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ABSTRACT Recently, convolutional neural networks (CNNs), which exhibit excellent performance in the
field of computer vision, have been in the spotlight. However, as the networks become wider for higher
accuracy, the number of parameters and the computational costs increase exponentially. Therefore, it is
challenging to use deep learning networks in embedded environments with limited resources, computational
performance, and power. Moreover, CNNs consume a great deal of time for inference. To solve this problem,
we propose a practical method for filter pruning to provide an optimal network architecture for target
capacity and inference acceleration. After revealing the correlation between the inference time and the
FLOPs, we proposed amethod to generate a networkwith the desired inference time. Various object detection
datasets were used to evaluate the performance of the proposed filter pruning method. The inference time of
the pruned network was measured and analyzed using the NVIDIA Jetson Xavier NX platform. As a result
of pruning the number of parameters and FLOPs of the YOLOv5 network in the PASCAL VOC dataset by
30%, 40%, and 50%, the mAP decreased by 0.6%, 2.3%, and 2.9%, respectively, while the inference time
was improved by 14.3%, 26.4%, and 34.5%, respectively.

INDEX TERMS CNN, filter pruning, FLOPs, inference time, YOLOv5.

I. INTRODUCTION
Recently, deep learning has shown excellent performance in
various fields. Among the deep learning approaches, Con-
volution Neural Networks (CNNs) offers outstanding per-
formance in the field of computer vision for such as image
classification [1]–[3], object detection [4]–[10], and image
segmentation [11]–[13]. This has been made possible by
increasing the amount of data used and by improvement of
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hardware performance (by such as GPUs). However, as the
networks become deeper and wider, the number of parame-
ters and computational cost increase exponentially. Accord-
ingly, networks consume more power for a large amount
of computation and require long inference time and a large
memory for a large number of parameters. In particular, this
made CNNs difficult to use in embedded devices such as
mobiles, autonomous vehicles, and drones, where resources
are limited. To solve this problem, pruning is being actively
researched [14]–[22] in a variety of studies on lightweight
deep learning networks.
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FIGURE 1. YOLOv5 architecture.

Pruning is a method that reduces the redundancy of a net-
work according to a saliency score. This generates a network
with fewer parameters requiring less computation than the
baseline network. After training the network to figure out
the importance of the parameters, unimportant parameters are
removed according to their saliency scores by each algorithm.
Moreover, pruning is divided into unstructured pruning [14]
and structured pruning [15]–[22]. Unstructured pruning [14]
judges the importance of each parameter individually and
removes unnecessary parameters to obtain a sparse convolu-
tion structure. Structured pruning [15]–[22] removes unnec-
essary parameters by judging the importance of a bundle of
several parameters. In this paper, by using structured pruning,
YOLOv5 (an object detection network), is light-weighted to
generate a network with a significantly reduced number of
parameters and amount of computation. By measuring the
lightweight network on the NVIDIA Jetson Xavier NX plat-
form, it was confirmed that the inference time was improved.
The contributions of this paper are as follows.

• Inspired by the holistic filter pruning (HFP) method
proposed in [15], a network with a target number of
parameters and FLOPs can be generated using the pro-
posed target capacity filter pruning (TCFP). This was
applied to the latest object detection network, YOLOv5,
and the performance was evaluated on an edge device,
NVIDIA Jetson Xavier NX.

• An optimal structure for network inference speed in the
NVIDIAGPUwas found experimentally and confirmed.
Then, a practical network filter pruning framework was
proposed and used to accelerate the network inference.

• The correlation between the amount of computation and
the inference time was experimentally confirmed. Then,
a method for generating a network with a target infer-
ence time using the new pruning method was proposed.

The structure of the remainder of this paper is as follows.
In Section II, YOLOv5 [10] and related research on the prun-
ing method are described. In Section III, we introduce target
capacity filter pruning (TCFP), alongwith a practical network
architecture optimization method for network acceleration on
NVIDIA GPUs during pruning. In Section IV, quantitative
experimental results of lightweight networks using TCFP
are presented and analyzed. The correlation between the
amount of computation and inference time, and a method for

creating a network with target inference speed, is described.
In Section V, the conclusions of this paper are discussed.

II. RELATED WORKS
This section describes the architecture of YOLOv5, the latest
object detection network, and research related to pruning.

