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ABSTRACT Anomaly detection is a challenging problem in machine learning, and is made even more so
when dealing with instances that are captured in low-level, raw data representations without a well-known
and well-behaved set of engineered features. Images or data streams from sensors are good examples of
such low-level, raw data representations. The Radial Basis Function Data Descriptor (RBFDD) network
is an effective solution for anomaly detection, however, it is a shallow model that does not deal well with
low-level, raw data representations. This article investigates approaches to transform an RBFDD network
into a deep one-class classifier that works well for anomaly detection problems with low-level, raw data
representations. We show that approaches based on simple transfer learning are not effective and our
results suggest that this is because the latent representations learned by generic classification models are
not suitable for anomaly detection. We show that an alternative approach that adds multiple convolutional
layers before the Radial Basis Function (RBF) layer of an RBFDD network—–to form a Deep Radial
Basis Function Data Descriptor (D-RBFDD) network—is very effective. This is demonstrated in a set of
evaluation experiments based onmultiple anomaly detection scenarios created from publicly available image
classification datasets, and a real-world anomaly detection dataset in which different types of arrhythmia
are detected in electrocardiogram (ECG) data. Our experiments show that the D-RBFDD network out-
performs state-of-the-art anomaly detection methods including the Deep Support Vector Data Descriptor
(Deep SVDD), One-Class Support Vector Machine (OCSVM), and Isolation Forest on the image datasets,
and produces competitive results on the ECG dataset.

INDEX TERMS Anomaly detection, one-class classification, artificial neural networks, deep learning.

I. INTRODUCTION
Chandola & Kumar [1] define anomaly detection as ‘‘the
problem of finding patterns in data that do not conform
to expected behavior’’. Building machine learning models
for anomaly detection is made especially challenging by
limited, or no, access to anomalous patterns during training.
One-class classification [2], in which a machine learning
model is trained to recognize normal data and flag an
anomaly when something fails to be recognized as normal,
is a common approach to anomaly detection. Like any
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other machine learning task, however, training a model can
be challenging when dealing with raw data as opposed to
data based on a set of well-behaved engineered features—
for example, when working with image data [3], audio
data [4], or streaming data from sensors [5]. Shallow models
particularly suffer from this issue, and it is common practice
to employ deep learning [6] in these scenarios.

In this article we propose a deep anomaly detection
model that can be trained in a fully end-to-end fashion,
and is suitable for use with raw, high-dimensional data
sources such as images and timeseries data from sensors.
Our proposed model, the Deep Radial Basis Function Data
Descriptor (D-RBFDD) network, is based on our previous
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work on the Radial Basis Function Data Descriptor (RBFDD)
network [7]. RBFDD networks (which in turn are based on
Radial Basis Function (RBF) networks [8], [9]) are effective
and efficient anomaly detectors that learn a compact set
of Gaussian kernels to cover the normal region of input
space, and recognize anomalies as instances that sit outside
this region. The positions of these learned kernels, and
the magnitude of the weights connecting each of them to
the output layer, also facilitate straight-forward post-hoc
explanation of outputs [10]–[12]. Typical RBF networks
(including RBFDD networks), however, are shallow neural
networks with a single hidden layer and do not perform
well when trained on low-level, raw data [7]. This motivates
deepening these kind of networks to make them more
effective in these scenarios.

We identify three ways to deepen RBFDD networks to
work with raw input data:

1) Based on simple transfer learning using the latent
representation from a generic pre-trained network as
input to the RBFDD network.

2) By extending the first approach to include fine-tuning
the pre-trained network as part of training the RBFDD
network.

3) By adding multiple computational layers (or hidden
layers) before the RBFDD network that are fully
trained with the rest of the network in an end-to-end
fashion.

Our exploration of the effectiveness of these three
approaches, shows that the final approach that trains the
entire network from random initialization—referred to
as Deep RBFDD (D-RBFDD)—out-performs the other
two deepening approaches. This addresses a fundamental
question of whether the latent representations learned by
large models trained for multi-class classification (the type of
model most commonly used for simple transfer learning) are
suitable as input for anomaly detection models, or whether
they are too entangled with the multi-class classification
problem. The result of our evaluation experiments—using
anomaly detection scenarios constructed from well-known
image classification datasets and a dataset from a real-
world electrocardiogram (ECG) anomaly detection task—
suggest that they are not suitable. Our results also show
that the D-RBFDD approach out-performs existing state-of-
the-art anomaly detection approaches (including RBFDD)
on the image datasets, while producing competitive results
on the ECG dataset. D-RBFDD is therefore an effective
anomaly detector trained in an end-to-end fashion, that
also has the advantages that come with an approach based
on RBF networks: it is efficient, it lends itself to easy
interpretation, and the local learning approach can adapt to
dynamic definitions of normality and accommodate concept
drift [13].

The main contributions of this article are:

• We propose an effective anomaly detection approach,
the D-RBFDD network, for deepening RBFDD

networks for the task of anomaly detection. This enables
RBFDD networks to learn from low-level, raw data
representations.

• It is shown that the latent representations learned by
largemodels trained for multi-class classification are not
suitable as input for anomaly detection models.

The remainder of this article is structured as follows.
In Section II we describe common approaches to anomaly
detection including deep learning methods. In Section III
we describe the RBFDD network approach and illustrate
different methods for deepening it. The setup of our
experiments is described in Section IV. The results of these
experiments are presented in Section V and discussed in
Section VI. Section VII summarises the conclusions from our
work and Section VIII discusses directions for future work.

II. RELATED WORK
Machine learning approaches to anomaly detection are domi-
nated by a family of algorithms that adapt the Support Vector
Machine (SVM) [8] algorithm to work with only examples of
a single class: One-Class SVM (OCSVM) [14]. In fact Khan
& Madden [2] go so far as to say that one-class classification
approaches should be divided into two categories: OCSVM-
based and everything else. In this section we briefly describe
both the OCSVM-based approaches and everything else.
Within the latter category deep learning approaches have
emerged in recent years and can be can be categorized as
either mixed or end-to-end approaches. We review the most
important methods in each category.

