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ABSTRACT Quantum annealing is a quantum computing approach widely used for optimization and
probabilistic sampling problems. It is an alternative approach designed due to the limitations of gate-based
quantum computing models. The method is observed to have a significant impact on different fields such as
machine learning, graphics, routing, scheduling, computational chemistry, computational biology, security,
portfolio, and others despite the fact that it is relatively new. This research provides a systematic review of
research development trends in the field of quantum annealing and analyzes how it has been implemented
in different problem domains. The results are expected to serve as the basis to identify the opportunities
and challenges of research related to its implementation. The main contribution of this systematic review
is to summarize different implementations of quantum annealing. It is also to analyze the prospect and
opportunities in one of the problem domains with the greatest interest which is machine learning.

INDEX TERMS Quantum annealing, implementation, review.

I. INTRODUCTION

Quantum information, also known as quantum information
processing (QIP), has gained great attention in different
sectors such as computer science, mathematics, physics, engi-
neering, and others [1]. It uses a different paradigm from
classical information processing [2], [3]. It also applies the
phenomena and principles of quantum mechanics including
superposition, entanglement, and interference which provide
a better way to process information than the laws of classi-
cal physics [2]-[8]. QIP provides numerous advantages over
classical information processing for certain problems [2],
[3], [9] as indicated by the comparisons made in previous
research [2], [10].

The focus of QIP development was initially only to han-
dle problems limited to classical information processing
but was expanded to several other fields such as quantum
cryptography [3]-[7], [11], quantum computation [1], [3],
[10], [12]-[14], and quantum communication [4], [15]-[17]
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over time. Currently, numerous big companies such as IBM,
Intel, Microsoft, and Google have already been involved in
the area of quantum computer development. Moreover, the
exploration of new areas in quantum computing has led pro-
vided certain advantages [8].

Quantum computation can be divided into two general
approaches or types. These include the quantum gate model
and quantum annealing (QA) [2], [4], [6], [18]—-[21] which are
very different in practice and have a major impact on provid-
ing practical advantages over classical computing [20]-[22].
The first approach, the quantum gate model, breaks the
problem down into a sequence of primitive operations (or
gates) with well-defined ‘“‘digital” measurement outcomes
for certain input states which is similar to the current clas-
sical approach. The second approach, QA (also referred to
as adiabatic quantum computing and analog quantum com-
puting), is a form of computing that efficiently samples the
low energy configuration of a quantum system. However, the
practical development of gate-based quantum computers is
very limited due to the large investments made. QA is used
as an alternative approach to certain problems [2], [18], [19].
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TABLE 1. Comparison between QA and other metaheuristics approach.

Methods Concept Advantage Disadvantage
Quantum Metaheuristic that uses quantum e  The quantum mechanical effects e There is limited hardware and environment
annealing fluctuations to find the global (superposition, tunneling, and entanglement) because the implementation of the quantum
[18], [23] minimum of a given objective allow a direct transition between states computer is more difficult than a classical
function. despite a high energy barrier between them. computer.
o It can tunnel through energetic barriers to
escape local minima.
Simulated Local search metaheuristic that e It is capable of dealing with highly nonlinear o A clear trade-off exists between the quality of
annealing allows movement of hill- models, chaotic and noisy data, and a wide solutions and the time required to compute
[24]-[26] climbing to escape local optima range of constraints. them.
in the hope of finding a global
optimum. e It has the capability and flexibility to e The accuracy of the numbers used in SA
approach global optimality. implementation can have a significant impact
. . . on the quality of the outcome.
e [t is quite versatile because it does not rely
on any restrictive properties of the model. e It has a very long computational time.
e It enables complete exploration of the
solution space.
Genetic An evolution-based method that e 1t is simple to implement and employs e There is no guarantee that the global maxima
algorithm relies on selection, crossover, simple operators. will be discovered.

[24], [27],
(28]

Tabu search

and mutation to terminate not
the best solution, a group of all
elements is called 'genes' which
indicate a set of solutions for
the optimization variables.

The techniques that keep track

It can be used to handle problems with
nonlinear or discontinuous constraints and
objective functions.

It can be used to handle problems with high
computational complexity such as TSP.

It improves local optimization capabilities

implementation of procedures considered to

It has been used widely in scientific research

[28], [29] of the regions of the solution
space that have already been e The use of memory structures enables the
searched in order to avoid
repeating searches near these be capable of searching the solution space
areas. efficiently and effectively.

Particle Global swarm algorithm that e The calculation is simple.

swarm explores the search space using

optimization multiple individual particles to °

[27], [28] find the optimal solution. and engineering fields.

It lacks a standardized method for defining a
good fitness function.

It can be time-consuming, specifically while
dealing with problems that have a large number
of variables.

It has a tendency to overlook some promising
areas of the search space.

The static and fixed size of the tabu list can
sometimes trap the exploration.

All solutions converge prematurely, thereby
resulting in a loss of population diversity.

It suffers from a lack of optimism.

QA can also be classified as a metaheuristic approach
to handle optimization problems. There are some popular
classical metaheuristic approaches such as simulated anneal-
ing, genetic algorithm, tabu search, and particle swarm opti-
mization which are compared to QA as indicated in the
following Table 1.

Table 1 shows the differences between QA and other meta-
heuristics. It has also been reported that QA is a promising
approach to handle NP-hard optimization and probabilis-
tic sampling problems [30], [31]. Moreover, a company,
D-Wave Systems Inc., has recently successfully developed
and commercialized quantum computers as an alternative
approach due to the limitations of gate-based quantum com-
puting models [21], [32]. The continuous development and
improvement of this D-Wave quantum computer have also
increased the research in the QA area. Therefore, this present
research analyzed QA through a systematic literature review.
The contribution is associated with the trends, implementa-
tion techniques, and prospect analyses for several problems
focused on optimization and probabilistic sampling.
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The Part II describes the research method which consists of
three phases of Systematic Literature Review (SLR). The first
and second were designed to form Research Questions (RQs)
and find relevant pieces of literature, respectively, while the
third which is the reporting phase was used to analyze the
results of the SLR to answer each Research Questions (RQs).
Moreover, Part III analyzes the prospects and opportunities
of problem domains receiving the highest attention in QA
research while Part IV describes the conclusions of this
research.

Il. RESEARCH METHOD

This section describes relevant findings from previous
research in line with the background of this present study. The
Systematic Literature Review (SLR) was conducted accord-
ing to the existing guidelines from [33]. This is a research
method normally used to conduct an orderly literature review
to map out certain phases. It was applied through three
phases which include (1) Planning and Determining Research
Questions, (2) Conducting the Review, and (3) Reporting
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Planning Phase

Systematic Planning Research Questions

TABLE 4. List of keywords and synonyms.