A. YOLOv5
Object detection refers to finding the locations and classes
of specific objects in an input image. Object detection net-
works are divided into one-stage detectors and two-stage
detectors. Moreover, the object detection process consists
of region proposal and classification processes. Region pro-
posal is the process of finding coordinates by specifying
the locations of objects, and classification is the process
of classifying the types of objects. In a one-stage detector,
the region proposal stage and the classification stage are
not divided but are performed at once, solving both stages
simultaneously. Representative one-stage detectors include
SSD [5] and YOLO [6]–[10]. A two-stage detector searches
for objects by sequentially performing a region proposal and
classification processes. First, the regions where the objects
are likely to be found are determined through the region pro-
posal process, and then the classification process is performed
on the regions to actually detect the objects. The R-CNN [4]
is a representative two-stage detector. The two-stage detector
usually performs better than the one-stage detector. However,
it has disadvantages: it is difficult to use for real-time object
detection due to its slow inference speed, and its structure is
complex and challenging to train.

In this paper, an accelerated object detection network is
generated by applying TCFP to YOLOv5 [10], a state-of-the-
art first-stage detector. YOLOv5 [10] consists of a backbone
and a head module, as shown in Fig. 1. The backbone and
head consist of the Conv module, Focus module, C3 module,
and SPP module. In addition, there are several proposed
versions of YOLOv5 [10] networks (small: s, medium: m,
large: l, and xlarge: x), depending on the size of the network.
In this paper, TCFP was applied to the Conv module, C3
module, and SPP module of a YOLOv5-large network. The
Upsampling module and Concat module do not have param-
eters, so there was no need to apply the pruning method. The
Focus and Detect modules have few parameters, and there is
a risk that accuracy may decrease when a pruning method is
applied, so the new pruning method was not applied.

B. PRUNING
The pruning process involves sparsity learning, pruning,
and fine-tuning. The importance of artificial neural network
connections is determined in the sparsity learning stage.
In the pruning, which is based on the sparsity learned net-
work, unimportant connections are determined according to
their saliency scores, and the corresponding connections are
removed. In the pruning process, the number of parameters
and FLOPs of the network are reduced. The last process is
the fine-tuning process to retrain the pruned network.
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FIGURE 2. Target capacity filter pruning (TCFP) overview.

Pruning is classified as either unstructured/weight prun-
ing [14] or structured pruning [15]–[22] according to the
method of determining the importance of parameters and
removing them. Unstructured pruning [14] removes parame-
ters by determining the importance of each parameter accord-
ing to the saliency score of each algorithm. Although it has
the advantage of having a high compression ratio, many
parameters are reduced in the fully connected layer. There-
fore, it is inefficient in terms of the amount of computation
because it does not effectively lighten the convolutional layer,
where most of the network computations occur. Unstructured
pruning also has the disadvantage of requiring specific library
and hardware support for a sparse matrix.

In contrast, structured pruning [15]–[22] judges the impor-
tance of network connections according to the saliency score
of each algorithm based on larger units such as channels.
Structured pruning does not have a sparse matrix so that
an existing library can be used, and memory usage can be
reduced without requiring additional hardware. However,
if a large number of parameters are pruned, the network
performance may be degraded. Structured pruning methods
[15]–[22] are divided into predefined pruning methods and
automatic pruning methods according to the method of deter-
mining the pruning rate. The predefined methods [16]–[19]
make the user define the pruning rate for each layer. However,
the automatic pruning methods [15], [20]–[22] automatically
pruned the entire network according to the algorithm used.

The pruning methods mentioned in the followings are the
studies that used predefined pruning methods. Li et al. [16]
used the L1-norm of the filter as a saliency score to judge the
importance of the filter. Luo et al. [17] found and removed
a filter with little effect by using the difference between the
feature map before and after removing a specific channel of
the filter. He et al. [18] used a soft pruning method to set
a filter with a small L2-norm to zero every epoch and then
retrained it. Lin et al. [19] found unimportant channels and
their corresponding filters through their rank in the feature
map and removed them. The predefined method has the

disadvantage in that the user has to go through several trial-
and-error processes to determine the pruning rate for each
layer.

