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ABSTRACT Fault-tolerance of a system measures its working capability in the presence of faulty com-
ponents in the system. The fault-tolerant partition dimension of a network computes the least number
of subcomponents of network required to distinctively identify each node in the presence of faults,
having promising applications in telecommunication, robot navigation and geographical routing proto-
cols. In this paper, certain triangular mesh networks including, triangular ladder (Tls), triangular mesh
(Ts), reflection triangular mesh (rl(Ts)), tower triangular mesh (Trs) and reflection tower triangular mesh
(rl(Trs)) networks are discussed for their partition and fault-tolerant partition resolvability. In this regard,
it is shown that the partition dimension of these networks is 3, whereas their fault-tolerant partition
dimension is 4.

INDEX TERMS Triangular ladder, triangular mesh, metric dimension, partition dimension, fault-tolerant
partition dimension.

I. INTRODUCTION AND BASIC TERMINOLOGIES
Networks are the foundation for gathering and sending data,
which should be used to inform and evolve strategies and
efficiencies. These networks have been recognized as versa-
tile interconnection networks having topologies that reflect
the communication pattern of a wide variety of natural prob-
lems. Mesh related networks have been around for some
time, but are growing in popularity as the prevalence of
internet of things (IoT) is increasing in several areas like,
industrial automation, agriculture, emergency services and
smart cities. Mesh networks are quite reliable as they con-
tain reasonably high degree of redundancy so that alterna-
tive routes can be made available to detour faulty nodes.
Due to reliability of mesh networks, military organizations,
emergency services like police and fire services often use
mesh topologies in order to avoid breakdowns in commu-
nication. Triangular meshes are a widely adopted standard
for representing surfaces where the geometry of an object is
defined by the vertex coordinates of triangles, while the edges
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and triangular faces encode the topology, providing a light
and concise representation of graphical data [11]. Adar and
Epstein [1] and Nazeer et al. [27] computed metric dimen-
sion of extended meshes and triangular mesh related graphs
respectively. Akhtar et al. obtained the largest subgraphs for
the enhanced mesh networks [2].

Due to the applicability of metric dimension in identifi-
cation of nodes in networks, metric dimension and param-
eters related to it are very common among the researchers
nowadays. One of the unique and important parameter is
partition dimension of graphwhich is generalization ofmetric
dimension of graph. The partition dimension is described in
several real world applications such as process of identifying
network discovery and verification [9], coding and decoding
of games and other strategies of games [10], the popular
Djokovic-Winkler relationship [17] and the piloting or guid-
ance of a robot [20].

The notion of partition resolvability in graphs and par-
tition dimension was proposed as a generalized version
of metric resolvability in graphs and metric dimension by
Chartrand et al. [13]. Consider = be a graph of order s
with V (=) as vertex and E(=) as edge set. If two vertices
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δ, ξ ∈ V (=), then distance d(δ, ξ ) between these vertices is
the least number of edges in δ−ξ path. The distance between
a vertex ξ and U ⊆ V (=) is defined as min{d(ξ, y)|y ∈
U} and is denoted by d(ξ,U ). For a vertex ξ ∈ V (=),
N (ξ ) represents collection of open neighbours of ξ in ϒ , i.e.
N (ξ ) = {b ∈ V (=) : b is adjacent to ξ} and the collection
of closed neighbours of ξ will be represented by N [ξ ], i.e.
N [ξ ] = N (ξ ) ∪ {ξ} [24]. Consider ν = {ζ1, ζ2, . . . , ζf } as an
ordered collection of vertices in =. The notation r(ξ |ν) is the
representation of ξ in association with ν and is defined by an
f -ordered distance vector (d(ξ, ζ1), d(ξ, ζ2), . . . , d(ξ, ζf )).
If each vertex of = has unique representation associated to
ν, then the subset ν is called a resolving set of =. The
metric dimension (MD) of = denoted by β(=) is defined as
min{|ν| : ν is resolving set of =}. Bousquet et al. studied the
MD on sparse graphs and its applications to zero forcing
sets [8]. Tomáš related MD to directed and undirected cir-
culant graphs [32]. In 2021, MD of ideal-intersection graph
of the ring Zn was discussed by Saha et al. [28].
The fault-tolerant idea of the definition of resolving set

was initiated by Hernando et al. in 2008 [18]. If for every
pair of distinct vertices ρ, ξ ∈ V (=), there exists at least
two vertices α1, α2 ∈ ν such that d(ρ, αm) 6= d(ξ, αm) for
m ∈ {1, 2}, then, the set ν of V (=) is called fault-tolerant
resolving set. The set ν of such kind with least size is referred
as fault-tolerant metric basis and its respective size as the
fault-tolerant metric dimension (FTMD) of =, represented
by β ′(=). The FTMD of generalized wheels and convex
polytopes are discussed by Zheng et al. [35]. The FTMD of
inter connection networks are discussed by Hayat et al. [16].
Sharma and Bhat discussed the FTMD of zero-divisor
graphs of commutative rings [31]. Mehmood et al. discussed
energy-efficient and cooperative fault-tolerant communica-
tion approach for wireless body area network, and reliable
communication scheme for remote patient monitoring in
wireless body area networks [21], [22].

