Examples of overlapped insect targets.

This dataset contained approximately 10,000 synthetic
images and 100,000 insect targets. Examples of these images
are shown in Fig.10. The two ratios defined in (13) and (14)
were calculated to exhibit the scale distribution of insect
targets. The distributions of these two ratios are shown in
Fig.11. The distribution of the rotation angles of the insect
targets is shown in Fig.12.

rl = lobj/lpic (13)

rw = wobj/wpic (14)
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FIGURE 14. Statistics for image sizes and aspect ratios. (a) The
distribution of image sizes. (b) The distribution of aspect ratios of images.

where lobj is the length of the bounding box of the insect
target, lpic is the length of the image, wobj is the width of the
bounding box of the insect target, and wpic is the width of the
image.

Considering the occlusion of some insects in the actual
images, overlapping insect targets in the synthetic images
were generated, as shown in Fig. 13. Because synthetic
images were captured in virtual worlds, the accuracy of
annotations was guaranteed, although the insects highly over-
lapped. In practice, there is not only one type of device that
can be applied for insectmonitoring. The resolution of images
taken by different photographing devices varies significantly,
andmost images do not have an aspect ratio of 1.0. Therefore,
we made a prior design of the image size (length of the
image) and aspect ratio (lpic / wpic). The statistical results
for the image sizes and aspect ratios are presented in Fig.14.

B. INSECT DETECTION EXPERIMENTS
In this section, we explore and analyze the practical
significance of the synthetic images and the effectiveness
of TextureNet. Insect detection experiments using different
combinations of synthetic and real data were conducted to
verify the feasibility of the synthetic data for model training.

1) EVALUATION METRICS
Weused each category’s average precision (AP) and themean
value of each category’s AP (mAP) as model performance
evaluationmetrics.When calculating the AP, the intersection-
of-union threshold between the detections and nearby ground
truth boxes was 0.5.

2) EXPERIMENT SETUP
Inspired by [27], we used different ratios of synthetic data
instead of real data to train the same detection model with a
fixed number of training images to verify the effectiveness of
synthetic data as training data. Suppose that the model trained
using a certain amount of image data, including synthetic
and real data, achieves a similar performance as the model
trained using the same amount of real data. In this case,
it can be concluded that the synthetic data generated by the
proposed method are adequate for insect detection tasks, and

the synthetic dataset might alleviate the need for a large
number of real images for model training. This study intro-
duced a validation experiment with four settings, as defined
in Table 4, to verify this assumption.

We adopted images from the RGBInsect dataset [14] as real
data. Because the image resolution of RGB-Insect images is
high, we cut these images using a window size of 512 pixels
to acquire image patches of an appropriate size. These image
patches are referred to as real images in the following
sections. Single Shot Multi-Box Detector (SSD) [28] with
VGG16 [29] backbone was applied as the insect detection
model.

8,000 real images containing the three insect species were
selected, of which 6,000 images were used as the training set
and 2,000 images were used as the testing set. 6,000 original
synthetic images and their corresponding translated synthetic
images were prepared. We then randomly selected the cor-
responding number of real and synthetic images according
to the experimental settings shown in Table 4 and conducted
validation experiments. For each experimental setting, the
process of image selection and model validation was repeated
three times. The final results shown in Table 5 are the average
values of the three experiments.

3) IMPLEMENTATION DETAILS
a: TRAINING OF TextureNet
A total of 1500 real images containing the three species of
insects were randomly selected from RGBInsect, and the
same quantity of original synthetic images was selected for
training TextureNet. It is worth noting that the images used
for training TextureNet are independent of the experimental
images. Three TextureNets were trained for the three species
of insects using the Adam optimizer with hyper-parameters
β1 of 0.5 and β2 of 0.999. The images were resized to
512 × 512 pixels before being sent to the network. The
training batch size was set as 1. The maximum number of
iterations is 12. The learning rate remained at 0.0002 for the
first six epochs and decreased by 0.00003 per epoch from the
seventh epoch to the end of training. α, γ , and β in (11) are
1.0, 10.0, and 5.0, respectively.

b: TRAINING OF DETECTION MODELS
The SSD was first pretrained using synthetic images and
fine-tuned using real images. The same training strategy
was adopted for both the pretraining and fine-tuning pro-
cesses. Images were resized to 300× 300 pixels before being
sent to the detection model. The training batch size was
set as 32. The stochastic gradient descent (SGD) optimizer
had an initial learning rate of 0.0001, momentum of 0.9,
and weight decay of 0.9. the learning rate is multiplied by
0.1 after the 20th and 40th epochs. The maximum number
of training epochs was set as 50. The first 40 epochs were
trained using synthetic data and the last ten epochs were fine-
tuned using real data. The experimental results are presented
in Table 5.
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TABLE 5. Insect detection results on the Testing set.