Conducting the Review Phase

‘ Applying Search String on Data Sources ‘

| ¥ Results in 657 studies

‘ Applying Primary and Secondary Search Criteria

| ¥ Relevant 442 studies shortlisted

‘ Applying Inclusion and Exclusion Criteria

i v/ 232 studies passed

‘ Applying Quality Assessment ‘

v’ 229 studies passed

Keywords Synonyms
Quantum annealing Adiabatic quantum computing, analog quantum
computing
Implementation Implementations, application, implement,
apply, using
Challenges Questions, issues
Opportunities Prospects

TABLE 5. Search string categories.

T Category Mapping on RQs Search String
Reporting the.Results Phase 1 Quantum annealing “quantum annealing” OR
“adiabatic quantum computing”
Overview of Selected Studies Answering Research Questions (RQs) OR “analog quantum computing”
2 Implementation of (“implement*” OR “application*”
FIGURE 1. Overview of systematic literature review. quantum annealing OR “apply*” OR “using”) AND
(“quantum annealing” OR
“adiabatic quantum computing”
TABLE 2. PICOC and description. OR “analog quantum computing”)
3 Challenges and ((““challenge®” OR “question*”

PICOC Description

Population Quantum annealing

Intervention  Trends, techniques, and prospects of quantum annealing

Comparison ~ Comparison based on problem domains and methods in
different research on quantum annealing

Outcomes Problem domains and methods of quantum annealing
with the potential to be explored in the future

Context Review of the existing research on quantum annealing

TABLE 3. Research questions (RQs).

RQs Statements

RQ1  What is the trend of quantum annealing research?

RQ2  How is quantum annealing implemented in several
optimizations and probabilistic sampling problems?

RQ3 What are the challenges and opportunities of quantum
annealing?

the Results as explained in the following subsections. Mean-
while, an overview of the SLR is presented in Figure 1.

A. PLANNING PHASE
Good planning is the basis for a smooth SLR implemen-
tation serves as the foundation to derive the RQs which
is an important step in any SLR. Moreover, the criteria
used in formulating the RQs in this research were based on
PICOC (Population, Intervention, Comparison, Outcomes,
and Context) as shown in the following Table 2 [34].

This research focuses on analyzing previous studies
related to QA with attention on its trends, implementation
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OR “issue*””) OR (“opportunities”
OR “prospects”)) AND (“quantum
annealing” OR “adiabatic
quantum computing” OR “analog
quantum computing”)

opportunities in
quantum annealing

techniques, and prospects as indicated in the table. Moreover,
different techniques and problem domains in the QA area
were analyzed and this led to the formulation of the RQs
presented in Table 3.

This means three RQs were answered and used as the basis
for the systematic literature review. RQ1 was designed to
review the development trend of QA from year to year and
the most dominant research type. RQ2 focused on reviewing
the problem domains of QA implementation and how the QA
approach is used to handle these problems. RQ3 was used
to analyze the prospect of quantum annealing research in the
future based on the results of RQ1 and RQ?2.

B. CONDUCTING THE REVIEW PHASE
Conducting the Review phase consists of search strategy,
study selection, study quality assessment, and data extraction.

1) SEARCH STRATEGY

The purpose of the search strategy is to find research that
can assist in answering the defined RQs. It involves three
phases which include identifying the keywords and determin-
ing search strings, selecting data sources, and searching the
data sources.

a: KEYWORDS IDENTIFICATION AND SEARCH

STRING DETERMINATION

According to [33], the search string can be determined by
analyzing the main keywords in the RQs, their synonyms, and
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TABLE 6. Relevant search results based on data sources.

TABLE 7. Inclusion and exclusion criteria.

Data Sources Search of Results

Inclusion Criteria

SpringerLink 177
IEEE Explore 16
ACM Digital Library 8

Elsevier Science Direct 123
Nature 118
Total 442

other spellings of the word. The summary of keywords and
synonyms identified in this research is presented in Table 4.

The keywords in Table 3 were used to obtain the search
string through the combination of the synonymous terms
using logical ‘OR’, other keywords using ‘AND’, and wild-
card characters ("*’). The search strings are categorized into
three according to the identified RQ and presented in the
following Table 5.

b: DATA SOURCES

The digital databases used to search the keywords were
SpringerLink, IEEE Explore, ACM Digital Library, Elsevier
Science Direct, and Nature.

¢: SEARCH PROCESS IN DATA SOURCES

All the search strings discovered were applied to predefined
digital data sources to find related research and the data were
collected up to December 2021. This phase was divided into
2 sub-activities which include the primary and secondary
search. In the primary phase, 657 results were obtained from
the selected search string restricted to only journals and
further refined to have better results through the removal of
duplicated titles. The technique used in the secondary phase
is called snowball tracking and was applied to further explore
all primary references to increase the likelihood of finding
important research for SLR. The results for both phases are
presented in Table 6.

Table 6 shows that 442 research were found with the high-
est, 40%, obtained from SpringerLink followed by Elsevier
Science Direct, Nature, I[EEE Explore, and the lowestin ACM
Digital Library.

2) RESEARCH SELECTION

The results obtained through the search string were analyzed
based on the inclusion/exclusion criteria presented in the
following Table 7.

Relevant research were selected by marking each research
as In (Include), Un (Uncertain), and Ex (Exclude). This anal-
ysis was conducted in two stages starting with the review of
the titles and abstracts to ensure they match the information
required for each RQs. This was followed by the review of
the entire content of the research, specifically the conclusion
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Research related to the analysis of QA methods
Research related to the implementation of QA
Research related to the improvement of QA algorithms
Research related to challenges and opportunities of QA
Written in English

Peer-reviewed papers

SAAIE I el e

Exclusion Criteria

Research related to the quantum gate model
Research related to the classical annealing approach
Research related to analysis, implementation, or
improvement of QA hardware

4. Research not written in English

hedi e

section. This led to the selection of 232 relevant research from
the 442 previously retrieved.

3) RESEARCH QUALITY ASSESSMENT
This activity was used to assess the quality of primary
research obtained through inclusion and exclusion criteria
analysis. This was achieved through a set of five questions
presented in a questionnaire form in line with the guidelines
used by [33] as follows:

Q1. Are the goals clearly defined?

Q2. Was the research designed to attain the aims or
questions?

Q3. Is the quantum annealing implementation well
defined?

Q4. Are all research questions answered sufficiently?

Q5. Are the main findings clearly defined in terms of
credibility, validity, and reliability?

This led to the exemption of three research and this means
only 229 were included in the next phase of the analysis.

4) DATA EXTRACTION

The data extraction describes the data selected due to their
ability to answer the RQs and this was conducted using
Microsoft Excel.