Consider, Y = {ξ1, ξ2, . . . , ξf } be a set of V (=) of con-
nected graph = with f partition classes. The representation
r(λ|Y) of vertex λ in association with partition set Y is
f -vector (d(λ, ξ1), d(λ, ξ2), . . . , d(λ, ξf )). If representation
of all the vertices in = are distinct, then the partition Y is
called resolving partition (RP) of =. The partition dimen-
sion (PD) of graph = is defined as, min{|Y| : Y is RP of =},
and is notated by pd(=). The graphs having PD 2 or n
were characterised by Chartrand et al. [13]. Computational
complexity for metric dimension of general graphs relates
to non-deterministic polynomial time-hardness [12], [15],
[20]. As partition dimension is generalized variant of met-
ric dimension, so computing PD for general graphs is
also NP hard. Due to this limitation, researchers are capti-
vated to work on partition dimension problems. The concept
of pd(=) for numerous classes of graphs has discussed
extensively in literature. For instance, the PD of starphene
graph was evaluated by Ahmad et al. [3], bridge graph by
Amrullah et al. [4] and of tri-hexagonal α-boron nanotube by
Shabbir and Azeem [30]. The bounds on PD of generalized

Mobius ladder were provided by Hussain et al. [19] and
PD for certain classes of series parallel graph was stud-
ied by Monica et al. [23]. Chu et al. [14], Wei et al. [33] and
Yero et al. [34] discussed the PD problem for convex poly-
topes, cycle related graphs and strong product graphs and
cartesian product graphs respectively.

The furtherance in the avenue of research of PD as
fault-tolerant partition dimension (FTPD) of graph was
revealed by Salman et al. [29]. Consider, Y = {ξ1,

ξ2, . . . , ξf } be a set of V (=) with f partition classes. The
partition Y is known to be fault-tolerant resolving parti-
tion (FTRP) of = if for every pair of distinct vertices ρ, ξ ∈
V (=), r(ρ|Y) and r(ξ |Y) have at least two different coor-
dinates. The FTPD of = denoted by F(=) is defined as the
least number of subsets in set Y. Azhar et al. provided the
exact value of FTPD of homogeneous caterpillar [5], cyclic
networks [6], tadpole and necklace graph [7]. Nadeem et al.
discussed FTPD of toeplitz networks and circulant graphs
having {1, 2} connection set [25], [26]. In this paper we
investigate the FTPD for two triangular mesh architectures
derived from the standard triangular ladder.

Chartrand et al. explored subsequent conclusions on pd(=).
Proposition 1 [13]: Let = be a graph, then;
(a) pd(=) ≤ β(=)+ 1.
(b) pd(=) = 2 iff = = Ps where Ps is a path.
Salman et al. explored following conclusions

regarding F(=).
Proposition 2 [29]: (a) F(=) ≤ β ′(=) + 1, whenever,

s ≥ 2.
(b) 3 ≤ F(=) ≤ s, whenever, s ≥ 3.

A. MAJOR CONTRIBUTIONS
The investigations conducted in this work lead to the follow-
ing results:

For every s ≥ 2.
(1) pd(Tls) = 3 and F(Tls) = 4.
For every s ≥ 3.
(2) pd(Ts) = 3 and F(Ts) = 4.
(3) pd(rl(Ts)) = 3 and F(rl(Ts)) = 4.
(4) pd(Trs) = 3 and F(Trs) = 4.
(5) pd(rl(Trs)) = 3 and F(rl(Trs)) = 4.
The rest of the article is organized in following manner: The
Section 2, contains the calculation of exact values of FTPD
of triangular ladder, and Section 3, for triangular mesh related
graphs. Section 4, contains an application of the work done
in context of sensors deployment in smart city. Finally, the
article is concluded in fifth section by mentioning limitations
and providing future research direction.

II. FAULT-TOLERANT PARTITION DIMENSION OF
TRIANGULAR LADDER
We compute FTPD of triangular ladder in this section. The
number of triangles in a graph represent the length of the
triangular ladder. The triangular ladder of length s is denoted
by Tls, and its order is 2s+ 1. Triangular ladder Tls is shown
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FIGURE 1. Triangular ladder Tls.

in Figure 1. We compute pd(Tls) and F(Tls) in subsequent
theorems.
Theorem 1: For every s ≥ 2, pd(Tls) = 3.
Proof: Let Y = {ξ1, ξ2, ξ3} be a partition set of V (Tls)

for s ≥ 2. The r(q|Y) associated to ξ1 = {qi : 1 ≤ i ≤
s} ∪ {qi : s+ 2 ≤ i ≤ 2s}, ξ2 = {qs+1} and ξ3 = {q2s+1} are
provided below:

r(q%|Y) =


(0, %, s− % + 1) 1 ≤ % ≤ s;

(1, 0, s) % = s+ 1;

(0, % − s− 1, 2s− % + 1) s+ 2 ≤ % ≤ 2s;

(1, s, 0) % = 2s+ 1.