4) RESULTS AND DISCUSSION
From the results listed in Table 5, some promising conclu-
sions can be summarized as follows:

Using synthetic images as the training data can sig-
nificantly reduce the demand for a large number of real
images. When 90% of the training images were synthetic,
the detection mAP was 78.94%, decreasing by 5.71% com-
pared with the Baseline. In particular, for C. ferrugineus
adults, AP decreased by 8.13%.When the synthetic data ratio
decreased to 80%, insect detection performance improved to
81.49%. There was still a drop of 3.17% in mAP compared
to Baseline. Although insects’ postures, textures, and back-
ground environments are considered when generating syn-
thetic images, the decline in mAP implies that there is still a
gap between synthetic data and real data. However, when the
real data ratio was 50%, the detection mAP reached 85.89%
and exceeded the Baseline by 1.23%. This result confirms
the feasibility of using synthetic data for model training and
reveals that synthetic data contain critical information that
remains in the real data. In addition, using synthetic data
for model pre-training provides a better initialization of the
model parameters, and fewer real images are required for
training with the desired performance.

Image-to-image translation is critical for improving insect
detection performance when a considerable proportion of
synthetic data is used for model training. When the propor-
tion of synthetic images was 90% and 80%, image-to-image
translation improved the detection performance by 1.09% and
0.87%, respectively. TextureNet learned the detailed charac-
teristics of insect targets and the background of real images
and made translated synthetic images more realistic. Thus,
more realistic details were exhibited in the translated syn-
thetic images, and more desired features were learned during
training, which led to better detection performance. Examples
of the translation results of the GAB generator are shown in
Fig. 15 to illustrate the effectiveness of TextureNet. When
the proportion of real data increased to 50%, the desired
features from real data might become a bottleneck for insect
detection in this setting. Hence, the improvement in detec-
tion performance caused by image-to-image translation was
only 0.03%.

FIGURE 15. Examples of translating results of the GAB generator.

Nevertheless, it should be pointed out that the fidelity and
fineness of the constructed virtual scene are limitations of the
proposed method. Because the natural movements of insects
are complex, some dusty environments in grain granaries
are difficult to simulate in the virtual world. In future work,
we will further expand the insect species of the synthetic
dataset, design more reasonable skeletal amination for 3D
models of insects and enrich background images by collect-
ing more images from actual granaries in practice.

IV. CONCLUSION
This paper proposed a novel method for establishing a syn-
thetic image dataset of stored-product insects, aiming to
provide a large amount of training data for insect detection
based on deep learning. The proposed dynamic generation
approach can automatically generate well-labelled synthetic
images containing diverse insect targets, backgrounds, and
lighting conditions by simulating various detection scenar-
ios in a proxy virtual world. The automatic production of
well-labelled synthetic insect images can shorten the image
collection period and reduce the labor-intensivemanual label-
ing work to a great extent. Moreover, the developed texture
translation network learns mapping from synthetic images to
real images, making synthetic insect images more photore-
alistic. A synthetic image dataset named Virtual Insect was
established for the three species of stored-product insects.
Statistical analysis and validation experiments using differ-
ent combinations of synthetic and real data are introduced.
The validation experimental results demonstrate that using
synthetic images as training data can significantly reduce the
demand for a large number of real images. The proposed
method to establish a synthetic image dataset might help
relieve the scarcity of available image datasets for insect
detection tasks, and has great potential for providing a large
amount of training data for detecting insects in forestry and
agriculture.

REFERENCES
[1] X. Wu, D. Sahoo, and S. C. Hoi, ‘‘Recent advances in deep learning for

object detection,’’ Neurocomputing, vol. 396, pp. 39–64, Jul. 2020.
[2] L. Ruotsalainen, A. Morrison, M. Makela, J. Rantanen, and N. Sokolova,

‘‘Improving computer vision-based perception for collaborative indoor
navigation,’’ IEEE Sensors J., vol. 22, no. 6, pp. 4816–4826, Mar. 2022.