C. REPORTING THE RESULTS PHASE
This section presents the results for each of the RQs in the
systematic literature review in a tabular form.

1) OVERVIEW OF SELECTED RESEARCH

Figure 2 shows the distribution of the selected research based
on their data sources. It was discovered that 111 (48.47%)
are from SpringerLink, 50 (21.83%) from Elsevier Science
Direct, 49 (21.40%) from Nature, 12 (5.24%) from IEEE
Explore, and 7 (3.06%) from the ACM Digital Library.
Moreover, the distribution based on the year of publica-
tion presented in Figure 3 showed that those related to QA
increased over the years and 2021 was observed to have the
highest with 71 research.
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FIGURE 2. Distribution of selected studies from data sources.
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FIGURE 3. Distribution of selected studies by year of publication.

TABLE 8. Mapping of research types.

Number of

Research Type Rescarch References

Analysis 100 [8], [12], [18], [19], [30], [32],
[35]-[128]

Implementation 121 [20], [22], [129]-[247]

Evaluation 8 [248]-[255]

2) RESULTS REPORTING ON RQ1

All the 229 selected research were able to provide answers
to RQ1. Moreover, the trend based on the number from year
to year shows a significant exponential increase with several
peak points observed most notably in 2011, 2015, and 2021 as
indicated in Figure 3. The increase in 2011 is associated with
the release of the first commercial quantum computer that
uses QA for its processing by D-Wave Systems. The increase
in 2015 is related to the release of the D-Wave 2X quantum
computer with approximately 10 times the number of qubits
in the D-Wave One. Meanwhile, the increase recorded in
2020 was characterized by the launching of the D-Wave
Advantage quantum computer with approximately 5 times the
number of qubits in the D-Wave 2X. These events possibly
contributed to the continuous increase in the development
trend of QA research.
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Apart from the number of publications, the development
trend based on the type of research was also analyzed using
three categories which include analysis, implementation, and
evaluation. This was conducted to determine the main con-
cern and contributions of existing studies. The results are
presented in the following Table 8.

The results from the table show that 52.84% of research
focus on implementing QA methods in different problem
domains. This is reasonable due to the growing number of
quantum computers that support the implementation of QA,
especially the D-Wave. Moreover, the trend of these publica-
tions is predicted to continue to increasing because quantum
computers are still developing and the problem space being
researched is increasingly complex. It was also discovered
that 43.67% are on the analysis of the working principles,
the potential for performance improvement, or the idea of
its application in different problem domains conceptually.
This type is also studied extensively due to the fact that QA
is a topic with several challenges, both from the aspect of
quantum physics and quantum information technology. The
analysis in this aspect is also predicted to continue increasing
and has the ability to cause a new quantum revolution. The
remaining 3.49% focus on evaluation which does not have
a very significant portion in the current development trend.
This is due to the fact that the QA research usually tend
to incorporate the evaluation aspect into the implementation
process as a performance parameter.

3) RESULTS REPORTING ON RQ2

The determination of the answer to RQ2 which focuses on
analyzing the evolution of QA implementation in different
optimization and probabilistic sampling problems led to the
selection of 171 out of 229 research. The answer was pro-
vided through further analysis of two aspects which include
the problem domains of QA implementation and the specific
method used. These problem domains were grouped into
13 which include machine learning, graphics, mathematics,
routing, scheduling, computational chemistry, computational
biology, security, portfolio, big data, hydrology, database,
and sensors. The findings are presented in the following
Table 9.

The table shows that eight research including [37], [93],
[179], [208], [210], [222], [228] are categorized under two
problem domains. Meanwhile, machine learning was found
to be the most investigated topic using the QA approach
as indicated by 26.40% and this was followed by graphics
with 24.72%, mathematics with 17.98%, routing with 6.74%,
scheduling 6.74%, chemistry computation 5.06%, biology
computation 3.37%, security 2.25%, portfolio 1.69%, big
data 1.69%, hydrology 1.12%, database 1.12%, and sen-
sors with 1.12%. The descriptions of the findings from the
13 domains are stated as follows:

1) Machine learning: This includes optimization of the
training process, improving the quality of predictions,
image recognition, improving the quality of classifica-
tion (clustering), and optimizing neural networks.

VOLUME 10, 2022



L. P. Yulianti, K. Surendro: Implementation of Quantum Annealing: A Systematic Review

IEEE Access

TABLE 9. Mapping of problem domains.

Number of

References
Research

Domain

Machine 47
learning

[36]-[38], [56], [61], [77], [82], [83], [85],
[87], [891-[91], [100], [110], [121], [129],
[133], [134], [137], [139], [147], [155],
[158], [161], [164], [172], [173], [191],
[199], [200], [203], [204], [208]-[211],
[214], [217], [221], [222], [224], [229],
[232], [236], [239], [254]

[19], [53], [58], [74], [88], [92], [104],
[125], [128], [136], [138], [140], [141],
[144], [145], [151], [152], [160], [163],
[165], [168], [174], [175], [177], [180],
[1841-[187], [190], [193], [196], [197],
[207], [215], [225], [226], [230], [241],
[242], [244], [245], [248], [250]

[20], [22], [42], [75], [79], [93], [94], [96],
[107], [119], [143], [148], [153], [154],
[159], [162], [169]-[171], [181]-[183],
[192], [201], [202], [205], [213], [227],
[228], [234], [235], [240]

[721, [127], [130], [149], [150], [156],
[179], [189], [195], [216], [223], [228]

[37], [40], [132], [135], [146], [179],
[188], [206], [233], [243], [247], [249]

[411, [86], [93], [176], [208], [210], [218],
[222], [231]

Graphics 44

Mathematics 32

Routing 12

Scheduling 12

Chemistry 9
computation

Biology 6 [106], [114], [115], [220], [238], [246]
computation

Security 4 [35],[98], [131], [157]

Portfolio 3 [166], [194], [219]

Big data 3 [43],[103], [105]

Hydrology 2 [39], [237]

Database 2 [55], [198]

Sensor 2 [178], [212]

2) Graphics: This includes optimization of different
graphs such as chimera graph, max-cut problem,
satisfiability problem, graph isomorphism problem,
maximum clique, max-flow problem, and hardware
graph as well as the formulation of real-world problems
using graphs such as smart-charging of electric vehicles
[138] and air traffic management [193].

3) Mathematics: This includes optimization of mathemat-
ical problems such as number partitioning problem,
distribution measurement, polynomial equations,
factorization, integer-to-binary mapping, counting
problem, Hamiltonian equation, Jarzynski equality,
linear equation, and Hadamard matrices problem.