Above distinct identifications justify that Y is resolving par-
tition of Tls, so, pd(Tls) ≤ 3. Now as Tls is not a path graph
and Proposition 1(b), indicates that partition dimension of
Tls cannot be 2, hence, pd(Tls) ≥ 3. So from both acquired
inequalities, pd(Tls) = 3, completes the proof. �
Theorem 2: For every s ≥ 2, F(Tls) = 4.
Proof: Let Y = {ξ1, ξ2, ξ3, ξ4} be a partition set of

V (Tls) with 4 partition classes. The r(q|Y) considering ξ1 =
{qi : 1 ≤ i ≤ s}, ξ2 = {qi : s + 1 ≤ i ≤ 2s − 1}, ξ3 = {q2s}
and ξ4 = {q2s+1} are provided below:

r(q%|Y)=



(0, 1, s− %, s− % + 1) 1 ≤ % ≤ s− 1;

(0, 2, 1, 1) % = s;

(1, 0, 2s− %, 2s− % + 1) s+ 1 ≤ % ≤ 2s− 1;

(1, 1, 0, 1) % = 2s;

(1, 2, 1, 0) % = 2s+ 1.

It can be verified that the representations stated above differ
from each other in atleast two positions and thereforeY forms
a FTRP of Tls. Consequently, F(Tls) ≤ 4.

Now in order to show that F(Tls) ≥ 4, we proceed by
establishing that F(Tls) 6= 3. Suppose on contrary that Y =
{ξ1, ξ2, ξ3} be a fault-tolerant partition basis of Tls. Any of the
subsets ξ1, ξ2 or ξ3 of V (Tls) contains one degree 3 vertex of
at the minimum. As q1 and qs are only vertices of degree 3,
so without losing generality we surmise that q1 is contained in
ξ1, and N (q1) = {q2, qs+1, qs+2}. Suppose that |ξ1| = 1, and
N (q1) ⊆ ξ2∪ξ3, |N (q1)∩ξ2| ≥ 2 or |N (q1)∩ξ3| ≥ 2.Without
loss of generality we surmise that at least two vertices f1, f2 ∈
N (q1) ∩ ξ3. As r(f1|Y) = (1, k1, 0) and r(f2|Y) = (1, k2, 0)
has same first and third coordinates, thus, a contradiction.
Now in support of the contradiction, we discuss the ensuing
cases when |ξ1| ≥ 2 and q1 ∈ ξ1.
Case 1: If N (q1) ∩ ξ1 = {q2, qs+1, qs+2}, then, r(q1|Y) =

(0, b0, c0), r(q2|Y) = (0, b1, c1), r(qs+1|Y) = (0, b2, c2) and

r(qs+2|Y) = (0, b3, c3). As b0 − 1 ≤ b1, b2, b3 ≤ b0 + 1,
so two vertices will have same distance from vertex set ξ2,
thus a contradiction.

Case 2: If ξ1 contains two neighbours of q1, and ξ3 contains
its one neighbour, then we address these cases:

Case 2(a) IfN (q1)∩ξ1 = {q2, qs+1}, and vertex qs+2 ∈ ξ3,
then, r(q1|Y) = (0, c0, 1) and r(q2|Y) = (0, c1, 1).
Case 2(b) If N (q1) ∩ ξ1 = {q2, qs+2}, and one vertex

qs+1 ∈ ξ3, then, r(q1|Y) = (0, c0, 1), r(q2|Y) = (0, c1, b1)
and r(qs+2|Y) = (0, c2, 1). It is clear from these cases that
two vertices have same distance from vertex set ξ3, thus a
contradiction.

Case 3: If N (q1)∩ξ1 = {q2} and two vertices qs+1, qs+2 ∈
ξ3, then, r(q1|Y) = (0, c0, 1), r(q2|Y) = (0, c1, b1),
r(qs+1|Y) = (1, c2, 0) and r(qs+2|Y) = (1, c3, 0). Since,
qs+1 and qs+2 have same distance from vertex set ξ1, so a
contradiction.

Case 4: If N (q1) ∩ ξ1 = {q2}, qs+1 ∈ ξ2 and qs+2 ∈ ξ3,
then, r(q1|Y) = (0, 1, 1) and r(q2|Y) = (0, c4, 1). Since, q1
and q2 have same distance from vertex set ξ3, this leads to a
contradiction.

Case 5: Consider, N (q1) ∩ ξ1 = ∅, and at least two
neighbours of q1 belong to vertex set ξ3. Without loss of
generality, we assume that q2, qs+1 ∈ ξ3, then r(q1|Y) =
(0, c0, 1), r(q2|Y) = (1, c1, 0) and r(qs+1|Y) = (1, c2, 0).
Again q2 and qs+1 have same distance from vertex set ξ3, so a
contradiction.

All the above cases illustrate that F(Tls) ≥ 4.
We end up the conclusion by relating both inequalities,
so, F(Tls) = 4. �

III. FAULT-TOLERANT PARTITION DIMENSION OF
TRIANGULAR MESH GRAPH
In the current section, the FTPD of the triangular mesh graph
Ts will be computed. Triangular mesh graph is formed by
joining the layers of triangular ladder. Order of the triangular
mesh is s2+s

2 . Rows of the mesh are numbered from top to
bottom as v11, v

2
1, . . . , v

s
1. The triangular mesh graph T6 is

shown in Figure 2.
Nazeer et al. computed the metric dimension of triangular

mesh graph.
Lemma 1 ([27]): The metric dimension of triangular mesh

graph is 2.
Lemma 2: Let = be a triangular mesh related graph with

s number of rows where, s ≥ 3, and v ∈ V (=) such that
deg(v) 6= 3, then, F(=) ≥ 4.