[3] A. K.-F. Lui, Y.-H. Chan, and M.-F. Leung, ‘‘Modelling of destinations for
data-driven pedestrian trajectory prediction in public buildings,’’ in Proc.
IEEE Int. Conf. Big Data (Big Data), Dec. 2021, pp. 1709–1717.

VOLUME 10, 2022 70277



J. Li et al.: Method to Establish a Synthetic Image Dataset of Stored-Product Insects for Insect Detection

[4] L. Liu, R. Wang, C. Xie, P. Yang, F. Wang, C. Xie, P. Yang, F. Wang,
S. Sudirman, andW. Liu, ‘‘PestNet: An end-to-end deep learning approach
for large-scale multi-class pest detection and classification,’’ IEEE Access,
vol. 7, pp. 45301–45312, 2019.

[5] R. Li, X. Jia, M. Hu, M. Zhou, D. Li, W. Liu, R. Wang, J. Zhang,
C. Xie, L. Liu, F. Wang, H. Chen, T. Chen, and H. Hu, ‘‘An effective data
augmentation strategy for CNN-based pest localization and recognition in
the field,’’ IEEE Access, vol. 7, pp. 160274–160283, 2019.

[6] D. J. A. Rustia, C.-Y. Lu, J.-J. Chao, Y.-F. Wu, J.-Y. Chung, J.-C. Hsu, and
T.-T. Lin, ‘‘Online semi-supervised learning applied to an automated insect
pest monitoring system,’’ Biosyst. Eng., vol. 208, pp. 28–44, Aug. 2021.

[7] Y. Sun, X. Liu, M. Yuan, L. Ren, J. Wang, and Z. Chen, ‘‘Automatic in-
trap pest detection using deep learning for pheromone-based dendroctonus
valens monitoring,’’ Biosyst. Eng., vol. 176, pp. 140–150, Dec. 2018.

[8] L. Wu, Z. Liu, T. Bera, H. Ding, D. A. Langley, A. Jenkins-Barnes,
C. Furlanello, V. Maggio, W. Tong, and J. Xu, ‘‘A deep learning model to
recognize food contaminating beetle species based on elytra fragments,’’
Comput. Electron. Agricult., vol. 166, Nov. 2019, Art. no. 105002.

[9] Y. Shen, H. Zhou, J. Li, F. Jian, and D. S. Jayas, ‘‘Detection of stored-grain
insects using deep learning,’’ Comput. Electron. Agricult., vol. 145,
pp. 319–325, Feb. 2018.

[10] H. Zhou, H. Miao, J. Li, F. Jian, and D. S. Jayas, ‘‘A low-resolution image
restoration classifier network to identify stored-grain insects from images
of sticky boards,’’ Comput. Electron. Agricult., vol. 162, pp. 593–601,
Jul. 2019.

[11] J. Li, H. Zhou, Z. Wang, and Q. Jia, ‘‘Multi-scale detection of stored-grain
insects for intelligent monitoring,’’ Comput. Electron. Agricult., vol. 168,
Jan. 2020, Art. no. 105114.

[12] S. Zhang, K. Xia, X. Du, H. Feng, and L. Chen, ‘‘SA faster R-CNNmethod
for insect detection in stored grain based on clustering feature,’’ J. Chin.
Cereal Oil Ass., vol. 35, no. 4, pp. 165–172, 2020.

[13] M. Martineau, D. Conte, R. Raveaux, I. Arnault, D. Munier, and
G. Venturini, ‘‘A survey on image-based insect classification,’’ Pattern
Recognit., vol. 65, pp. 273–284, May 2017.

[14] J. Li, H. Zhou, D. S. Jayas, and Q. Jia, ‘‘Construction of a dataset of stored-
grain insects images for intelligent monitoring,’’ Appl. Eng. Agricult.,
vol. 35, no. 4, pp. 647–655, 2019.

[15] I. J. Goodfellow, ‘‘Generative adversarial networks,’’ in Proc. Adv. Neural
Inf. Process. Syst., vol. 3, 2014, pp. 2672–2680.

[16] A. Gaidon, W. Qiao, Y. Cabon, and E. Vig, ‘‘Virtual worlds as proxy for
multi-object tracking analysis,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2016, pp. 4340–4349.

[17] J. Tremblay, T. To, and S. Birchfield, ‘‘Falling things: A synthetic dataset
for 3D object detection and pose estimation,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2018, pp. 2119–21193.