The automatic pruning methods can automatically create
a pruned network architecture by an algorithm, so it requires
less trial and error compared to the predefined pruning meth-
ods. Therefore, in this paper, we consider an automatic filter
pruning method. Liu et al. [20] proposed network slimming,
which removed the filter by judging the importance of a
channel through the size of the scaling factor γ of the batch
normalization layer. Li et al. [21] pointed out the problem
of vanilla evaluation and used adaptive batch normalization
to compare the performance of several networks pruned at
a random rate for each layer and selected the one network
structure with the highest performance. HFP [15] constructed
a loss function using the scaling factor γ value of the batch
normalization layer and used it to find the structure of the
pruned network. Chen et al. [22] divide the parameter groups
that affect the same output feature map into zero invariant
groups (ZIG) sets, and then use the half-Space stochastic
projected gradient (HSPG) optimizer to simultaneously per-
form sparsity learning and fine-tuning to remove unnecessary
parameters. In network slimming [20], the number of remain-
ing channels became zero after pruning, so a network could
not be generated, and FLOPs could not be adjusted directly.
Li et al. [21] may take a long time to find an optimal network
due to a wide search space. Moreover, it may be challenging
to generate a model with target parameters and target amount
of computation. In HFP [15], an excessively pruned network
could be generated beyond the target number of parameters
and computational amount, after which it may takemuch time
to find hyperparameters to generate a network that meets the
target. Chen et al. [22] should use only the HSPG optimizer,
and it is difficult to create a network with target parameters
and FLOPs. In summary, other studies ([15], [20]–[22]) were
a few or no mentions of improvement in inference speed
due to the reduced amount of computation. Moreover, it is
not possible or challenging to create a network with target
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FIGURE 3. Operation on the convolution layer.

parameters and FLOPs, and there is the limitation that most
of them are applied and evaluated only for classification
networks. However, in this paper, by applying the proposed
pruning method to an object detection network, we not only
create a network with target parameters and FLOPs but also
improve the inference time in edge devices.

With the method reported in this paper, both parameters
and FLOPs of a network can be pruned at the desired rate
using TCFP, and we evaluated the performance of the pro-
posed algorithm by comparing the network inference speed
before and after pruning on the NVIDIA Jetson Xavier NX
platform. In addition, the optimal structure for accelerating
the inference speed in the NVIDIA GPU, and the correla-
tion between inference speed and FLOPs, were confirmed
experimentally. Therefore, using our proposed framework,
a network with a specific amount of FLOPs can be generated,
and a network with a target inference speed can easily be
generated by predicting the inference speed.

III. PROPOSED METHODS
In this section, TCFP is explained in detail. The overall
framework for our proposed method can be seen in Fig. 2.
We perform sparsity learning based on a pre-trained network.
In sparsity learning, the architecture of a lightweight network
is determined that provides target numbers of parameters and
computations. After that, pruning is performed using the size
of the scaling factor γ of the batch-norm layer as a saliency
score. During pruning, an 8n extension process is performed
to generate a structure optimized for inference speed. Finally,
based on the architecture generated by the pruning process,
parameter values are initialized and retraining is performed.

A. AMOUNT OF COMPUTATION IN THE CONVOLUTION
LAYER
The operation in the convolutional layer is performed as
shown in Fig. 3. The terms IC l, IH l, and IW l indicate the
number of channels, height pixels, and width pixels of the
input data of the l-th convolutional layer, respectively.Kl rep-
resents the number of pixels in the filter height and width
of the l-th convolutional layer, and the number of channels
in the filter is equal to the number of channels in the input.
In addition, OC l,OH l, and OW l indicate the number of
channels, height pixels, and width pixels of the output data

FIGURE 4. Indicator function.

of the l-th convolutional layer, respectively. The number of
height pixels and width pixels of the output data of the
l-th convolutional layer follow (1) and (2). Here, S and P
represent the stride and padding of the filter, respectively.

OW l =
IW l + 2Pl − Kl

Sl
+ 1 (1)

OH l =
IH l + 2Pl − Kl

Sl
+ 1 (2)

The amount of computation required to calculate one pixel
of the output data is equal to the number of weights of
one filter and can be expressed as (3). Moreover, to obtain
all of the output data, (3) should be performed as many
times as the number of pixels of the output data. Therefore,
the amount of computation (number of calculations) in the
l-th convolutional layer can be determined using (4).