Proof: In order to verify that F(=) ≥ 4, we get
F(=) 6= 3 by a contradiction. Suppose Y = {ξ1, ξ2, ξ3}
be a fault-tolerant partition resolving set of =. At least one
vertex of degree 4 will be contained in one of the subset
ξ1, ξ2 or ξ3 of V (=). With no loss of generality, we surmise
that ξ1 contains q that is a vertex of degree 4, and N (q) =
{α1, α2, α3, α4}. Assume that |ξ1| = 1, and N (q) ⊆ ξ2 ∪ ξ3,
|N (q)∩ξ2| ≥ 2 or |N (q)∩ξ3| ≥ 2. With no loss of generality,
it can be assumed that at least two vertices e, α ∈ N (q) ∩ ξ3,
thus, r(e|Y) = (1, c1, 0) and r(α|Y) = (1, c2, 0). As vertices
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FIGURE 2. Triangular mesh graph T6.

e and α have identical distance from set ξ1, so a contradiction.
Now in support of the contradiction, we discuss the ensuing
cases when |ξ1| ≥ 2 and q ∈ ξ1.
Case 1: If N (q) ∩ ξ1 = {α1, α2, α3, α4}, then, r(q|Y) =

(0, j0, k0), r(α1|Y) = (0, j1, k1), r(α2|Y) = (0, j2, k2),
r(α3|Y) = (0, j3, k3) and r(α4|Y) = (0, j4, k4). As j0 − 1 ≤
j1, j2, j3, j4 ≤ j0+ 1, so two vertices will have same distance
from vertex set ξ2, thus a contradiction.

Case 2: If N (q) ∩ ξ1 = {α1, α2, α3}, and α4 ∈ ξ3,
then, r(q|Y) = (0, k0, 1), r(α1|Y) = (0, k1, j1), r(α2|Y) =
(0, k2, j2), r(α3|Y) = (0, k3, j3) and r(α4|Y) = (1, k4, 0).
Since 1 ≤ j1, j2, j3 ≤ 2, so two vertices from α1, α2 and
α3 have same distance from ξ3, thus a contradiction.
Case 3: If N (q) ∩ ξ1 = {α1, α2} and any two vertices

α3, α4 ∈ ξ3, then, r(q|Y) = (0, k0, 1), r(α1|Y) = (0, k1, j1),
r(α2|Y) = (0, k2, j2), r(α3|Y) = (1, k3, 0) and r(α4|Y) =
(1, k4, 0). As α3 and α4 have same distance from ξ1, which is
a contradiction.

Case 4:Consider,N (q)∩ξ1 = {α1}, and ξ3 contains at least
two vertices from N (q). If without losing generality, α2, α3 ∈
ξ3, then r(q|Y) = (0, k0, 1), r(α1|Y) = (0, k1, j1), r(α2|Y) =
(1, k2, 0) and r(α3|Y) = (1, k3, 0). Since distance of α2 and
α3 from ξ1 are identical, this leads to a contradiction.

Case 5: Consider, N (q) ∩ ξ1 = ∅, and ξ3 contains at min-
imum two vertices from N (q). If without losing generality,
α1, α2 ∈ ξ3, then r(q|Y) = (0, s0, 1), r(α1|Y) = (1, k1, 0)
and r(α2|Y) = (1, k2, 0). Since distance of α2 and α3 from
ξ1 are identical, thus a contradiction.

Case 6: If N (q) ∩ ξ1 = {α1, α2}, α3 ∈ ξ2 and α4 ∈ ξ3,
then, r(q|Y) = (0, 1, 1), r(α1|Y) = (0, j1, k1) and r(α2|Y) =
(0, j2, k2). Since 1 ≤ j1, j2 ≤ 2, so distance of α1 and α2 will
be same from ξ2, which is a contradiction.
All the above cases illustrate that F(=) ≥ 4. �
We compute pd(Ts) and F(Ts) in the ensuing theorems.
Theorem 3: For the triangular mesh graph Ts for s ≥ 3,

the partition dimension is 3.
Proof: According to Lemma 1, β(Ts) = 2, for s ≥ 3, so,

by Proposition 1(a), pd(Ts) ≤ 3. Now as Ts is not a path graph
and Proposition 1(b), indicates that 2 partition dimension of

Ts is not possible, hence, pd(Ts) ≥ 3. So from both acquired
inequalities, pd(Ts) = 3, concludes the proof. �
Theorem 4: The FTPD of triangular mesh graph Ts for

s ≥ 3, is 4.
Proof: We use the basic method of double inequality

to prove that F(Ts) = 4. In this regard, first we show that
F(Ts) ≤ 4. Consider Y = {ξ1, ξ2, ξ3, ξ4} be a partition set
of V (Ts) for s ≥ 3. When s = 3, consider, ξ1 = {v11, v

2
1},

ξ2 = {v31}, ξ3 = {v
3
2, v

3
3} and ξ4 = {v

2
2}. It is easy to verify

that Y is FTRP of Ts for s = 3. Now for s ≥ 4, the r(vml |Y),
where ξ1 = {vi1 : 1 ≤ i ≤ s}, ξ2 = {vsi : 2 ≤ i ≤ s},
ξ3 = {vii : 2 ≤ i ≤ s − 1} and ξ4 = V (Ts) \ {ξ1, ξ2, ξ3} are
provided as follows:

r(vtw|Y) =



(0, s− 1, 1, 2) for t = w = 1;
(0, s− %, % − 1, 1) for t = %,w = 1,

2 ≤ % ≤ s− 1;
(0, 1, s− 1, 2) for t = s,w = 1;
(% − 1, 0, s− %, 1) for t = s,w = %,

2 ≤ % ≤ s− 1;
(% − 1, s− %, 0, 1) for t = %,w = %,

2 ≤ % ≤ s− 1;
(s− 1, 0, 1, 2) for t = s,w = s;
(q− 1, s− %, % − q, 0) for t = %,w = q,

q+ 1 ≤ % ≤ s− 1,
q = 2, 3, . . . , (s− 2).