4) Routing: This includes optimization of route determi-
nation in real-world problems, such as track reconstruc-
tion, Chinese postman problem, Traveling Salesman
Problem (TSP), traffic signals control problem, social
trust path problem, and vehicle routing problems.

5) Scheduling: This includes optimization scheduling
problems such as garden optimization problem,
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refinery scheduling process, job scheduling problem,
logistic network design, wireless network scheduling,
agile earth observation satellite scheduling, network
shortest path problem, nurse scheduling problem, and
network scheduling problem.

6) Chemistry computation: This includes optimization of
computation related to chemistry such as molecule
structures, drug discovery, fault detection in the chem-
istry process, and chemical vapor deposition.

7) Biology computation: This involves optimization of
computation related to biology such as neurosurgery,
genome assembly, protein folding, transcription factor-
DNA binding, and lattice protein modeling problem.

8) Security: This includes optimization in security prob-
lems such as cryptography, DDOS attack identification
and mitigation, and cybersecurity.

9) Portfolio: This focuses on the optimization of the port-
folio specifically in the trading trajectory problem.

10) Big data: This involves the optimization of big data in
terms of its accuracy and efficiency.

11) Hydrology: This entails the optimization of aquifer
composition determination from pressure readings and
prediction of flow and transport in aquifers.

12) Database: This emphasizes the optimization of the
Grover search algorithm and multiple query problems.

13) Sensor: This centers on the optimization of sensor uti-
lization in terms of fault detection and cost-efficiency.

The analysis of this problem domain aspects showed that
QA can be implemented in different optimization problems
and probabilistic sampling. Moreover, it was discovered that
the case studies studied in each problem domain also vary.
This means the types of problems being handled as well as
the problem domain tend to continue increasing.

The specific methods used to implement the QA in a
particular problem domain were also analyzed using four
groups which include QA, hybrid QA, reverse QA, and
improved QA. It is important to note that the hybrid QA,
reverse QA, and improved QA are three groups related to
the modification of QA. The hybrid QA is fundamentally
based on the combination of QA and classical methods to
handle optimization problems [256]. This can be in the form
of the 1) decomposition of QA and classical methods in the
completion process as well as their integration into a complete
solution, 2) application of the classical approach to qubits,
and 3) application of the QA approach to classical computers.
Meanwhile, the reverse QA is based on the concept that if
the system is initialized in the S state according to the local
minimum of the objective function, then the interaction of
quantum and thermal fluctuations can help the state escape
the energy trap during reverse annealing. In this method, the
quantum fluctuation first increases and only then decreases
[185], [257]. Moreover, the improved QA is basically focused
on adding certain parameters to improve the quality of a pre-
viously conducted QA. It is important to note that the hybrid
QA and improved QA group different forms of implemen-
tation that meet their fundamental requirements. Meanwhile,
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TABLE 10. Mapping of methods.

Number of
Research

QA 115 [19], [20], [22], [351-139], [41]-143],

(adiabatic) [53], [55], [56], [58], [611, [72], [74],
[75], [79], [82], [83], [85]-{87], [89]-
[92], [94], [96], [98], [100], [103]-[106],
[110], [114]-[115], [121], [125], [127],
[129]-[132], [134], [141], [144], [149],
[151]-[155], [1601-[163], [165], [168]—
[173], [176]-[179], [181], [183]-[184],
[187]-[190], [193]-[194], [196], [198],
[199], [203], [204], [206], [207], [211],
[212], [215]-[218], [221], [223], [224],
[227], [229], [230], [234], [235], [237]-
[239], [241]-[250], [254]

[40], [771], [88], [93], [107], [119], [133],
[135]-[139], [143], [145]-[148], [156]
[159], [164], [182], [191], [192], [195],
[197], [200]-[202], [205], [208]-[210],
[213], [219], [220], [222], [225], [226],
[228], [231], [232], [240]

[166], [233], [236]

[128], [140], [150], [174], [175], [180],
[185], [186], [214]

Method References

Hybrid QA 44

Reverse QA 3
Improved QA 9

reverse QA is a specific method published in several research
as a QA modification method. These findings are presented
in the following Table 10.

The table shows that the majority of research related to
QA implementation, represented by 67.25%, use the basic
QA approach to handle problems. QA is most widely used
because it is the basic annealing-based quantum approach
which is easier to be implemented using the current quantum
annealer. Meanwhile, most research, represented by 25.73%,
started to improve QA performance by combining the QA
with the classical approach. They are usually driven by the
goal of maximizing the potential of existing resources which
include both classical and quantum computers. This was
followed by research on the improved QA with 5.26% and
reverse QA with 1.76%.

The implementation method and problem domain were
also mapped as presented in Table 11 to comprehensively
determine the specific method used in each problem domain.
The result shows that there are potentials to apply several
implementation methods to different problem domains in
order to improve QA performance. Several problem domains
have been handled using more than one method while
machine learning was found to be the only domain analyzed
and/or implemented using the four methods. Those investi-
gated using at least three methods are only 5 which include
machine learning, graphics, routing, scheduling, and port-
folio domains. Moreover, some case studies with the same
specific problem like the Traveling Salesman Problem were
analyzed using different methods which include QA [72],
[127] and improved QA [150]. This means further analysis
and exploration of QA methods to be implemented in differ-
ent/same domains and case studies can become an interesting
challenge in the future.
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This research also compares the QA performance with
other methods based on 90 relevant research presented in
Table 8 to determine their results based on the four specific
methods of QA. These research were mapped based on the
implementation and evaluation types. The number of research
were reduced from a total of 129 to 90 because 39 did
not compare performance with other methods. An overview
of the metrics and the method used for the comparison is
presented in Figure 4.

The figure shows three broad groups of state-of-the-art
methods which include heuristics, machine learning, and oth-
ers apart from these two. Heuristics and machine learning
methods are the two groups that are mostly used as com-
parisons. Moreover, the figure shows different metrics used
in the implementation and evaluation of the four specific
methods. Accuracy and time metrics were found to be the
two main factors considered in each specific method. The
figure also assists in simplifying the comparative analysis
between the performance of these four specific methods
and the three groups of state-of-the-art methods based on
these defined metrics as indicated in the findings presented
in Figures 5, 6, and 7.