A. OCSVM-BASED ANOMALY DETECTION
Much like the standard SVM approach, OCSVM models
separate normal data points from the origin in the feature
space using a hyper-plane found by maximizing the distance
between the origin and this hyper-plane. At test time,
normal instances will be found beyond this hyperplane
while anomalies will be found between the hyper-plane
and the origin. Although any kernel function can be used
with OCSVM models, Gaussian kernels work particularly
well [2]. The main issue with OCSVM models is that they
do not scale well. For large datasets the computational
and storage requirements of OCSVMs grow polynomially
with dataset size [15]. The Support Vector Machine Data
Description (SVDD) model [16] is a well known variation
of OCSVM that uses hyper-spheres rather than hyper-planes
to achieve separation. The goal when training an SVDD
model is to find a tight spherically shaped boundary that
encompasses the normal data.

B. NON-OCSVM-BASED ANOMALY DETECTION
On the non-OCSVM side, Isolation Forests (iForests) [17]
and Auto-Encoder neural networks (AENs) [6] (and
their many variations such as Variational Auto-Encoders
(VAEs) [18] and De-noising Auto-Encoders (DAEs) [19])
are effective anomaly detectors. An iForest model isolates
individual data points in a training set by constructing
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a decision tree that splits the input space randomly and
repeatedly. The intuition behind this approach is that fewer
splits should be required to isolate anomalous instances
than normal ones. An auto-encoder network (AEN) is an
artificial neural network that learns to compress and encode
input data into a lower dimension and then reconstruct the
input data back from this compressed representation. If an
AEN is trained to reconstruct only normal data instances,
it can detect anomalies by flagging test instances for which
the reconstruction error is very high. Deep auto-encoders
have been shown to be effective on problems with raw data
inputs [18], [20].

In the remainder of this section we review the most
important deep learning approaches for anomaly detection
categorising them as either mixed or end-to-end approaches.

1) MIXED APPROACHES
In a mixed approach a deep model is trained in an
unsupervised way to work as a feature extractor that produces
the data for a, typically shallow, anomaly detector—for
example an OCSVM. The deep models used for learning
features tend to be reconstruction-based models such as
Deep Belief Networks (DBNs) or deep AENs [21]–[23].
For example, in [24] an unsupervised DBN is trained to
extract generic underlying features, and an OCSVM anomaly
detector is trained using these features. The mixture of a
DBN and a OCSVM is shown to out-perform a standalone
OCSVM.

In [25], in order to detect anomalous behavior in
large-scale network traffic data, a DBN model is trained as
an unsupervised dimensionality reduction step, whose output
features are then fed into a multi-layered ensemble SVM.
In [26], a fully unsupervised model is proposed for detecting
anomalous frames in video. For every frame of the video
appearance and motion features are extracted and fed into
two separate Stacked Denoising Auto-Encoders (SDAEs).
A fusion of these two types of features are fed into a third
SDAE. The features obtained in the bottle-neck layers of
the three SDAEs are then fed into three OCSVMs, each
of which produces an anomaly score. The three anomaly
scores are combined to make the final decision for an input
video frame. Similarly, in [27] a hybrid of DBN and Long
Short Term Memory (LSTM) networks is used to detect
behavioral anomalies (e.g., DOS attacks, web attack, and
infiltration) in computer networks. This approach, however,
relies on some access to labeled anomalies during training,
essentially treating it as a multi-class classification problem.
First, using a random sub-sample of the data, the DBN
network is pre-trained in an unsupervised fashion, after
which, the training proceeds in a supervised fashion to make
the outputs of the pre-trained DBN network capture the
important features within the computer traffic data. In a final
step, the temporal patterns within the data are modeled by
adding LSTM layers on top of the pre-trained DBN network.

In [28], a two-stage semi-supervised approach to
anomaly detection for image data is proposed, where deep

representations from the normal data are first learned by
solving a proxy classification task. Next, these learned
representations are used to train a one-class classifier. The
proxy classification task is to distinguish between normal
data instances and synthetic anomalies created using the Cut-
Paste [29] data augmentation technique (Cut-Paste cuts an
image patch from one image and pastes it at a random location
of another image to create an anomaly). The use of synthetic
anomalies is designed to build models that will generalise to
unseen real anomalies at test time. After the proxy classifier
has been trained, for a given input data, the classifier would
produce an output. Finally, a Gaussian estimator one-class
classifier is used to compute the anomaly score for that
input data, using the output. The log density of the Gaussian
estimator is used as the anomaly score and both its mean
and covariance are computed solely using the normal data
samples.

In [30], a ResNet model [31], pre-trained on the Ima-
geNet [31] multi-class classification dataset, is used to
transform image data to a learned feature space. In addition,
the ResNet model is further fine-tuned by minimizing a
compactness loss similar to SVDD [16], which makes its
learned features more concentrated and suitable for the task
of anomaly detection. An anomaly score for a query data
instance can then be computed by measuring the average
distance from its k-nearest neighbor normal data points in this
feature space.

The main issue with mixed approaches is that the deep
feature extractor is not trained for an anomaly detection
objective, but on a different objective such as minimizing
reconstruction error. As a result, the features learned may not
be useful inputs for the anomaly detection model.

2) END-TO-END APPROACHES
End-to-end approaches address the issue with the mixed
approaches, and aim to make the latent representations
learned more appropriate for anomaly detection by defining
a one-class cost function. The cost function is then used to
train an entire network in an end-to-end fashion, guiding the
network to produce representations that are appropriate for
anomaly detection. For example, the Deep Auto-encoding
Gaussian Mixture Model (DAGMM) [32] uses an AEN
to reduce the dimensionality of the input data, and the
reconstruction error and low-dimensional representation
from the bottle-neck of the AEN are fed into a Gaussian
Mixture Model (GMM) [8]. Similarly, the One-Class Neural
Network (OCNN) [33] combines the rich feature extraction
property of deep neural networks with a novel OCSVM-like
cost function. First, a deep AEN is trained to produce good
representative features of the input data. Next, the encoder
portion of this pre-trained AEN is fed into a simple one-layer
neural network, the final output of which is used to compute
the cost. The weights of both the encoder and the one-layer
neural network are trained simultaneously, by minimizing the
cost function. By combining the capability of deep neural
networks to extract rich features from the data with the
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proposed cost function, the aim is to obtain the hyper-plane
that separates the normal data from the origin.