Above distinct representations verify that Y is FTRP of
Ts, so, F(Ts) ≤ 4. Also by Lemma 2, F(=) ≥ 4, hence
we end up the conclusion by relating both inequalities,
so, F(Ts) = 4. �

A. FAULT-TOLERANT PARTITION DIMENSION OF
REFLECTION TRIANGULAR MESH GRAPH
In this section, we compute the F(rl(Ts)), where rl(Ts) is
reflection triangular mesh graph.Mirror image of Ts is named
as reflection triangular mesh graph. We number the rows of
the mesh from top to bottom as v(1)11 , v(1)21 , . . . , v(2)11 . The
order of reflection triangular mesh graph is s2. The reflection
triangular mesh graph rl(T6) is shown in Figure 3.
Nazeer et al. computed the metric dimension of reflection

triangular mesh graph.
Lemma 3 ([27]): The metric dimension of reflection trian-

gular mesh graph for s ≥ 3 is 2.
We compute partition dimension and FTPD of reflection

triangular mesh graph in the ensuing theorems.
Theorem 5: The partition dimension of reflection triangu-

lar mesh graph pd(rl(Ts)) for s ≥ 3, is 3.
Proof: According to Lemma 3, β(rl(Ts)) = 2 for

s ≥ 3, so, by Proposition 1(a), pd(rl(Ts)) ≤ 3. Now as
rl(Ts) is not a path graph and Proposition 1(b), indicates
that partition dimension of rl(Ts) to be 2 is not possible,
hence, pd(rl(Ts)) ≥ 3. So from both acquired inequalities,
pd(rl(Ts)) = 3, concludes the proof. �
Theorem 6: The FTPD of reflection triangular mesh

graph rl(Ts) for s ≥ 3, is 4.
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Proof: We use the basic method of double inequality
to prove that F(rl(Ts)) = 4. In this regard, first we show that
F(rl(Ts)) ≤ 4. ConsiderY = {ξ1, ξ2, ξ3, ξ4} be a partition set
of V (rl(Ts) for s ≥ 3. The r(vml |Y), where ξ1 = V (rl(Ts)) \
{ξ2, ξ3, ξ4}, ξ2 = {v

(1)i
i : 2 ≤ i ≤ s}, ξ3 = {v

(2)i
i : 2 ≤ i ≤

s− 1} and ξ4 = {v
(2)1
1 } are provided as follows:

r(v(1)tw |Y)

=



(0, 1, s, 2s− 2) for t = w = 1;
(0, % − 1, s− 1, 2s− % − 1) for t = %,w = 1,

2 ≤ % ≤ s;
(0, s− %, s− %, s− 1) for t = s,w = %,

2 ≤ % ≤ s− 1;
(1, 0, s− % + 1, 2s− % − 1) for t = %,w = %,

2 ≤ % ≤ s;
(0, % − q, s− q, 2s− % − 1) for t = %,w = q,

q+ 1 ≤ % ≤ s− 1,
q = 2, 3, . . . , (s− 2).

r(v(2)tw |Y)

=



(1, s− 1, 1, 0) for t = w = 1;

(0, s− 1, % − 1, % − 1) for t = %,w = 1,
; 2 ≤ % ≤ s− 1;
(1, s− %, 0, % − 1) for t = %,w = %,

2 ≤ % ≤ s− 1;
(0, s− q, % − q, %) for t = %,w = q,

q+ 1 ≤ % ≤ s− 1,
q = 2, 3, . . . , (s− 2).

Now for verifying that F(rl(Ts)) ≥ 4, we get F(rl(Ts)) 6=
3, by a contradiction. Suppose Y = {ξ1, ξ2, ξ3} be a
fault-tolerant partition resolving set of rl(Ts). Only v

(1)s
1 and

v(1)ss are vertices of degree 3, and at least one of them will
be contained in one of the subsets ξ1, ξ2 or ξ3 of V (rl(Ts)).
Without loss of generality, we surmise that ξ1 contains v

(1)s
1 ,

and N (v(1)s1 ) = {v(1)s−11 , v(2)s−11 , v(1)s2 }. Assume that |ξ1| = 1,

and N (v(1)s1 ) ⊆ ξ2∪ξ3, |N (v(1)s1 )∩ξ2| ≥ 2 or |N (v(1)s1 )∩ξ3| ≥
2. Without loss of generality, we assume that at least two
vertices v(1)s−11 , v(2)s−11 ∈ N (v(1)s1 ) ∩ ξ3, thus, r(v

(1)s−1
1 |Y) =

(1, c1, 0) and r(v
(2)s−1
1 |Y) = (1, c2, 0). As vertices v

(1)s−1
1 and

v(2)s−11 have identical distance from set ξ1, so a contradiction.
Now in support of the contradiction, we discuss the ensuing
cases when |ξ1| ≥ 2 and v(1)s1 ∈ ξ1.