Figure 5 compares QA and state-of-the-art methods using
50 research found to be relevant to the concept. It was dis-
covered that 75 combinations of metrics and state-of-the-art
methods were mapped and compared out of which 60 (80%)
stated that the QA performed better, 7 (9.33%) stated they
have equivalent performance, and 8 (10.67%) showed that
QA has lower performance. The most widely used state-of-
the-art method for comparison was found to be simulated
annealing as indicated by 21 (42%) of the 50 research which
include [130], [149], [152], [154], [161], [168], [171], [189],
[212], [217], [218], [223], [229], [238], [239], [242], [243],
[246], [249], [251], and [252]. This is due to the fact that QA
is analogous to simulated annealing (classical approach) but
in substitution of thermal activation by quantum tunneling.
Moreover, the three metrics widely used for the compari-
son include the quality of solution (13 comparisons), accu-
racy (12 comparisons), and efficiency (9 comparisons). The
QA performance was generally found to be analyzed better
than the current state-of-the-art methods including heuris-
tics, machine learning, and the others. However, 15 (20%)
studies showed that it has not been able to outperform the
state-of-the-art approach mainly due to the limitations of
the D-Wave architecture used [130], [134], [172]. Refer-
ence [130] reported that the QA implementation only fits up
to 500 tracks in problems associated with charged particle
tracking due to the limited size of the D-Wave 2X (33 fully
connected logical qubits). Furthermore, [ 134] showed that the
QA approach has a slower run time in all cases used in the bal-
anced k-means clustering problem because the quantum run
time was dominated by the embedding time. This is because
embedding is extremely difficult on modern quantum com-
puters due to limited qubit connectivity in D-Wave 2000Q.
Another research [172] showed that the use of QA is only
feasible for small matrices which are up to 6 x 6 instance size
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TABLE 11. Mapping of problem domains and methods.

Domain Method N;er?:;rcﬁf References
Machine learning QA (adiabatic) 32 [36]-[38], [56], [61], [82]-{83], [85], [87], [89]-{91], [100], [110], [121], [129], [134], [139],
[155], [161], [172], [173], [199], [203], [204], [211], [217], [221], [224], [229], [239], [254]
Hybrid QA 13 [771, [133], [137], [147], [158], [164], [191], [200], [208]-[210], [222], [232]
Reverse QA 1 [236]
Improved QA 1 [214]
Graphics QA (adiabatic) 30 [19], [53], [58], [74], [92], [104], [125], [141], [144], [151], [152], [160], [163], [165], [168],
Ezg}, [184], [187], [190], [193], [196], [207], [215], [230], [241], [242], [244], [245], [248],
Hybrid QA 7 [88], [136], [138], [145], [197], [225], [226]
Improved QA 7 [128], [140], [174], [175], [180], [185], [186]
Mathematics QA (adiabatic) 18 52]5,][22], [42], [75], [79], [94], [96], [153], [154], [162], [169]-[171], [181], [183], [227], [234],
Hybrid QA 14 [93],[107], [119], [143], [148], [159], [182], [192], [201], [202], [205], [213], [228], [240]
Routing QA (adiabatic) 8 [72], [127], [130], [149], [179], [189], [216], [223]
Hybrid QA 3 [156], [195], [228]
Improved QA 1 [150]
Scheduling QA (adiabatic) 8 [37], [132], [179], [188], [206], [243], [247], [249]
Hybrid QA 3 [40], [135], [146]
Reverse QA 1 [233]
Chemistry computation QA (adiabatic) 4 [41], [86], [176], [218]
Hybrid QA 5 [93], [208], [210], [222], [231]
Biology computation QA (adiabatic) 5 [106], [114], [115], [238], [246]
Hybrid QA 1 [220]
Security QA (adiabatic) 3 [35], 98], [131]
Hybrid QA 1 [157]
Portfolio QA (adiabatic) 1 [194]
Hybrid QA 1 [219]
Reverse QA 1 [166]
Big data QA (adiabatic) 3 [43], [103], [105]
Hydrology QA (adiabatic) 2 [39], [237]
Database QA (adiabatic) 2 [55], [198]
Sensor QA (adiabatic) 2 [178],[212]

in bi-clustering problems. This is due to the limited number of
qubits accommodated by the D-Wave 2X architecture. It was
also observed that the D-Wave architecture is developing with
the latest version found to be the D-Wave Advantage which
has approximately 5 times more qubits than D-Wave 2X and
2.7 times more than D-Wave 2000Q. It also has a significant
increase in the number of couplers which is estimated to be
12 times more than the D-Wave 2X and 6.7 times more than
the D-Wave 2000Q. This means further developments of the
D-Wave machine including the use of a larger number of
qubits with higher connectivity can potentially improve the
performance of QA on large scale problems.
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Figure 6 shows the comparison between hybrid QA and
state-of-the-art methods using 32 relevant research. It was
discovered that 55 combinations of metrics and state-of-the-
art methods were mapped and compared. The result shows
50 (90.91%) stated that the hybrid QA performed better,
3 (5.45%) found an equivalent performance, and 2 (3.64%)
showed that it has lower performance. This shows that the
hybrid QA has better quality than QA. Moreover, the state-
of-the-art method widely used for the comparison is also
the simulated annealing as indicated by 7 (21.87%) out of
the 32 research which include [146], [156], [162], [164],
[192], [213], and [255]. This was followed by QA with
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FIGURE 4. Overview of benchmarking performance methods and metric.

332 (9.37%) including [142], [226], and [255]. Furthermore, solutions (6 comparisons), and execution and computation
the three metrics most widely used for the comparison were time (5 comparisons). The difference in these metrics is due
observed to include efficiency (11 comparisons), quality of to the fact that the main goal of hybrid QA is to overcome
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[130]
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Short Time Decoherence

Correctness

[172]

Inertia Values

Scalability

Quality of Training

Performance
QA has a better performance

FIGURE 5. Comparative analysis between QA and state-of-the-art methods.

the limitations of the current quantum annealer, especially
the D-Wave. This quantum-classical hybrid approach allows
more efficient performance either in terms of the number of
iterations performed or the number of resources used on the
hybrid QA implementation. Moreover, efficient performance
is required to be accompanied by a good and reasonable
quality of solutions and time, and this is the reason they are
widely used for comparison. Figure 6 shows a research [147]
that did not find any improvement in the performance of the
hybrid QA which is a Quanvolutional Neural Network when
compared to the classical method which is a Convolutional
Neural Network. The main challenging factor in [147] is
how to deal with noise in the developed quantum circuits.
It is, however, important to note that the hybrid QA generally
contributes significantly to the efforts toward dealing with
optimization and probabilistic sampling problems, especially
in relation to efficiency.

Figure 7 shows two types of comparisons between
1) reverse QA and state-of-the-art methods and 2) improved
QA and state-of-the-art methods. The result shows only 2
research comparing on reverse QA and state-of-the-art meth-
ods with a focus on portfolio optimization [166] and nurse
scheduling [233] problems. It was discovered that 3 combi-
nations of metrics and state-of-the-art methods were mapped
and compared. The result shows 2 (66.67%) stated that the

VOLUME 10, 2022

QA has a comparable performance

QA has a worse performance

reverse QA performed better while 1 (33.33%) showed they
had an equivalent performance. The only state-of-the-art
method used for comparison was QA [166], [233]. Moreover,
the proposed modification of the QA approach to reverse
QA caused a significant increase in time and probability of
success. This means the method is very promising with a pro-
tocol that focuses on path modification of QA. Its accuracy is
comparable to state-of-the-art methods because the proposed
reverse QA is intended to increase the acceleration of the
annealing process in QA without any attempt to increase the
accuracy significantly.