AnoGAN [34] is a deep model for anomaly detection
based on Generative Adversarial Networks (GANs) [35]. The
generator network is trained to learn the distribution of the
training data. Given a test instance it searches for a point in
the latent space of the generator that would generate a sample
that is closest to the test point. If an accurate distribution
of the normal data has been learned, for a normal query, x,
there should be a representation, z, in the latent space that the
generator could use to generate a new data point, G(z), that
is similar to the normal query x. For an anomalous query a
good representation, z, should not be found and, as a result,
the generated data, G(z), will not be similar to the query.
Finally, inspired by the Support Vector Data Descrip-

tor (SVDD) model [16], Deep-SVDD [36] is another deep
one-class neural network designed for anomaly detection.
While the neural network is trained, the volume of a
hyper-sphere that envelopes the data in the latent space is
minimized. Thus, the neural network is trained to map the
input data into a hyper-sphere with minimum volume. There
are two versions of Deep SVDD: (1) Soft-boundary Deep
SVDD which makes a compromise between the volume of
the hyper-sphere and violations of the boundary; and (2) One-
Class Deep SVDD which is a simpler version that assumes
that most of the training data is normal.

The effectiveness of end-to-end approaches, and in partic-
ular end-to-end approaches optimized using a cost function
with a direct anomaly detection objective, motivates our
proposed D-RBFDD network. Moreover, it is desirable
for the anomaly detectors to be both interpretable and
adaptable to new data and changing concepts of normality.
These characteristics are not easily associated with SVMs
[37]–[39], or approaches built upon an SVM foundation [40],
unfortunately. In contrast, because of their local learning
approach, RBF networks easily lend themselves to interpre-
tation [10], [41], and are adaptable to changing concepts [42],
[43]. This makes a deep end-to-end anomaly detector based
on RBF networks an attractive approach. D-RBFDD—a fast,
effective anomaly detector, trained in an end-to-end fashion
and capable of learning latent representations directly aligned
with an anomaly detection objective, that lends itself to
easy interpretation and adaptation to changing concepts of
normality—is explained in detail in the next section.

III. DEEP RADIAL BASIS FUNCTION DATA DESCRIPTOR
(D-RBFDD) NETWORKS
This section describes the RBFDD network and three
alternatives for adding depth to these networks, the last of
which we refer to as the Deep RBFDD (D-RBFDD) network.

A. RADIAL BASIS FUNCTION DATA DESCRIPTOR (RBFDD)
NETWORKS
In our previous work [7] we proposed the RBFDD network,
which adapts the Radial Basis Function (RBF) network for
anomaly detection. An RBF network is a local-representation

learning technique used for classification that divides the
input space among a set of local kernels. In an RBF network,
for every input data point (depending on where in the input
space it appears) a fraction of these locally-tuned kernel units
gets activated. Activation is measured using a function of the
distance between an input instance, X , and the center, µh,
of every kernel unit h. When training an RBF network, it is
common practice to use a statistical clustering method (e.g.,
K-means clustering [8]) as a pre-training stage to initialize
kernel centers. This makes sure that the centers of the
Gaussians are placed in the regions of the input space where
training data resides, which facilitates the training process.
Finally, the distance metric typically used in RBF networks
is Euclidean distance, ||X − µh||, and the activation function
for the local kernels (i.e., Gaussians) is usually implemented
using a Gaussian function:

Ph(X ) = exp

(
−
||X − µh||2

2s2h

)
(1)

where µh and sh denote the mean and standard deviation of
the kernel unit h. Activation is maximum when X = µh, and
decreases as X and µh diverge.

RBFDD networks adapt the RBF network approach to
learn a set of Gaussian kernels that compactly represent
normal instances in a training set, thus transforming them
into anomaly detectors. A trained RBFDD network can be
used as an anomaly detector by recognizing instances that are
not covered by this compact representation. Figure 1 shows
the architecture of an RBFDD network. Here xd denotes the
d th feature in the input data X , which is a D-dimensional
vector. In the output node of the network the tanh non-linear
activation function proposed in [44] (i.e., 1.7159×tanh

(
2
3 z
)
)

is used, as it avoids saturation. More specifically, as shown
later in Eq.(4), during training an RBFDD network is pushed
to output values as close as possible to the target value of+1.
Unlike the traditional tanh activation function, with the tanh
activation function proposed in [44], the desired +1 target
value happens in the non-saturated area of the function, where
the input value to the function is exactly equal to+1—this is
where the non-linearity of the function is maximum.

For a given D-dimensional input data instance, Xi, the
output of an RBFDD model is computed as:

yi = 1.7159× tanh
(
2× z(Xi)

3

)
(2)

z(Xi) =
H∑
h=1

wh × Ph(Xi) (3)

where wh is a weight connecting the Gaussian kernel h to the
output unit.

After training, the output of the RBFDD network, yi,
for a given input, Xi, should be high if Xi belongs to the
normal region of the input space and low otherwise. In the
RBFDD network, the unsupervised pre-training phase used to
train RBF networks [9] (i.e., k-means clustering [8]) remains
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FIGURE 1. The RBFDD network.

in place. Following this step, the backpropagation of error
algorithm is used with gradient descent to find the optimal
values for the network parameters. In this process the cost
function minimized for mini-batches of size N is:

E =
N∑
i=1

(
1
2

[
(1− yi)2 + β

H∑
h=1

s2h + λ
H∑
h=1

w2
h

])
(4)

This cost function is a weighted summation of three terms.
In the first term, (1 − yi)2, yi is the output of the RBFDD
network for input data instance, Xi. This term encourages the
network to learn a model that outputs a value as close as
possible to +1 for instances belonging to the normal class.
The second term, regularizes the spreads of the Gaussian
kernels in the hidden layer of the network, and is the squared
L-2 norm [6] of the spreads for the H Gaussians in the
network. This encourages the most compact set of Gaussians
capable of representing the normal data to be found. The third
term, regularizes the weights connecting the RBFDD hidden
layer units to the output unit. This stops the weights from
becoming so large that they would actually ignore the outputs
from the hidden units, and makes the RBFDD network robust
to outliers in the training set [6]. Minimizing Eq.(4), using
gradient descent, finds the most compact set of Gaussian
kernels whose collective output is still high for the normal
region of the input space and low everywhere else (i.e., where
the anomalies are expected to appear). RBFDD networks
use radial kernels, and thus, they might lack the necessary
flexibility to learn certain distributions. To overcome this
limitation of RBFDD, we previously proposed the Elliptical
Basis Function Data Descriptor (EBFDD) [45], where we
make the anomaly detector more flexible by replacing the

FIGURE 2. Three approaches to deepening RBFDD networks. The red
hatching highlights the fixed portion of each model, while the white
portions are trainable.

radial kernels with elliptical kernels. EBFDD was shown to
perform better than RBFDD, however, it achieved this at
significantly increased computational cost (EBFDD requires
a covariancematrix inversionwhich is a very computationally
expensive operation). We believe, however, that the same
flexibility can be achieved by adding computational layers
before the RBFDD layer to transform the input data into
a space where RBFDD can be applied effectively. Also,
this can be done efficiently due to the lower computation
time of RBFDD compared to EBFDD. Thus, we avoid
the computational complexity of the EBFDD networks
by adding more layers and retaining the capacity of the
deep model to learn complex distributions in the normal
data.