Case 1: If N (v(1)s1 ) ∩ ξ1 = {v(1)s−11 , v(2)s−11 , v(1)s2 },

then, r(v(1)s1 |Y) = (0, j0, k0), r(v
(1)s−1
1 |Y) = (0, j1, k1),

r(v(2)s−11 |Y) = (0, j2, k2), and r(v
(1)s
2 |Y) = (0, j3, k3). As j0−

1 ≤ j1, j2, j3 ≤ j0+1, so two vertices will have same distance
from vertex set ξ2, thus a contradiction.
Case 2: If ξ1 contains two neighbours of v

(1)s
1 , and ξ3 con-

tains its one neighbour, then we address these cases:
Case 2(a) If N (v(1)s1 ) ∩ ξ1 = {v

(1)s−1
1 , v(2)s−11 }, and v(1)s2 ∈

ξ3, then, r(v
(1)s
1 |Y) = (0, k0, 1) and r(v

(1)s−1
1 |Y) = (0, k1, 1).

FIGURE 3. Reflection triangular mesh graph rl (T6).

Since v(1)s1 and v(1)s−11 have same distance from ξ3, thus a
contradiction.

Case 2(b) If N (v(1)s1 ) ∩ ξ1 = {v
(1)s−1
1 , v(1)s2 } and v

(2)s−1
1 ∈

ξ3, then, r(v
(1)s
1 |Y) = (0, k0, 1), r(v

(1)s−1
1 |Y) = (0, k1, j1)

and r(v(1)s2 |Y) = (0, k2, 1). Since v
(1)s
1 and v(1)s2 have same

distance from ξ3, thus a contradiction.
Case 3: Consider, N (v(1)s1 ) ∩ ξ1 = {v(1)s−11 }, and

v(2)s−11 , v(1)s2 ∈ ξ3, then r(v
(1)s
1 |Y) = (0, k0, 1), r(v

(1)s−1
1 |Y) =

(0, k1, j1), r(v
(2)s−1
1 |Y) = (1, k2, 0) and r(v(1)s2 |Y) =

(1, k3, 0). Since distance of v(2)s−11 and v(1)s2 from ξ1 are
identical,this leads to a contradiction.

Case 4: Consider, N (v(1)s1 ) ∩ ξ1 = ∅, and ξ3 contains
at least two vertices from N (v(1)s1 ). If without losing gen-
erality, v(1)s−11 , v(2)s−11 ∈ ξ3, then r(v(1)s1 |Y) = (0, s0, 1),
r(v(1)s−11 |Y) = (1, k1, 0) and r(v

(2)s−1
1 |Y) = (1, k2, 0). Since

distance of v(1)s−11 and v(2)s−11 from ξ1 are identical, thus a
contradiction.

Case 5: If each of ξ1, ξ2 and ξ3 contains one neighbour of
v(1)s1 , then we address these cases:

Case 5(a) If N (v(1)s1 ) ∩ ξ1 = {v
(1)s−1
1 }, v(2)s−11 ∈ ξ2 and

v(1)s2 ∈ ξ3, then, r(v
(1)s
1 |Y) = (0, 1, 1) and r(v(1)s−11 |Y) =

(0, j1, 1). Since distance of v
(1)s
1 and v(1)s−11 from ξ3 are iden-

tical, thus a contradiction.
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FIGURE 4. Tower triangular mesh graph Tr6.

Case 5(b) If N (v(1)s1 ) ∩ ξ1 = {v
(2)s−1
1 }, v(1)s−11 ∈ ξ2 and

v(1)s2 ∈ ξ3, then, r(v
(1)s
1 |Y) = (0, 1, 1) and r(v(2)s−11 |Y) =

(0, j1, 1). Since distance of v
(1)s
1 and v(2)s−11 from ξ3 are iden-

tical, thus a contradiction.
Case 5(c) If N (v(1)s1 ) ∩ ξ1 = {v

(1)s
2 }, v

(1)s−1
1 ∈ ξ2 and

v(2)s−11 ∈ ξ3, then, r(v
(1)s
1 |Y) = (0, 1, 1) and r(v(1)s2 |Y) =

(0, 1, 1). Since r(v(1)s1 |Y) and r(v
(1)s
2 |Y) are identical, thus a

contradiction. All the above cases illustrate that F(rl(Ts)) ≥
4. We end up the conclusion by relating both inequalities, so,
F(rl(Ts)) = 4. �

B. FAULT-TOLERANT PARTITION DIMENSION OF TOWER
TRIANGULAR MESH GRAPH
In this section, we compute the F(Trs), where Trs is tower
triangular mesh graph. The tower triangular mesh graph is
formed by joining the layers of triangular ladder such that
there is no path among the vertices vs1, v

s
2, . . . , v

s
s. Order of the

triangular mesh is s2+s
2 , and rows of the mesh are numbered

from top to bottom as v11, v
2
1, . . . , v

s
1. The tower triangular

mesh graph Tr6 is shown in Figure 4.
Nazeer et al. computed the metric dimension of tower

triangular mesh graph.
Lemma 4 ([27]): The metric dimension of tower triangu-

lar mesh graph is 2, for s ≥ 3.
We compute partition dimension and FTPD of tower trian-

gular mesh graph in the ensuing theorems.
Theorem 7: The partition dimension of tower triangular

mesh graph Trs for s ≥ 3, is 3.
Proof: According to Lemma 4, β(Trs) = 2 for s ≥ 3,

so, by Proposition 1(a), pd(Trs) ≤ 3. Now as Trs is not a
path graph and Proposition 1(b), indicates that PD of Trs to be
2 is not possible, hence, pd(Trs) ≥ 3. So from both acquired
inequalities, pd(Trs) = 3, concludes the proof. �
Theorem 8: The FTPD of tower triangular mesh graph Trs

for s ≥ 3, is 4.