Fl,filter = IC l × Kl × Kl (3)

Fl = Fl,filter × OC l × OH l × OW l (4)

B. SPARSITY LEARNING
1) INDICATOR FUNCTION
In order to calculate the number of parameters and the amount
of computation of the pruned network, an indicator function
as in (5) was used. The filter to be pruned in the convolution
layer is determined using the γ value (the scaling factor of the
batch normalization layer) as the saliency score. In the batch
normalization layer, the filters of the convolution layer that
generate a channel affected by a value of γ smaller than the
threshold t , can be pruned.

θ (γ, t) =

{
0, if |γ | ≤ t
1, if |γ | > t

(5)

However, in the case of an indicator function such as (5),
differentiation at the threshold value t is impossible, and
because the differential value becomes zero at most γ ,
learning does not proceed appropriately during backpropa-
gation. Therefore, a straight-through estimator (STE) [23]
was used as the first derivative of the indicator function
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TABLE 1. Comparison of YOLOv5 network performance according to conventional and proposed pruning methods for the PASCAL VOC dataset.

during backpropagation to enable learning. The definition of
STE is as follows:

∂θ (γ, t)
∂γ

=

{
−1, if γ ≤ 0
1, if γ > 0

(6)

The indication function in the forward and back-propagation
process can be confirmed in Fig. 4.

2) LOSS FUNCTION FOR SPARSITY LEARNING
The use of CNNs in an embedded environment with limited
resources is subject to several limitations. The limited mem-
ory makes it difficult to utilize an extensive network, and low
computing power requires a long time for inference. There-
fore, it is possible to generate a network with the number
of target parameters and FLOPs using the proposed pruning
method, which facilitates the use of CNNs in the embedded
environment.

Equations (7) and (8) represent the amount of computation
and the number of parameters of the network after pruning,
as calculated using (5). The terms Fl , Pl , and Cl indicate
the amount of computation, number of parameters, and num-
ber of channels of the l-th convolution layer, respectively.
L indicates the number of layers in the network. The first
parenthetical term on the right sides of (7) and, (8) indicates
the effect of the filter pruned in the previous layer, and the
second parenthetical term indicates the effect of the filter
pruned in the current layer.

Fpruned

=

∑L

l=1

{
Fl

(∑Cl−1
c=1 θ

(
γl−1,c, t

)
Cl−1

)(∑Cl
c=1 θ

(
γl,c, t

)
Cl

)}
(7)

Ppruned

=

∑L

l=1

{
Pl

(∑Cl−1
c=1 θ

(
γl−1,c, t

)
Cl−1

)(∑Cl
c=1 θ

(
γl,c, t

)
Cl

)}
(8)

Equations (7) and (8) can be used to create a loss function that
is the same as (9).

Losspruning =
(
Fpruned − Ftarget

Fbaseline

)2
+

(
Ppruned − Ptarget

Pbaseline

)2
(9)

In (9), Fbaseline and Pbaseline represent the amount of
computation and the number of parameters in the baseline
network, and Ftarget and Ptarget represent the amount of com-
putation and the number of parameters of the target pruned
network, respectively. The terms Fpruned and Ppruned indicate
the amount of computation and the number of network param-
eters remaining after removing unnecessary filters using
the indicator function determined during sparsity learning.
By combining the loss function Lossorigin used for learning by
the baseline network and the loss function Losspruning used for
pruning, as in (10), both can be solved simultaneously during
training. Therefore, it is possible, after training is completed,
to obtain an optimal network architecture with the target
numbers of parameters and amount of computation.

Loss = Lossorigin + αLosspruing (10)

In (10), α is a scaling factor for balancing Lossorigin and
Losspruning. In this paper, half the size of Lossorigin of the
untrained network and the product of the maximum value of
Losspruning and α are set to be equal. For example, if the num-
ber of target parameters and the amount of computation of the
network under sparsity learning are set to 50% of that of the
existing network, the value of Losspruning ranges from 0 to 0.5.
Therefore, if the size of Lossorigin of the untrained network
is 1, the value of α becomes 1.