Although the RBFDD network is an effective anomaly
detector when used with well-behaved sets of input features,
it does not perform well on high-dimensional raw data
representations (e.g., pixel values in images or raw sensor
data). This is the main motivation for deepening the
structure of the RBFDD network so that we can apply it
to anomaly detection problems with raw high-dimensional
input data. The next section describes different alternatives
for placing extra computational layers before the RBFDD
network.

B. DEEPENING RBFDD NETWORKS
We explore three ways to add depth to RBFDD networks
(illustrated in Figure 2):
• Transfer learning [46] is exploited and the latent
representation produced at the final layer of a network
that is already trained on a large generic dataset is used
as input to the RBFDD network.

• The latent representation from a pre-trained network,
such as that described above, can be fine-tuned as part
of training an RBFDD network using the cost function
in Eq.(4).

• Computational layers placed before the RBFDD net-
work can be trained from random initialization as part
of an end-to-end deep RBFDD training process.
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FIGURE 3. The deep RBFDD anomaly detector.

For the approach using transfer learning, referred to as
Fix-Res + RBFDD, we use a fixed, pre-trained ResNet-18
model trained on the ImageNet [31] dataset, and extract
the latent representation after its last convolutional layer for
each data instance. This representation is then passed to a
standard RBFDD model. In the second approach, referred
to as Fine-Res + RBFDD, again we connect a pre-trained
ResNet-18 model to an RBFDDmodel. In this case, however,
we fine-tune the last 4 convolutional layers, and the last
4 batch-norm layers of the pre-trained ResNet-18 model as
part of training the RBFDD model using the cost function
in Eq.(4). This fine-tuning step is expected to make the
latent representation passed to the RBFDD model more
appropriate for anomaly detection, and improve the overall
performance.

The final approach, that we refer to as the Deep
RBFDD (D-RBFDD) network, attaches randomly initialized
computational layers before the RBFDD layer and trains
the entire network in an end-to-end fashion based on
minimizing the cost function in Eq.(4). Provided that the
cost function can generate sufficient signal to train the
entire deep model, the advantage of this method is that by
using end-to-end training the latent representation that this
network passes to the RBFDD layer will be more suited to
anomaly detection than the representation generated by the
pre-trained classification network, even when it is fine-tuned.
In D-RBFDD we add layers following the simple LeNet-5
network architecture [47] preceding the RBFDD layer. The
overall D-RBFDD network architecture is illustrated in
Figure 3.
To facilitate the application of k-means clustering in

the RBFDD pre-training phase we apply a tanh non-linear
activation [44] to the latent representations coming into the
RBFDD layer. This ensures that the k-means algorithm is
provided with a bounded latent representation, and leads to
better model initialization. The pseudo-code for training the
D-RBFDD network is described in Algorithm 1. First, the
entire training set X is fed into the LeNet − 5 portion of
the D-RBFDD network, in order to produce the pre-RBFDD
layer hidden representations, X̂ . Next, k − means is used

to initialize the centers of the Gaussians, µ, and then a
heuristic is used to initialize the spreads, s, for the Gaussians.
Specifically, for a given Gaussian, the distance of the farthest
data point (among all of the hidden representations X̂ )
from the center of that Gaussian is computed and then
half of that distance is assigned as the spread, s, for that
Gaussian. Euclidean distance is used as the distance metric.
Finally, the value of k used in the k-means clustering step
is equal to the number of Gaussians H , and needs to
be tuned—hyper-parameter tuning is explained in detail in
Section IV-B.
In the next step, the entire D-RBFDD network is trained

usingmini-batch gradient descent formax_epoch epochs. For
each mini-batch in X , the final outputs of the D-RBFDD
model, ŷ, are generated; the cost is computed based on
Eq.(4); and, using the back-propagation of error algorithm,
the gradients are computed and the learnable parameters of
the D-RBFDD network (i.e., the centers and spreads of the
RBFDD layer and all weights) are updated.

The next section describes the setup of an experiment
designed to evaluate the effectiveness of these approaches
to deepening the RBFDD network, and to compare this to
the effectiveness of current state-of-the-art anomaly detection
approaches.

IV. EXPERIMENTAL SETUP
We have designed an experiment to evaluate the per-
formance of different approaches to deepening RBFDD
networks, and to compare these to state-of-the-art anomaly
detection approaches.1 We include the following state-of-the-
art anomaly detection approaches in this experiment: One-
class Deep Support Vector Data Descriptor (DeepSVDD-OC)
networks [48], Soft-boundary Deep Support Vector Data
Descriptor (DeepSVDD-SB) networks [48], One-Class Sup-
port Vector Machines (OCSVMs) [14], Isolation Forest
(iForest) [17], RBFDD networks [7], and deep Convolutional

1The code for the D-RBFDD network is available on GitHub repository:
https://github.com/MLDawn/DRBFDD
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Algorithm 1 The Training Algorithm for the D-RBFDD
Network
Input: X ← {X1 . . .XN} (Training set)
Output: Trained D− RBFDD network
1: Model = D-RBFDD()
2: X̂ = LeNet-5(X)
3: µ, s = k-means(X̂ )
4: for epoch = 1 to max_epoch do
5: for mini_batch in X do
6: ŷ =Model(mini_batch)
7: Compute cost using Eq. (4)
8: Back-propagate the gradients for Model
9: Update the parameters of Model
10: end for
11: end for
12: return Model

Auto Encoders (CAEs). In all cases only normal data is used
during model training.