Proof: We use the basic method of double inequality
to prove that F(Trs) = 4. In this regard, first we show that
F(Trs) ≤ 4. Consider Y = {ξ1, ξ2, ξ3, ξ4} be a partition set
of V (Trs) for s ≥ 3. When s = 3, consider, ξ1 = {v11, v

2
1},

ξ2 = {v31}, ξ3 = {v
3
2, v

3
3} and ξ4 = {v

2
2}. It is easy to verify

that Y is FTRP of Trs for s = 3. Now for s ≥ 4, the r(vml |Y),
where ξ1 = {vi1 : 1 ≤ i ≤ s}, ξ2 = {vsi : 2 ≤ i ≤ s},
ξ3 = {vii : 2 ≤ i ≤ s − 1} and ξ4 = V (Trs) \ {ξ1, ξ2, ξ3} are
provided as follows:

r(vtw|Y) =



(0, s− 1, 1, 2) for t = w = 1;

(0, s− %, % − 1, 1) for t = %,w = 1,
2 ≤ % ≤ s− 1;

(0, 2, s− 1, 2) for t = s,w = 1;
(% − 1, 0, s− %, 1) for t = s,w = %,

2 ≤ % ≤ s− 1;
(% − 1, s− %, 0, 1) for t = %,w = %′

2 ≤ % ≤ s− 1;
(s, 0, 1, 2) for t = s,w = s;

(q− 1, s− %, % − q, 0) for t = %,w = q,
q+ 1 ≤ % ≤ s− 1,
q = 2, 3, . . . , (s− 2).

Above distinct representations verify that Y is FTRP of
Trs, so, F(Trs) ≤ 4. Also by Lemma 2, F(=) ≥ 4,
hence we end up the conclusion by relating both inequalities,
so, F(Trs) = 4. �

C. FAULT-TOLERANT PARTITION DIMENSION OF
REFLECTION TOWER TRIANGULAR MESH GRAPH
In this section, we compute the F(rl(Trs)), where rl(Trs)
is reflection tower triangular mesh graph. Reflection tower
triangular mesh graph is mirror image of tower triangular
mesh graph and its order is s2. The reflection tower triangular
mesh graph rl(Tr6) is shown in Figure 5.
Nazeer et al. computed the metric dimension of reflection

tower triangular mesh graph.
Lemma 5 ([27]): The metric dimension of reflection tower

triangular mesh graph is 2 for s ≥ 3.
We compute partition dimension and FTPD of reflection

tower triangular mesh graph in the ensuing theorems.
Theorem 9: The partition dimension of reflection tower

triangular mesh graph rl(Trs) for s ≥ 3, is 3.
Proof: According to Lemma 5, β(rl(Trs)) = 2 for s ≥ 3,

so, by Proposition 1(a), pd(rl(Trs)) ≤ 3. Now as rl(Trs) is not
a path graph and Proposition 1(b), indicates that PD of rl(Trs)
cannot be 2, hence, pd(rl(Trs)) ≥ 3. So from both acquired
inequalities, pd(rl(Trs)) = 3, concludes the proof. �
Theorem 10: The FTPD of reflection tower triangular

mesh graph rl(Trs), for s ≥ 3, is 4.
Proof: We use the basic method of double inequality

to prove that F(rl(Trs)) = 4. In this regard, first we show
that F(rl(Trs)) ≤ 4. Consider Y = {ξ1, ξ2, ξ3, ξ4} be a
partition set of V (rl(Trs)) for s ≥ 2. The r(vml |Y), where
ξ1 = V (rl(Ts)) \ {ξ2, ξ3, ξ4}, ξ2 = {v

(1)i
i : 2 ≤ i ≤ s},
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ξ3 = {v
(2)i
i : 2 ≤ i ≤ s− 1} and ξ4 = {v

(2)1
1 } are provided as

follows:

r(v(1)tw |Y)

=



(0, 1, s, 2s− 2) for t = w = 1;

(0, % − 1, s− 1, 2s− % − 1) for t = %,w = 1,
2 ≤ % ≤ s;

(0, s− %, s− %, s− 1) for t = s,w = %′

2 ≤ % ≤ s− 1;
(1, 0, s− % + 1, 2s− % − 1) for t = %,w = %,

2 ≤ % ≤ s− 1;
(2, 0, 1, s− 1) for t = w = s;
(0, % − q, s− q, 2s− % − 1) for t = %,w = q,

q+ 1 ≤ % ≤ s− 1,
q = 2, 3, . . . , (s− 2).

r(v(2)tw |Y)

=



(1, s− 1, 1, 0) for t = w = 1;

(0, s− 1, % − 1, % − 1) for t = %,w = 1,
2 ≤ % ≤ s− 1;

(1, s− %, 0, % − 1) for t = %,w = %,
2 ≤ % ≤ s− 1;

(0, s− q, % − q, %) for t = %,w = q,
q+ 1 ≤ % ≤ s− 1,
q = 2, 3, . . . , (s− 2).