Figure 7 also shows 6 research compared the performance
of improved QA with the state-of-the-art methods. It was
discovered that 8 combinations of metrics and state-of-the-
art methods were mapped and compared. They all showed
an increase in the performance of the improved QA com-
pared to the state-of-the-art methods. Moreover, two metrics
observed to be widely used for the comparison include effi-
ciency (2 comparisons) and running time (2 comparisons).
The results obtained are reasonable because the main purpose
of an improved QA is to improve the quality of a previous
QA implementation. This is indicated in [150] that proposed
the application of the INQA (Improved Noise QA) method to
deal with the possibility of QA falling into the local optimum
during the process of solving TSP problems. The INQA
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FIGURE 6. Comparative analysis between hybrid QA and state-of-the-art methods.
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FIGURE 7. Comparative analysis between reverse QA-improved QA and state-of-the-art methods.

added noise parameters to the QA in order to enhance the
solution quality and reduce errors caused by the noise. The
two parameters included are O which is the threshold value
for noise in the inner loop and K which is the threshold value
for noise in the outer loop.

The findings generally showed that 73 out of the
90 research (81.11%) reported QA and its variant methods
had a better performance than other state-of-the-art methods.
Accuracy and time metrics were mainly focused on in the pro-
cess of analyzing the performance of all different methods of
QA. This means the methods empirically and exponentially
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speed up the process of dealing with optimization problems
and probabilistic sampling without neglecting their accuracy.
The other metrics mostly used as the comparison parameters
include the efficiency and quality of the solution. These find-
ings showed that the QA approach is empirically superior to
the classical or other heuristic approaches.

4) RESULTS REPORTING ON RQ3

RQ3 focuses on analyzing the challenges and opportuni-
ties of QA in the future and a total of 10 out of the
229 selected research were used specifically because they
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explicitly describe the challenges and/or opportunities of QA.
Moreover, the analysis was also based on the findings of
RQ1 and RQ?2, and the challenges observed to remain in the
research area are stated as follows:

1) Numerous challenging computational problems have
not been handled effectively [102]

2) There are limitations on precision and error
mitigation [94]

3) The maintenance of fragile quantum correlations in the
macroscopic environment [99]

4) The scalability in larger problem domains

5) The improvement of efficiency and accuracy of QA in
several domains

6) The improvement of algorithm acceleration

These challenges were used to identify the following
research opportunities:

1) How to implement alternative methods related to QA
in problem domains that have not been investigated.

2) How to improve performance using different QA
methods.

I1l. DISCUSSION
The problem domain with the greatest interest in the QA
research area was found to be machine learning with 47 out
of 171 research analyzed discovered to have focused on the
domain. The findings also showed that 30 out of the 47 focus
on the implementation of QA using quantum annealer. More-
over, 20 research indicates the QA approach provides better
performance than the benchmark state-of-the-art approach,
3 provide equivalent performance, while 7 fail to outper-
form. These are considered to be “recent’” because they were
published between 2018 and 2021. The approach fails to
outperform the benchmark means there are several limitations
and opportunities to improve the performance of different QA
methods for machine learning problems. The hardware and
datasets used were also analyzed to deepen the knowledge of
the implementation of QA in machine learning. It was dis-
covered that only 21 out of the 30 research provide complete
information regarding the hardware and datasets used. The
details of the analysis are presented in the following Table 12.
The table has 8 columns which include the references, year,
specific problems, methods, hardware, datasets, QA appli-
cations, as well as metrics and performance. The reference
column was used to analyze the research conducted in a
particular year while the year column emphasizes the trend
of those on machine learning over the years. The specific
problems aspect was intended to determine the context of the
problem studied concerning the machine learning domain in
detail. The method aspect focused on the particular approach
used to deal with the specific problem. Meanwhile, the hard-
ware, tools, and datasets were analyzed to have an insight into
the effect of hardware, tools, and datasets used on the method
performance. QA applications aspect was used to identify
the specific objectives of implementing QA on the specific
problems. Finally, the metrics and performance columns were
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intended to comprehensively analyze the method’s perfor-
mance in solving specific problems based on the hardware
limitations and the dataset used.

A. RESEARCH TRENDS ON QA-ML

The results show that the highest studies on QA imple-
mentation for machine learning (QA-ML) were published in
2021 with 11 research (52.38%), followed by 5 (23.81%)
in 2020, 1 (4.76%) in 2019, 3 (14.29%) in 2018, and
1 (4.76%) in 2017. This significant percentage difference
indicates 2021 was the initial peak of the QA-ML field which
is expected to grow further in the future.

It was also discovered that some of the most optimized
ML models for the specific problems handled using the
QA approach include restricted Boltzmann machines [155],
[158], [200], [208], [224], k-means clustering [134], [173],
and neural networks [147], [236]. Meanwhile, certain dif-
ferences were observed in the specifics of optimized QA
even though several studies focused on the same problem
as indicated in the QA Application column. For example,
several optimizations were made on the restricted Boltzmann
machine model in five studies which include optimization of
the process of reconstructing missing labels from test images
[155], optimization of the classification process of subtypes
of non-small-cell lung cancer patients [158], optimization
of fault diagnosis results [200] and multiple faults [208],
and optimization of hyperparameters on RBM training [224].
This means there is a significant opportunity to discover the
potential of applying new optimizations through the analy-
sis of the possible new conditions or cases in the specific
problems presented in Table 12. Moreover, this research also
analyzes two types of machine learning problems that are
handled based on the 21 specific problems found, which
include classification and clustering. The findings are pre-
sented in the following Figure 8.

From the aspect of the method used, the findings showed
that most of the studies used QA but modifications were
proposed to this method and implemented in 2018. This
is indicated by the proposed application of the reverse QA
method to enhance generalization in neural networks in 2018
[236]. Improved QA was also applied in 2018 to improve
the performance of the harmonic average of purity and
inverse purity of the k-means clustering method [214] but
the information on the hardware and tools used was not
included, thereby, leading to the exclusion of the research
from Table 12. Meanwhile, a hybrid QA method was pro-
posed in 2019 to streamline the partitioning of large integer
optimization problems by extracting subproblems with as
many feasible solutions as possible [232]. These findings
showed that the proposal to modify QA is still relatively new
and has the potential to continue improving in the future. This
phenomenon was observed to have also been driven by the
limitations of the quantum annealer expected to be handled
by the modifications. Furthermore, it is possible to propose
a new form of modification for QA to improve its current
performance.
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TABLE 12. Analysis of QA implementation in machine learning.