[18] A. Antoniou, A. Storkey, and H. Edwards, ‘‘Data augmentation generative
adversarial networks,’’ 2017, arXiv:1711.04340.

[19] M. V. Giuffrida, H. Scharr, and S. A. Tsaftaris, ‘‘ARIGAN: Syn-
thetic arabidopsis plants using generative adversarial network,’’ in
Proc. IEEE Int. Conf. Comput. Vis. Workshops (ICCVW), Oct. 2017,
pp. 2064–2071.

[20] G. Hu, H. Wu, Y. Zhang, and M. Wan, ‘‘A low shot learning method for
tea leaf’s disease identification,’’ Comput. Electron. Agricult., vol. 163,
Aug. 2019, Art. no. 104852.

[21] B. Espejo-Garcia, N. Mylonas, L. Athanasakos, E. Vali, and
S. Fountas, ‘‘Combining generative adversarial networks and agricultural
transfer learning for weeds identification,’’ Biosyst. Eng., vol. 204,
pp. 79–89, Apr. 2021.

[22] A. Abbas, S. Jain, M. Gour, and S. Vankudothu, ‘‘Tomato plant disease
detection using transfer learning with C-GAN synthetic images,’’ Comput.
Electron. Agricult., vol. 187, Aug. 2021, Art. no. 106279.

[23] M. Mirza and S. Osindero, ‘‘Conditional generative adversarial nets,’’
2014, arXiv:1411.1784.

[24] J. Cabrera and E. Villanueva, ‘‘Investigating generative neural-network
models for building pest insect detectors in sticky trap images for the
Peruvian horticulture,’’ in Proc. Annu. Int. Conf. Inf. Manage. Big Data,
vol. 2022, pp. 356–369.

[25] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, ‘‘Unpaired image-to-image
translation using cycle-consistent adversarial networks,’’ inProc. IEEE Int.
Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2242–2251.

[26] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, ‘‘Image-to-image translation
with conditional adversarial networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 5967–5976.

[27] F. Erlik Nowruzi, P. Kapoor, D. Kolhatkar, F. Al Hassanat, R. Laganiere,
and J. Rebut, ‘‘How much real data do we actually need: Analyz-
ing object detection performance using synthetic and real data,’’ 2019,
arXiv:1907.07061.

[28] W. Liu, D. Anguelov, D. Erhan, and C. Szegedy, ‘‘SSD: Single shot
multibox detector,’’ in Proc. Eur. Conf. Comput. Vis., 2016, pp. 21–37.

[29] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556.

JIANGTAO LI received the B.E. degree in automa-
tion from the Beijing University of Posts and
Telecommunications, Beijing, China, in 2015,
where she is currently pursuing the Ph.D. degree
with the School of Artificial Intelligence. Her
several related works have been published in aca-
demic journals, including Computers and Elec-
tronics in Agriculture and Applied Engineering in
Agriculture. Her research interests include deep
learning and data mining.

YUWEI SU received the B.E. degree from the
Nanjing University of Posts and Telecommunica-
tions, Nanjing, China, in 2020. He is currently
pursuing the M.S. degree with the Beijing Uni-
versity of Posts and Telecommunications, Beijing,
China. His current research interests include deep
learning and computer vision.

ZHAOJUN CUI received the B.E. degree in
automation from the Beijing University of Posts
and Telecommunications, Beijing, China, in 2020,
where she is currently pursuing the M.S. degree
in control science and engineering. Her current
research interests include deep learning and com-
puter vision.

JIDA TIAN received the B.E. degree in engineer-
ing from Luoyang Normal University, Luoyang,
China, in 2013, and the M.S. degree in engi-
neering from Xi’an Polytechnic University, Xi’an,
China, in 2016. He is currently pursuing the
Ph.D. degree with the Beijing University of Posts
and Telecommunications. His research interests
include machine learning and computer vision.

HUILING ZHOU was a Visiting Scholar with
the University of Darmstadt, Germany, and the
University of Manitoba, Canada. She is cur-
rently a Professor with the School of Artificial
Intelligence, Beijing University of Posts and
Telecommunications, Beijing, China. Her research
interests include technology and applications of
the Internet of Things, machine learning, and data
mining. She is currently focuses on the intelligent
monitoring of stored-grain pests. She is a Reviewer

ofmultiple academic journals, such asComputers and Electronics in Agricul-
ture, Crop Protection, Journal of Stored Products Research, and Biosystems
Engineering.

70278 VOLUME 10, 2022