To further investigate how effectively representations can
be transferred from pre-trained classification networks to
anomaly detection tasks, in the case of the OCSVM and
iForest models (as well as RBFDD networks), we have
also considered the scenario where the latent representation
learned by a pre-trained classification network is used as
input (i.e., Fix-Res + OCSVM, Fix-Res + iForest, and
Fix-Res + RBFDD). We also use the latent representation
learned by the version of RBFDD that fine-tunes the pre-
trained classification model representation as input to these
shallowmodels to better understand the impact of fine-tuning
(i.e., Fine-Res + OCSVM, Fine-Res + iForest, and Fine-
Res + RBFDD).

A. DATASETS & ANOMALY DETECTION SCENARIOS
We use two well-known labelled image classification
datasets—MNIST [49] and Fashion MNIST [50]—as well as
a real-world highly-imbalanced anomaly detection timeseries
dataset—the MIT-BIH Arrhythmia Database2 [51], [52]—in
order to explore the effectiveness of the three approaches to
deepening RBFDD networks:
• MNIST3 [49] contains a training set of 60,000 gray-
scale handwritten digit images of size 28×28 pixels and
a test set of 10,000 similar images. The task is to classify
the digit present in each image.

• Fashion-MNIST4 [50] contains a training set of 60,000
gray-scale 28 × 28 pixel images of different clothing
items (e.g. t-shirt/top, trouser, pullover, dress) and a test
set of 10,000 similar images. The task is to classify the
clothing item present in each image.

• MIT-BIH is an arrhythmia detection dataset5 [51],
[52] containing 48 half-hour excerpts of two-channel

2https://physionet.org/content/mitdb/1.0.0/
3http://yann.lecun.com/exdb/mnist/
4https://www.kaggle.com/zalando-research/fashionmnist
5https://physionet.org/content/mitdb/1.0.0/

ambulatory ECG recordings, obtained from 48 subjects.
Out of the 19 anomalous classes in the dataset, the
4 most common classes are used to make four binary
anomaly detection scenarios. The reason for this is that
a lot of the anomalous classes are very infrequent (e.g.
less than 100 instances) and so it would not be possible
to make a binary classification problem with them that
is comparable to the other problems studied in this
paper in terms of the frequency with which anomalies
appear in the test data. We have also added a One vs.
All scenario, where examples of the 4 most common
anomalous classes are combined into one class. This
generates a total of five anomaly detection scenarios for
this dataset.

For the MNIST and Fashion-MNIST datasets we generate
multiple anomaly detection scenarios using these datasets.
In each scenario we consider one class as normal and another
class as anomalous. These pairs of classes (shown in Table 1)
were selected to cover simple and challenging scenarios.
For example, for MNIST we have a simple scenario where
digit 0 is considered normal and digit 1 is anomalous, and
similarly for Fashion MNIST we have a scenario where
T-shirts/tops are normal and boots are anomalous. Images
from these pairs of classes are easily discernible, and we
expect to see high performance across most of the algorithms.
We also have more challenging scenarios. For instance, from
MNISTwe have a scenario where digit 4 is normal and digit 9
is anomalous, and for Fashion MNIST we have a scenario
where T-shirts/tops are normal and shirts are anomalous.
These pairs of images are not easy to separate as they are so
similar.

For the MIT-BIH Arrhythmia dataset, we pre-processed
the data to reduce the dimensionality by down-sampling
from 360Hz to 187Hz and extracted individual heart-beats,6

each of which has an associated ground-truth label in the
dataset.

In all experiments, models are trained using only instances
of the normal class. During testing we provide unseen
samples from both normal and anomalous classes to measure
the performance of the different models. For all datasets,
feature values have been normalized to [0, 1]. In particular,
the normalization for both the MNIST and Fashion MNIST
datasets is done by dividing individual pixel values by
255, as this is the maximum pixel value for these grey-
scale images. For the MIT-BIH Arrhythmia dataset, the
sample values range from 0 to 2047, both values inclusive,
with 1024 as the mid-point. This is due to the fact that,
at the digitization step, a resolution of 11-bits has been
used, resulting in 211 levels, which are the actual resultant
values of the signal in this dataset. Thus, normalization is

6The peak of each heartbeat is labelled in this dataset. Following
the approach in [53], we considered the mid-point between every two
consecutive peak values to be the border between two consecutive heart-
beats. All extracted heart-beats are zero-padded or truncated to a length that
is higher than 95% of the extracted heart-beat lengths (417).
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TABLE 1. Results for experiments using the MNIST and Fashion MNIST datasets. Each column is labelled N-A, where N = normal class and A = anomalous
class. The values in each cell are AUC scores followed by relative rank in parentheses. The average rank per algorithm is given in the last column. The
labels for Fashion MNIST are: T: T-shirts/tops, B: Ankle boots, S:Shirts, Sn:Sneakers and Sa:Sandals.

TABLE 2. Results for experiments using the MIT-BIH Arrhythmia dataset. The label of each anomalous class is given at the top of the columns (for the
label descriptions see the Appendix). The values of each cell are AUC scores followed by the relative rank in parentheses. The average rank per algorithm
is given in the last column.

achieved by dividing individual values in the ECG signals7

by 2047.
The generated anomaly detection scenarios for all three

datasets used are summarized in Table 4 in the Appendix.

B. EXPERIMENTAL DESIGN
To evaluate models we use an approach based on boot-
strapping that makes maximum use of the anomalous
samples available. For each iteration we randomly select
80% of all normal instances in the dataset (with no
replacement) to train the model. The remaining 20% of
normal instances is then mixed with all of the anomalous
instances to form the test set. We perform each experiment
10 times, and measure the area under the ROC curve (AUC)
on the test set, then average the AUC scores over the
10 runs.

We perform hyper-parameter tuning using a grid search
that repeats the above process for each hyper-parameter
combination. The range of hyper-parameters searched are
listed in Table 5 in the Appendix.

We report the best averaged AUC from the grid search
for the corresponding experiment. We are aware that

7Since, the original mid-point value of 1024 is translated to 0.50 in the
normalized space, then 0.50 is the value by which we pad at the end of our
signals after segmenting the heart-beats. In terms of truncating, we simply
truncate at the end of the signals where the heart-beat has a length of more
than 417 (heart-beats that have a length in the top 5% of the heart-beat
lengths).

reporting the performance of the models with the best set of
hyper-parameters over-estimates the generalization perfor-
mance of the models (known as the problem of many
comparisons in induction algorithms [54]). However, as our
goal is a relative comparison of algorithms, rather than an
absolute estimate of generalization error, and all algorithms
are evaluated in the sameway this is an appropriate evaluation
approach that makes better use of limited anomalous samples
than measuring performance on a separate hold-out test set.