C. NETWORK ARCHITECTURE OPTIMIZATION PRUNING
FOR INFERENCE SPEED
Most lightweight networks formed through pruning do not
have a hardware-optimized architecture for CNN accelera-
tion, such as a GPU. As a result, the inference speed of the
pruned network may not be accelerated or may be relatively
slow. We experimentally confirmed that the number of filters
in the convolution layer should be a multiple of 8 to have an

70844 VOLUME 10, 2022



J. Jeon et al.: Target Capacity Filter Pruning Method for Optimized Inference Time Based on YOLOv5 in Embedded Systems

FIGURE 5. Experimental results from comparison of network
performance (mAP), number of parameters, FLOPs, and inference time for
different pruning methods using the PASCAL VOC dataset.

optimal architecture for inference speed on NVIDIA GPUs.
Therefore, the number of filters was expanded to 8n based
on the network architecture generated in the pruning step
after sparsity learning. For example, if the number of filters
in one convolution layer is 193, the number of filters is set
to 200, and the 8n extension is made to be a multiple of 8.
Through this practical method, network architecture opti-
mization pruning for inference speed can easily be performed
for NVIDIA GPUs.

D. CORRELATION BETWEEN INFERENCE TIME AND FLOPs

T ∗

T
∝

√
F∗

F
(11)

Many users will expect network inference acceleration due
to reduced amount of computation and reduced memory

FIGURE 6. Comparison of YOLOv5 network inference times on different
GPUs by extension size. The inference time on NVIDIA Jetson Xavier NX is
plotted by dividing by 5.

usage through pruning. Therefore, if the correlation between
the amount of computation and the inference speed can be
identified, it is possible to determine in advance the FLOPs
that the network must have to satisfy a specific inference
time. Through TCFP, it is possible to generate a network with
the target inference speed. Therefore, we found experimen-
tally a correlation between inference time and the amount
of computation. The relationship is not a linearly propor-
tional relationship but has a non-linear correlation as in (11).
F and F∗ represent the FLOPs of the baseline network and
the FLOPs of the pruned network, respectively. Moreover,
T and T ∗ represent the inference time of the baseline network
and the inference time of the pruned network, respectively.
If the relationship between the amount of computation and
the inference time as described above is used, it is possible to
easily predict and generate a networkwith the target inference
speed by using TCFP method.

IV. EXPERIMENTS
To evaluate our proposed TCFP method, three benchmark
datasets for object detection were used: PASCAL VOC [24],
VISDRONE [25], and COCO [26]. The parameter settings
required for training and evaluation followed the default set-
tings of YOLOv5 [10] except for batch size and image size.
Inference time measurement was performed after fixing the
batch size to 1. In this section, only the experimental results
on the PASCALVOCdataset are presented. The experimental
results for the COCO and VISDRONE datasets are presented
in the appendix.

A. COMPARISON RESULTS OF PERFORMANCE
ACCORDING TO PRUNING METHODS
Table 1 shows the performance according to different pruning
rates using three pruning methods for the PASCAL VOC
dataset. The PASCAL VOC dataset includes VOC 2007 and
VOC 2012. We conducted training using both versions of
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TABLE 2. The ratios of inference time and FLOPs on 640 × 640 image in
PASCAL VOC dataset.

TABLE 3. The ratios of inference time and FLOPs on 1376 × 1376 image
in VISDRONE dataset.

the dataset. It consists of about 16.5 k training images,
4.9 k validation images, and twenty types of objects. Each
image has three channels and information about bounding
boxes is provided in xml format. The batch size required for
all network training, including sparsity learning, was fixed
at 160. In addition, the image size parameter of YOLOv5
was set to 640 during training and testing. The experimental
results are shown in Table 1. The first row of the table shows
the performance of the unpruned baseline model. HFP [15]
and our TCFP method was used to set the target pruning
rate for parameters and FLOPs, but in the case of network
slimming [20], this was not possible. Thus, pruning was
performed by setting the target pruning rate based on the
parameters.

Fig. 5(a) shows the number of parameters and FLOPs of
the network generated according to each pruning method and
rate. In the case of HFP [15], both parameters and FLOPs
were excessively pruned compared to the target pruning rate.
In the case of network slimming [20], parameters were appro-
priately pruned according to the target pruning rate, but the
reduction in the amount of FLOPs was not large. In the case
of our proposed pruning method, TCFP, both parameters and
FLOPs were pruned to meet the target pruning rate, and a
pruned network with the desired number of parameters and
FLOPs was generated. Fig. 5 (b) shows the mAP perfor-
mance versus the inference time of the pruned networks. For
example, the leftmost point on the orange line represents the
performance of a network with both parameters and FLOPs
pruned by 50% using TCFP. The rightmost point represents
the performance of a network pruned by 30%. The network
pruned by HFP [15] has fewer FLOPs than the network
pruned by the TCFP method, but requires a longer time for

FIGURE 7. Correlation between inference time and FLOPs. The Pearson
correlation coefficient (PCC) of the (a) and (b) are 0.857 and 0.958,
respectively.

inference andmAP also shows lower performance. In the case
of the pruned network created using the network slimming
method [20], the mAP performance is slightly higher, but this
is a result of a large amount of difference in the FLOPs.