References  Year Psr I())T)(;g;fs Method iﬁﬁiﬁ Dataset QA Application Metrics and Performance
[129] 2021  Election polls QA D-Wave Latest 200 likes, Predicting votes Accuracy:
forecasting Advantage retweets,t and . from individuals There is no benchmark evaluation but
;:ommen $ amongs this approach was evaluated
'fe\r:/f::::(;nv}g]lrfri;rs qualitatively using Twitter data
[133] 2021  k-community Hybrid D-Wave Quantum Determining the Modularity, time:
detection QA 2000Q, modularization partition of a graph .
gbsolv from Github [258]  into distinct Equal mo‘l‘”a”ty pfrf":.mamf’ but there
communitios is no quantum acceleration ye
134 2021 Balanced k- A D-Wave Synthetic Finding the global Time complexity, average total
yn g the g plexity. g
means 2000Q classification data solution to the computing time, accuracy:
clustering setifrorln ficati training problem Theoretically, the time complexity is
1fna %C qssihlca ton better. Empirically, the performance is
Sl::rilliiflz;ﬁi © slower but the accuracy is similar.
datasets package
[137] 2021 GAN Hybrid D-Wave MNIST, LSUN Sampling from Inception score, Frechet Inception
QA 2000Q graphical model to Distance (FID):
tralnhghe Boltzmann Better performance for models with
machine higher connectivity. The image becomes
less intuitive when trained through
sampling with QA.
[139] 2021  Time-series QA D-Wave SonyAIBORobotS  Reconstructing and  Efficiency, accuracy:
construction 2000Q urfacel, GunPoint,  classifying time- Competitive and superior in some cases
and semi- TwoLeadECG, series
supervised ECG200,
classification BeetleFly,
Chinatown
147 2021  Geospatial data  Hybrid Universal SAT-4 Classifying satellite  Efficiency, accuracy:
P y ying y. y
processing QA gg:ix:?ng 1mage There are no practical advantages
by Rigetti
Computing
[200] 2021  Fault diagnosis ~ Hybrid D-Wave IEEE 30-bus Analyzing and Computational result, response time,
A 2000 system diagnosing faults in  efficiency:
Y g g y
eleitncal power Better computation result and efficiency
systems performance and faster response time
[203] 2021  Particle track QA D-Wave Particle tracks Performing Efficiency, accuracy:
classification 2000Q dataset 88&4&4 andll f Accuracy performance is quite high and
track recrcf;alitio(;lr efficiency is competitive
204 2021 Biomedical A D-Wave TCGA Comparing the Efficiency:
paring y
science %\)/(aai}::d D- ?;;z)rrrnnjél;z (t)cf ML Better performance for small amounts of
2000Q algorithms data
[222] 2021  Community Hybrid D-Wave Molecule point Reducing the Full configuration interaction (FCI):
detection QA 2000Q, groups, FCI molecular Can be an alternative to the classic
gbsolv energies, and Hamiltonian matrix approach
cluster energies in Slater pp
determinant basis
without chemical
knowledge
224 2021 RBM A D-Wave 1000 7 x 7 pixels Optimizin Running time and accuracy:
p P! g 2 y
2000Q %f bladeaél:i.Whlte gyP erf;zgr;[meter to Faster training and reaching the lowest
(];lissa)rlimagré};es am asymptotic error
155 2020  Restricted A D-Wave OptDigits Reconstructin, Speed, error classification:
pthig g P!
Boltzmann 2000Q missing labels of Fast f d twice th
Machine fest images aster performance and twice the error
(RBM) model rate for incomplete image classification
[158] 2020  Hybrid RBM Hybrid D-Wave Geo lung cancer Classifying two Accuracy:
model QA 2000Q dataset from Kuner  subtypes of non-

and Golumbic

small-cell lung

Equal performance
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TABLE 12. (Continued.) Analysis of QA implementation in machine learning.

Specific Hardware L .
References  Year Problems Method and Tools Dataset QA Application Metrics and Performance
cancer patients
[161] 2020  Pattern QA D-Wave TrackML Recognizing Purity, efficiency:
recognition X patterns 1nt§ventfs Better purity and efficiency performance
fepresentative ol for small amounts of data
expected conditions
at the HL-LHC
[208] 2020  Fault detection Hybrid D-Wave Records of Detecting and Fault detection rates, efficiency:
QA 2000Q continuous stirred diagnosing multiple B . .
etter training performance in many
tank reactor and faults
cases
Tennessee Eastman
process
[211] 2020 SVM QA D-Wave Mad50, Max50, Producing an AUROC, AUPRC, accuracy:
2000Q Myc50, Mad70, ensemble of Better training performance for small
Max70, Myc70, classifiers amounts of data
Mad80, Max80,
Myc80
[232] 2019  Integer partition ~ Hybrid D-Wave Ferromagnetic, Partitioning large Efficiency:
with ((;ne-hot QA 2000Q ?)nttit-ferl'romaglzftic, intsge{r y Hybrid performance with binary
encoding otts glass, an optimization partition has the highest performance
Potts gauge glass problem
models
[172] 2018  Biclustering QA D-Wave Synthetic data set Solving Correctness and complexity:
2X composg:d by .10 X biclustering It is only feasible for small matrices
10 matrices with a problems
constant random-
positioned bicluster
that occupies the
25 percent of the
elements, data from
[259]
[173] 2018 Clustering with QA D-Wave Clustering samples  Solving clustering Inertia values:
one—l(liqt dk X ?\Jfl\llz()(‘)‘(()) N ;I%IO—O, problems QA performance on k-means is better
encoding and K- N »and N = than one-hot encoding
means 2000
[236] 2018  Deep neural Reverse D-Wave MNIST, Olivetti Enhancing Generalization:
networks QA 2000Q generﬁllzétigonkm Generalization performance with higher
neural networks finite value induction
[239] 2017 Higgs QA D-Wave Synthetic 18 data Solving Higgs- Robustness to error:
optimization 2X sets of simulated signal-versus- Equal performance
collision events background ML qualp
optimization
problems
B. HARDWARE, TOOLS, AND DATASETS USED FOR Classification Clustering

QA-ML IMPLEMENTATION

The hardware, tools, and datasets used in the research were
also analyzed because they are related to the performance
of the QA. The results show that D-Wave 2000Q is the
most widely used quantum annealer version as indicated by
its application in 15 research (71.43%). It was discovered
that the research analyzed ranged from 2018-2021 while
the D-Wave 2000Q was released in 2017. Moreover, this
version of D-Wave was found to be the most popular quan-
tum annealer hardware when compared to the D-Wave 2X
released in 2015 and the D-Wave Advantage released in
2020 as indicated in Table 12. The D-Wave 2X was also
observed to be the second most used due to its application
in 5 research (23.81%). This means some research did not
use the latest version of D-Wave even though they were
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FIGURE 8. Distribution of common types of machine learning problems.

published after 2017. Furthermore, only one research [129]
was observed to have used D-Wave Advantage, which is the
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latest version. Research [147] also prefers universal quantum
computers by Rigetti Computing to quantum annealers in
implementing QA. This means QA can be applied both using
the quantum annealer and universal quantum computer.