C. STATE-OF-THE-ART APPROACHES
Each state-of-the-art approach compared in this experiment
is tuned to achieve its best possible performance (full details
are provided in the Appendix). For all OCSVM models
we use Gaussian kernels, as recommended in [2]. The
hyper-parameters tuned for OCSVM models are ν, and γ ,
where ν is the upper bound on the fraction of training errors
and a lower bound for the fraction of support vectors, and γ is
the kernel coefficient. For iForest, the only hyper-parameter
to be tuned is the number of estimators.

To explore their performance we use different CAE
architectures, each with similar capacity to the D-RBFDD
model. For the image classification datasets CAE-1 has two
2D convolutional layers in the encoder and two transposed
2D convolutional layers in the decoder, while CAE-2
has three convolutional layers in the encoder and three
transposed convolutional layers in the decoder. For the ECG
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dataset, CAE-1 has two 1D convolutional layers in the
encoder and two transposed 1D convolutional layers in the
decoder. CAE-2 has the same structure but the second 1D
convolutional layer has twice the number of convolutional
filters compared to CAE-1. For all CAEs rectified linear
activation functions and max-pooling are used at each layer.

For the RBFDD network and the D-RBFDD network, the
hyper-parameters that are tuned are the number of Gaussians
in the hidden layer, and the coefficients of the cost function
(Eq. (4)): β and λ whose values fall in the range of (0, 1].
The D-RBFDD network, is based on the LeNet-5 network
architecture [47]. For the ECG dataset we replace the 2D
convolutions with 1D convolutions.

For DeepSVDD, a LeNet-type network architecture is
used [36] for the image datasets. For the ECG dataset we
replace this with the 1D LeNet-5 architecture used in the
D-RBFDD network. In both versions of DeepSVDD the
weight decay coefficient λ is a tuned hyper-parameter. For
DeepSVDD-SB, ν, is also a tunable hyper-parameter, whose
role is to control the trade-off between violations of the
boundary and the volume of the hyper-sphere. Following
the training method in [36], the training of DeepSVDD
models also includes a learning rate scheduler that reduces
the learning rate by a factor of 10 after a 75% of the specified
training epochs have been completed.

In the experiments using the image classification datasets
we use a pre-trained ResNet-18 model [31] trained on the
ImageNet [55] dataset8 for transfer learning. No transfer
learning is used for the ECG dataset, as reliable large-
scale pre-trained models for ECG sensor data are not
available.

V. RESULTS
The results of the experiments based on the image clas-
sification datasets are detailed in Table 1. These results
were achieved using the best hyper-parameter combinations
found during the grid search described in Section IV-B
(these are listed in Tables 6 and 7 in the Appendix). For
each anomaly detection scenario the different approaches
have been ranked and the average ranks for each approach
are summarized in the last column of each table. These
results show the effectiveness of deepening RBFDD for raw
datasets, and allow us to compare the three different strategies
for deepening described in Section III. The fact that the
D-RBFDD model has out-performed the RBFDD model,
in the majority of cases, demonstrates the value of using the
deep model to generate a latent representation suitable for use
by RBFDD.Moreover, it is interesting to note that none of the
models that use the latent representation output by the fixed,
pre-trained ResNet-18 model out-perform their equivalent
models trained on the raw, high-dimensional representation.
This is the case for the RBFDD models as well as for
the OCSVM and iForest models. This is a reminder of the

8The ResNet-18 implementation used is available at: https://github.
com/pytorch/vision/tree/master/torchvision/\\models/resnet.py

issue with mixed approaches for deep anomaly detection
mentioned in Section II. The fixed pre-trained ResNet-18
model has been trained for a multi-class classification
objective and the latent representations generated by this
network seem to be too entangled with that task to be very
useful for anomaly detection.

This is further underlined by the fact that, in almost all
cases, the performance of the models (RBFDD, OCSVM,
and iForest) using latent representations produced by the
fine-tuned ResNet-18 (i.e., Fine-Res + OCSVM, Fine-Res +
iForest, and Fine-Res+ RBFDD) improves over the versions
of the models trained using the representations from the fixed
ResNet-18model (i.e.,Fix-Res+OCSVM,Fix-Res+ iForest,
and Fix-Res + RBFDD). This fine-tuning is done using the
RBFDDnetwork. However, it is important to note that inmost
cases this performance was still not better than the models
using raw data (i.e., OCSVM, iForest and RBFDD).

Together these results show that deepening RBFDD
networks allows them towork effectivelywith raw inputs, and
that the D-RBFDD approach is the best way to do this out of
those compared. This conclusion is reinforced by the results
based on the ECG dataset shown in Table 2. In experiments
using this dataset D-RBFDD outperforms RBFDD in all
cases.

By examining the results for the image classification
datasets in Table 1 and those based on the ECG dataset in
Table 2 together we can evaluate how D-RBFDD compares
to other state-of-the-art anomaly detection algorithms. In the
image classification dataset cases, the results show that,
overall, the D-RBFDD network out-performs the other
algorithms as it has the lowest average rank (lower ranks are
better). On the ECG dataset DeepSVDD-SB has a slightly
better average rank than D-RBFDD, although D-RBFDD
performs better in the One vs. All scenario which is
particularly important for anomaly detection as it is likely that
anomalies will arise from very different data distributions.
In order to facilitate the comparison between the benchmark
algorithms, the average ranks reported in Table 1 and
Table 2, are also sorted and visualised using bar charts in
Figure 4.
To further investigate and understand the overall differ-

ences between the performances of the different algorithms
and the effectiveness of D-RBFDD, we perform non-
parametric statistical significance tests for multiple classifier
comparison. Following [56] a Friedman test followed by
a Finner p-value correction was performed on the results
in Tables 1 and 2. This test analyzes the difference in
performance between each pair of algorithms with respect to
the different anomaly detection scenarios.

The statistical test results for the image classification and
ECG datasets are summarized in the critical difference plots
(with significance level of α = 0.05) in Figure 5a and
Figure 5b respectively. Two algorithms not connected with
bold horizontal lines are significantly different. The p-values
of the statistical tests and the pairwise win/lose/tie results are
provided in in Tables 9 and 10 in the Appendix.
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FIGURE 4. Average ranks (lower is better) of the benchmark algorithms
across the MNIST, Fashion-MNIST and MIT-BIH Arrhythmia datasets.