Moreover, when using network slimming [20], although
FLOPs were reduced, the inference time was instead
increased. Comparing the performance of the network in
which parameters and FLOPs were pruned by 30% using
our TCFP method, and the network in which only parame-
ters were pruned by 30% using network slimming [20], the
mAP(0.5) and mAP(0.5:0.95) are lower by 0.5% and 0.4%,
but the inference time is 22.08 ms faster. Furthermore, in the
case of using network slimming, the inference time deterio-
rates by 11.01ms (14.2%), but improves by 11.07ms (14.3%)
with the TCFP method. By pruning the network using TCFP,
the inference time could be improved by 14.3% to 34.5%.

B. NETWORK ARCHITECTURE OPTIMIZATION PRUNING
ACCORDING TO EXTENSION AND GPU
The purpose of pruning is to generate a network with a
small number of parameters and FLOPs to utilize a deep
learning network in an environment with limited resources.
Also, many users expect shorter inference times as FLOPs
are reduced. However, there are cases in which the inference
time does not decrease much or even increases more, such as
with network slimming [20] and HFP [15] in Table 1. There-
fore, we present a practical network architecture optimization
pruning method for improving inference time. Most of the
pruning process is performed after sparsity learning, as shown
in Fig. 2. In the pruning process, the corresponding filters of
the scaling factor having an absolute value smaller than the
threshold are removed. After that, based on the architecture
of the pruned network, it is possible to improve the inference
speed of the pruned network effectively and in a practical way.
Using the 8n extension improves the architecture so that the
number of all filters is a multiple of 8, and the proposed 8n
extension technique can easily be applied to other pruning
algorithms.

To evaluate the performance of the proposed 8n extension,
we measured and compared the inference time according to
the extension size using an NVIDIA GeForce RTX 3090,
Quadro RTX 6000, and Jetson Xavier NX. Fig. 6 showed the
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TABLE 4. Comparison of YOLOv5 network performance according to conventional and proposed pruning methods for the VISDRONE dataset.

change in inference time according to the extension size when
inference involving the PASCALVOCdataset was performed
using the network in which the parameters and FLOPs were
pruned by 40% using the TCFP. In all environments, when the
number of filters was extended in a multiple of 8, the shortest
inference time was required. In addition, the NVIDIA Jetson
Xavier NX, GeForce RTX 3090, and Quadro RTX 6000 have
Volta architecture, Ampere architecture, and Turing archi-
tecture, respectively. The versatility of the 8n extension was
confirmed by showing that the inference time was improved
with all three architectures.

C. NETWORK INFERENCE TIME VS PRUNING RATE
The inference time measurement reported in this subsection
was performed for two cases with input image sizes of 640×
640 and 1376 × 1376. In the case of a 640 × 640 input
image, the network was trained and pruned using the PAS-
CAL dataset, and in the case of an input image of 1376 ×
1376 size, the network was trained and pruned using the
VisDrone dataset. The performance of the VisDrone dataset is
presented in the appendix. Tables 2 and 3 list the experimental
results shown graphically in Fig. 7, where the correlation
between inference time and FLOPs is also shown. It can be
seen that the pattern of change of the inference time ratio and
the FLOPs ratio according to the pruning rate is similar. The
error between the inference time ratio and the FLOPs ratio is
tiny, so it will be possible to predict effectively the inference
time of the network before pruning. Moreover, when the
correlation between the inference time and FLOPs data were
quantitatively analyzed through Pearson correlation coeffi-
cient (PCC) [27], the PCC in the Pascal VOC dataset was
0.857 and the PCC in the VisDrone dataset was 0.958.

Both values are more significant than 0.85, indicating a
strong correlation between FLOPs and inference time [28].
If the correlation between inference time and FLOPs is used,
it will be possible to predict and generate a network simply
with the target inference time.