From above, it can be concluded that all the representations
are distinct, so Y is FTRP of rl(Trs), so, F(rl(Trs)) ≤ 4. Also
by Lemma 2, F(=) ≥ 4, hence we end up the conclusion by
relating both inequalities, so, F(rl(Trs)) = 4. �

The following algorithms are produced in the support of
above findings which can be used in aid of Matlab or other
simulation tools to compute PD and FTPD.
Algorithm 1: Consider a finite connected network = of

order s with vertex set V (=). Then following steps will com-
pute the PD of =.

I: Insert the input adjacency matrix A = [aij] of the
network = such that aij = 1, if vi and vj are adjacent
nodes in =, otherwise and aij = 0;

II: Compute the matrix D of distances;
III: For p = 3, compute all partition sets Yαp =

{ξ1, ξ2, . . . , ξp}.
IV: For α = 1, ξi ∈ Yαp and v ∈ V (=), compute,

d(v, ξi) =

{
0 if v ∈ ξi;

min(d(v, vj)) where vj ∈ ξi.

V: If for p = 3, and if for α = 1, r(v|Yαp) =
(d(v, ξ1), d(v, ξ2), . . . , d(v, ξp)) are distinct for all v ∈
V (=), then STOP; otherwise, go to Step IV for α = α+1,
otherwise, go to Step III for p = p+ 1.

VI: Return, Yαp is the partition basis of = and pd(=) = p.
Remark 1: In order to compute FTPD of =, Steps V and VI

in Algorithm 1 are replaced by following steps:

FIGURE 5. Reflection tower triangular mesh graph rl (Tr6).

V*: If for p = 3, and if for α = 1, r(v|Yαp) =
(d(v, ξ1), d(v, ξ2), . . . , d(v, ξp)) are distinct at two
places for all v ∈ V (=), then STOP; otherwise, go to
Step IV for α = α + 1, otherwise, go to Step III for
p = p+ 1.

VI*: Return, Yαp is the fault-tolerant partition basis of =
and F(=) = p.

IV. APPLICATION
Some recent applications of partition dimension and
fault-tolerant partition dimension can be seen in areas of
routing optimization problem [5] and supply chain optimiza-
tion problem [7]. In particular, we consider an applica-
tion of sensors deployed in homes located in smart cities.
Wireless sensor networks are critical components of smart
cities, where a group of IOT, like, broadcasting units collect
and process data received from sensors and then send them
to a remote administrative center that helps in providing
different services. As broadcasting unit has to receive signals
from each partition set, so, this propagation of data will be
degraded due to following problems:

1 Receiving and synchronized time for the broadcast-
ing unit will increase as the number of the partition-
ing sets increases.

2 More transmitting power will utilize as the distance
between sensor and broadcasting unit increases.
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FIGURE 6. Partition dimension.

FIGURE 7. Fault-tolerant partition dimension.

The said problem can be rephrased in terms of graph theory
as follows:

Consider, sensors (nodes) and broadcasting units (nodes)
installed at homes in smart cities are arranged in the form
of triangular mesh network T6. If sensors are deployed in
all the homes, while, broadcasting units are installed on few
homes, then, what are the fewest number of broadcasting
units required in minimum number of blocks (partition sets),
such that each node has unique representation depending
upon minimum distance from node to partition set.

By Theorem 3, arrange nodes in 3 groups by taking
partition sets ξ1 = {v11, v

2
1, v

2
2, v

3
1, v

3
2, v

3
3, v

4
1, v

4
2, v

4
3, v

4
4, v

5
1, v

5
2,

v53, v
5
4, v

6
1}, ξ2 = {v

6
2, v

6
3, v

6
4, v

6
5, v

6
6} and ξ3 = {v

5
5}. It is

clear from Figure 6, that data propagation will be optimal by
placing broadcasting units at nodes v53, v

5
4, v

5
5, v

6
2 and v

6
4. This

scenario explains concept of partition dimension of graph.
Now, if concurrent data is transmitted from sensors to broad-
casting node, then there will be delay in data propagation to
remote administrative center. Group the nodes according to
4 partition sets given in Theorem 4. This problem of delay
in data propagation will be handled by placing broadcasting
units at v21, v

2
2, v

3
2, v

4
1, v

4
4, v

5
2, v

5
4, v

5
5, v

6
2 and v

6
4. It is clear from

Figure 7, if one of the partition set is not accessible for
sensor node, then sensor will find some alternate partition
set with nearest idle/low data broadcasting unit, such that
broadcasting unit in alternate partition set tolerates the delay
and optimize the data propagation. This explains applicability
of FTPD in optimal data transfer problems.

V. CONCLUSION
The aim of this work is to compute PD and FTPDof triangular
mesh related networks. We conclude that PD of triangular
ladder and triangular mesh related networks for s ≥ 3,
is 3 whereas, their FTPD is 4, and both parameters are free
from the order of graph. An algorithm to compute PD and
FTPD of a network is produced which can be used in aid of
Matlab or any other simulation tool. Further, an application
of the work done in context of deploying broadcasting units
in smart cities is also furnished.

Computation of PD and FTPD for a network is an NP hard
problem [15] which can also be seen from the Algorithm 1.
This states the limitations in the computation of these param-
eters as well as the significance of the computed results.
In future, it will be interesting to compute FTPD of some
other classes of mesh networks.
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