Figure 5a shows that D-RBFDDperforms significantly and
consistently better than the following algorithms: Fine-Res+
RBFDD, CAE-2, Fine-Res + OCSVM, CAE-1, Fix-Res +
RBFDD, Fix-Res+OCSVM, Fix-Res+ iForest, Fine-Res+
iForest. In the case of DeepSVDD-SB, OCSVM, RBFDD,
DeepSVDD-OC and iForest, the null-hypothesis of the test
could not be rejected with a significance level of α = 0.05,
but D-RBFDD performed better in average rank. On the
other hand, in a simple and direct pairwise win/lose/tie based
comparison, D-RBFDD won in at least 70% and up to 100%
of the anomaly detection cases when compared to the other
algorithms (see Appendix). This indicates that D-RBFDD
typically performs as good as or better than the benchmark
algorithms it is compared to.

From Figure 5b we can see that DeepSVDD-SB attained
the best average rank of 1.4 on the ECG dataset. D-RBFDD
achieved similar performance with an average rank of 2.0.
In most scenarios DeepSVDD-SB has performed slightly
better than D-RBFDD, but, interestingly D-RBFDD achieved
the best performance in the One vs. All case. Although, from
an overall comparison of DeepSVDD-SB and D-RBFDD, the
null hypothesis could not be rejected. D-RBFDD performed
better than iForest and CAE-1 at the significance level of
α = 0.01 and α = 0.05 respectively, and performed
better than OCSVM and CAE-2 with a significance level of
α = 0.1.
Overall these results indicate that adding extra compu-

tational layers to RBFDD makes it a much more effective

FIGURE 5. Critical difference plots from a Friedman test using a
significance level of 0.05 on the different anomaly detection scenarios.
Algorithms not connected with horizontal bars are significantly different.

anomaly detector for problems with raw low-level data
representations. Also, selecting D-RBFDD will lead to at
least similar or better performance than the other approaches,
making it an attractive solution for anomaly detection
for these types of datasets. We believe that this strong
performance, coupled with the easy interpretability and
adaptability of approaches based on RBF networks make
D-RBFDD a compelling approach.

In order to gain some insight into the convergence of
the D-RBFDD network, the changes in cost as model
training progresses through training epochs, for each anomaly
detection scenario for all three datasets are plotted in Figure 6
(the best set of hyper-parameters given in Tables 6, 7 and 8 in
the Appendix are used for each model). For instance, for all
six scenarios in the MNIST dataset after nearly 800 epochs,
D-RBFDD models are converging. Whereas, in the case of
FashionMNIST, across all four scenarios, D-RBFDDmodels
converge after around 200 epochs. In the case of MIT-BIH
Arrhythmia dataset, the same normal dataset is used for
all scenarios so only a single line is shown. These plots
illustrate the rate with which training converges and how
well it converges in the different cases—in all cases the
D-RBFDD network learns quickly during the initial training
epochs.

Finally, to gain some insight regarding the comparative
computational complexity of the models used we report
the training time required for the different approaches.9 We

9To do this an approach that can be applied to all methods in our
experiments is required for a fair comparison. One could look at this in terms
of number of trainable parameters, however, it is not possible to talk about
the number of trainable parameters for the iForest and OCSVM models in a
meaningful way. Hence, for a fair comparison training time is used.
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FIGURE 6. The convergence behaviour of D-RBFDD: six scenarios of MNIST (left), four scenarios of Fashion
MNIST (middle) and the MIT-BIH dataset (right).

TABLE 3. Total training time, in seconds, of the models with their best performing hyper-parameters.

report training times10 for one scenario using the MNIST
dataset and one scenario using the MIT-BIH Arrhythmia
dataset in Table 3. For each approach, models are trained
using the best performing hyper-parameters found using grid
search. Since the pre-trained ResNet-18 is not applicable in
the MIT-BIH Arrhythmia dataset, we will not include the
models based on ResNet-18 here. For all artificial neural
networks, the total training time, as well as, the training time
per epoch are reported. The time for computing the centres
of the Gaussians in the case of D-RBFDD, and the time for
computing the centres in the case of DeepSVDD-OC and
DeepSVDD-SB are also reported. Finally, The total number
of epochs are set based on the best performing value per
model.

As shown in Table 3, in particular, in the case of
D-RBFDD, DeepSVDD-OC and DeepSVDD-SB, it can
be seen that the per epoch training times are very close.
In the MIT-BIH Arrhythmia dataset, both DeepSVDD-OC
and DeepSVDD-SB achieve their best performance after
100 epochs, whereas DRBFDD does so after 20 epochs, and

10The reported training times in Table 3 are generated using an identical
machine (spec: Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz 16GB) in
order to make sure they are comparable with one another.

hence the big gap in their total training time (i.e., 295.0s,
298.0s, and 69.52s respectively).

VI. DISCUSSION
The experimental results in the previous section show
that transfer learning using a pre-trained ResNet-18 with
fixed weights, does not work well for anomaly detection.
We believe that the reason for this is that the ResNet-18
model has been trained for a multi-class classification task
and that the latent representations that it generates are too
entangled with that task to be useful for anomaly detection.
Interestingly, we see that if the final layers of the ResNet-
18 model are fine-tuned using the RBFDD network cost
function, the performance improves in most cases. Overall,
it can be concluded that, selecting D-RBFDD for an anomaly
detection task on raw data would lead to performance that is
at least as good as or significantly better than current state-
of-the-art algorithms.

In addition, on the image datasets, the D-RBFDD network
has shown superior performance to state-of-the-art one-
class classifiers—DeepSVDD, OCSVM, iForest, and CAEs.
For the experiments using the ECG dataset, the D-RBFDD
network has produced comparable results to those of the
DeepSVDD-SB algorithm, and out-performed it in the One
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vs. All scenario, which is particularly important for anomaly
detection as it is likely that anomalies will arise from very
different data distributions. We have also observed that the
proposed D-RBFDD model, has indeed out-performed its
shallower version, the RBFDD network, in almost all of our
benchmark experiments. This suggests that, when dealing
with raw data we have benefited from the introduction of
depth in the D-RBFDD network. It should also be noted that,
unlike some of the state-of-the-art algorithms, in particular
OCSVMs, D-RBFDD networks are scalable and can work
with large datasets and high-dimensional data. This indicates
that the D-RBFDD network is an attractive option for the task
of anomaly detection.