V. CONCLUSION
In this paper, we proposed a target capacity filter prun-
ing (TCFP) able to improve the inference speed of object

detection networks. The proposed method makes it possible
to create a network with an architecture optimized for the
desired inference speed and with the targeted number of
parameters and FLOPs. In addition, the correlation between
inference time and FLOPs according to the pruning ratio was
confirmed through various experiments. As a result, we con-
firmed the performance of the proposed filter pruningmethod
using various object detection datasets and the YOLOv5
network.

APPENDIX
Tables 4 and 5 show the performance according to the various
pruning ratios using three different pruning algorithms for the
VisDrone and COCO datasets, respectively. The parameter
settings required for training and evaluation followed the
default settings of the YOLOv5 [10] network except for batch
size and image size. The inference time measurement was
carried out by fixing the batch size to 1.

A. VISDRONE DATASET
The VisDrone-2019 dataset consists of 6471 training images
and 1610 test images, with 10 types of objects. Each image
has 3 channels, and information about bounding boxes is
provided in the form of text files. The batch size required
for all training of the network, including sparsity learning,
is fixed at 32. Also, the image size parameter of YOLOv5 [10]
was set to 1376. Table 4 shows the experimental result.
In the case of HFP [15], both parameters and FLOPs were
over-pruned compared to the target pruning rate. As a result,
the mAP showed lower performance than TCFP and required
a longer inference time. In the case of network slimming [20],
it was possible to create a network with the target number of
parameters. Although it is not possible to set the desired ratio
for pruning of FLOPs, as a result of pruning, the networks
with an amount similar to the FLOPs targeted in this paper
were generated. However, the mAP degradation is the most
severe compared to other methods, and the improvement in
inference time is insignificant compared to other methods.
In the case of our TCFP method, both the number of param-
eters and FLOPs were pruned to match the target pruning
rate. The inference speed and mAP performance were also

VOLUME 10, 2022 70847



J. Jeon et al.: Target Capacity Filter Pruning Method for Optimized Inference Time Based on YOLOv5 in Embedded Systems

TABLE 5. Comparison of YOLOv5 network performance according to conventional and proposed pruning methods for the COCO dataset.

the highest. The networkwith both parameters and the FLOPs
pruned by 50% using the TCFP method has fewer parameters
and FLOPs than the network pruned by 30% using HFP [15].
In addition, mAP(0.5) and mAP(0.5:0.95) are 0.1% higher
and the inference time is also 32.95 ms shorter. In addition,
the network with both parameters and the FLOPs pruned by
50% using TCFP has fewer parameters and the FLOPs than
the network pruned by 30% using network slimming [20].
However, mAP(0.5) and mAP(0.5:0.95) are higher by 0.4%
and 0.3%, respectively. The inference time is also shorter by
66.47 ms.

B. COCO DATASET
The COCO dataset consists of approximately 118 k training
images, 5 k validation images, and 80 types of objects. Each
image has 3 channels, and information about the bounding
boxes is provided in the form of a json file. The batch size
required for all training of the network, including sparsity
learning, was fixed at 128. Moreover, the image size param-
eter of YOLOv5 [10] was set to 640. Table 5 shows the
experimental results. In the case of HFP [15], FLOPs are
pruned close to the desired rate, but the number of param-
eters is excessively pruned compared to the target pruning
rate. In the case of network slimming [20], the number of
parameters can be pruned as much as desired, but the FLOPs
are not significantly reduced compared to other methods.
In the case of our proposed TCFP method, both the number
of parameters and FLOPs are pruned close to the target
pruning rate. In addition, when the network is pruned by
other methods, the inference speed is rather slow or hardly
improved, but in the case of TCFP, it can be confirmed that
the inference speed is significantly improved. The inference
speed of the network in which parameters and FLOPs are
pruned by 30% through TCFP is 3.26 ms shorter than in the
network in which parameters and FLOPs are pruned by 50%
using HFP [15]. Moreover, mAP(0.5) and mAP(0.5:0.95) is
0.6% and 1.4% higher, respectively.When compared with the
network in which parameters and FLOPs are pruned by 30%
using network slimming [20], mAP(0.5) and mAP(0.5:0.95)
are 0.7% and 0.5% lower, respectively, but the inference time
is 23.96 ms shorter.
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