It is also worth reflecting on some of the limitations of the
D-RBFDD network. The first limitation is the sensitivity of
D-RBFDD networks to the number of Gaussian kernels—the
addition or removal of kernels can dramatically affect model
performance. Thus, the number of Gaussians is a hyper-
parameter that needs to be carefully fine-tuned.

Finally, the current version of D-RBFDD networks
requires pre-training (i.e., K-means clustering), which ini-
tialises the Gaussian kernels in the hidden space. It would
be desirable to eliminate this step and allow for a seamless
end-to-end training without any need for pre-training.

VII. CONCLUSION
In this article, we have proposed a deep one-class neural
network, the D-RBFDD network, that adds convolutional
layers before an RBFDD network. The D-RBFDD network
is trained in an end-to-end fashion on an objective that is
designed specifically for anomaly detection. We have shown
that this network has successfully turned the shallow RBFDD
network into a deep one-class classifier, suitable for anomaly
detection on high-dimensional raw data such as images and
sensor data. Our experiments also show that transfer learning
using a pre-trained ResNet-18 with fixed weights, does not
work well for anomaly detection.

Hence, the main contributions of our work are two-fold:
(1) we propose an effective anomaly detection approach,
Deep RBFDD, for deepening RBFDD networks for the
task of anomaly detection, suitable for learning from low-
level, raw data representations; and (2) we show that the
latent representations learned by large models trained for
multi-class classification are not suitable as input for anomaly
detection models.

VIII. FUTURE WORK
D-RBFDD shows significant improvement in performance
over its predecessor RBFDD, and competitive performance
with state-of-the-art anomaly detection algorithms. This is a
pre-requisite for broadening the application of such networks
to more challenging scenarios such as learning from streams
of incoming data, where the main challenge is the dynamic
nature of what constitutes normal and anomalous. Applying
D-RBFDD to such evolving scenarios seems reasonable as
here we have the ability to control the number of Gaussians,
which allows a high degree of adaptability for scenarios

where concept drift is a concern and the definition of normal
can change over time. Thus, by adding/removing/replacing
Gaussians, the D-RBFDD network could learn a variety of
new emerging contexts as well as forget expired ones. As a
result, in the future, we plan to exploit the flexibility of
D-RBFDD to adapt it for an on-line learning scenario where
detection and handling concept drift in the incoming stream
of data is important. We will explore approaches to allow
the D-RBFDD network, to self-expand and prune to adapt
to the appearance or disappearance of concepts. We will
also explore the interpretability of D-RBFDD networks, since
they have the potential to provide explanations as to why an
input is flagged as an anomaly. The features learned by the
RBFDD component in the D-RBFDD network (i.e., centers
and spreads of Gaussian kernels and associated weights)
provide us with a level of interpretability that has the potential
to be quite informative in terms of understanding the model
learned and the reasoning behind flagging anomalies.

APPENDIX
IX. EXPERIMENT SCENARIOS
We have used three datasets: two classification datasets
(MNIST and Fashion MNIST), and a highly imbalanced
anomaly detection dataset (MIT-BIHArrhythmia). In Table 4,
we have summarized the datasets and the scenarios we
have used for our experiments. In the case of MNIST
and Fashion MNIST, we use instances of a certain class
as normal, and instances of another class as anomalous.
The MIT-BIH Arrhythmia dataset has a normal class and
19 anomalous classes, of which we have used the top four
common anomalous classes in our experiments.

X. HYPER-PARAMETERS USED
We have performed extensive hyper-parameter tuning for our
experiments using grid search. Table 5 summarizes the set
of hyper-parameters and the explored values for tuning these
hyper-parameters for each algorithm.

XI. BEST HYPER-PARAMETERS FOUND
Tables 6, 7, and 8 report the best hyper-parameters found
for each algorithm, for each experiment scenario. Each row
shows an algorithm and the a list of values for its relevant
tuned hyper-parameters. The order of the hyper-parameter
values for each algorithm is as follows:
• For RBFDD, Fix-Res + RBFDD, Fine-Res + RBFDD,
and D-RBFDD: The order of the best hyper parameters
is: (H, number of Epochs, η, β, λ)

• For OCSVM the order of the best hyper parameters is:
(ν, γ )

• For CAE-1/CAE-2: (number of epochs, η)
• for DeepSVDD-OC and DeepSVDD-SB the order of
best hyper-parameters is: (η, number of epochs, λ) and
(η, number of epochs, λ, ν), respectively.

For example in Table 6, the hyper-parameters for
D-RBFDD are H = 21, number of Epochs = 100, η =
10e− 5, β = 0.01, λ = 0.5
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TABLE 4. The normal and anomalous classes (descriptions in the parentheses) for each dataset. We have six experiment scenarios for MNIST, four for
Fashion MNIST, and four for MIT-BIH Arrhythmia.

TABLE 5. The hyper-parameter ranges explored for each algorithm, where D denotes the dimensionality of the input data to the RBFDD layer in both the
RBFDD network and the D-RBFDD network. η is the learning rate and the other hyper-parameters are as explained in the main body of the article.

XII. MULTIPLE CLASSIFIER TESTING
For multiple classifier comparison, a Friedman test followed
by a Finner p-value correction was performed. The p-values
of the result is shown in Table 9 for the MNIST and Fashion
MNIST datasets, and in Table 10 for results for the MIT-BIH
Arrhythmia dataset.

In Tables 9 and 10 the lower diagonal shows the p-values
of the post-hoc Friedman test (with the Finner p-value
correction) with the corresponding significance level with
which the null-hypothesis can be rejected. Critical difference
plots with a significance level of α = 0.05 from the
results in Tables 9 and 10 are shown in Figures 5a and
5b respectively. The scales above each critical difference

plot are the average ranks of the corresponding algorithms.
The algorithms which are not connected with horizon-
tal bars are significantly different with the significance
level of α = 0.05. For the algorithms connected with
the horizontal lines, the null-hypothesis of the Friedman
test could not be rejected with the given significance
level.

A simple win/lose/tie count with respect to datasets for
each pair of algorithms is shown in the upper diagonal of
Table 9 and 10. For example in Table 9, when comparing
DeepSVDD-SB and D-RBFDD, we see the value (7/3/0).
This means that D-RBFDD had better scores in 7 cases and
worse scores in 3 cases out of a total of 10 cases.
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