Table 12 also shows the different types of datasets used in
21 studies and none was found to be exactly the same. Some
of the methods observed to have been applied in creating
and using the datasets include building personal datasets
[129], [134], [172], [173], [203], [208], [222], [224], [232],
[239], using a representative dataset on a specific problem
[133], [147], [155], [161], [200], [204], and applying several
representative datasets [137], [139], [158], [211], [236]. The
difference in the modes of creating and using these datasets is
reasonable due to the variations in the specific issues focused
on in each of those studies. In fact, it was found that the
shape of the dataset used to optimize the same ML model
was different due to the variations in the concerns and focus
of the QA implementation. It is important to note that the
information concerning the dataset can also provide an idea
of the quantity of data a quantum annealer has the ability to
handle.

C. METRICS AND PERFORMANCE OF QA-ML

The different methods of QA and their performance have
been generally identified in the early part of the discussion.
This section focuses on analyzing the metrics used and the
role of hardware in the results of each method comprehen-
sively using the information in Figure 9 which shows the
36 combinations of performance results based on the metrics,
methods, and hardware used in 21 research from Table 12.
Research [129] was observed not to have compared the QA
with state-of-the-art methods and this led to its exclusion
in Figure 9.

The results show that D-Wave 2000Q is the only hardware
used to implement more than one specific method of QA
including the QA, hybrid QA, and reverse QA. Meanwhile,
D-Wave 2X and Universal Quantum Computing by Rigetti
Computing were applied to only QA. Moreover, the imple-
mentation of QA on three different hardware was analyzed
and the application of D-Wave 2000Q was found to have
a better performance. This is indicated from 12 research
(80%) which showed it performs better than state-of-the-
art methods, 2 (13.33%) indicated comparable performance,
and 1 (6.67%) showed a lesser performance. Furthermore,
the percentage of success achieved using D-Wave 2000Q was
observed to be much higher than using D-Wave 2X. This was
proven by only 4 research (57.14%) that showed D-Wave
2X provides better QA performance, 1 (14.29%) indicated
comparable QA performance, and 2 (28.57%) showed it
is worse. This is reasonable because D-Wave 2000Q is a
newer version with improved performance (better solutions
and time-to-solution), annealing quantum processor design
(qubits, couplers, couplers per qubit), and topology (graph,
graph size, connectivity, lattice, and chain length) [260].
The findings also showed that the implementation of QA in
Universal Quantum Computing by Rigetti Computing did not
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provide better or even equivalent performance than the state-
of-the-art methods. This is due to the fact that the Universal
Quantum Computing is actually more suitable for the gate-
based quantum computing approach but can also be used
in QA.

The emergence of D-Wave 2000Q close to the initiation
of implementing QA in machine learning (2018) led to the
proposed modification of QA through hybrid and reverse
methods. It was discovered that the implementation of hybrid
QA using D-Wave 2000Q has not shown significant per-
formance compared to the QA. This was confirmed by the
findings of only 6 research (50%) that the hybrid approach
has better performance, 5 (41.67%) indicated a competitive
performance, and 1 (8.33%) showed it performed worse.
Moreover, only [236] used reverse QA on D-Wave 2000Q and
a better result was reported.

These findings showed that the continuous development
of the D-Wave quantum annealer provides an opportunity to
improve the performance and different methods of QA better
than the application of D-Wave 2000Q. There are currently
newer quantum annealers such as D-Wave Advantage which
provides better quality than the D-Wave 2000Q. This means
the variant QA methods including the hybrid QA, reverse QA,
and improved QA are very likely to provide better perfor-
mance. Moreover, the proposed new modification of QA is
also projected to be interesting to address the limitations of
the current specific methods.

D. CHALLENGES AND SUGGESTIONS

Machine learning has been widely applied in different sectors
such as health, finance, autonomous driving, security, and
others [38]. However, it was observed in Table 12 to be
facing different challenges stemming from several factors
such as the scale of the data generated, hardware limitations,
computational complexity, and cost. Hardware technology is
also growing increasingly due to the significant advancement
in computing capabilities but it has certain difficulties in
handling the data projected to be increasing rapidly at 20%
per year [38], [261].

The main characteristic of machine learning algorithms
is their ability to be implemented and applied after the
training process. This training process requires setting the
model parameters to extract meaningful information from
the data [221]. The tendency of the data to increase causes
the training process to have high computational complexity.
It was discovered from Table 12 QA research in the machine
learning domain generally focuses mostly on improving
the optimization of the training process. The analysis also
showed two opportunities to develop QA algorithms in order
to increase the optimization of machine learning processes as
follows:

1) Implementation of QA to handle new problems

This research analyzed the potential of QA to be
applied in different optimization and probabilistic sam-
pling problems that have not been investigated. Several
machine learning models have not been previously
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investigated. It was discovered that the implementation
of QA in the machine learning domain has the ability
to optimize several supervised learning models such
as k-Nearest Neighbor, decision tree, random forest,
Linear Discriminant Analysis (LDA), ridge regression,
LASSO, and others as well as unsupervised, semi-
supervised, and reinforcement learning models. It will
also be interesting to further explore the use of QA
methods in optimizing different forms of ensemble
learning models. Moreover, many machine learning
problems, especially in machine learning training, lead
to optimization problems, such as optimization of
hyperparameters and optimization of features.
2) Modification of QA to improve its performance

There is a need for continuous improvement of the QA
performance due to the fact that some were discovered
not to outperform other state-of-the-art approaches.
This can be achieved by combining the QA method
with other approaches to form a hybrid QA or modi-
fying it to have reverse and improved QAs. There is a
possibility of proposing a new form of modification to
assist in improving the performance of existing or vari-
ant methods of QA to deal with optimization problems
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and probabilistic sampling, especially in the machine
learning domain. The improvement of the algorithm
quality (as well as hardware which is not the scope of
this research) can lead to the application of QA to han-
dle optimization and probabilistic sampling problems
on a larger scale.

This research shows that the research concerning QA-ML
is expected to continue growing because each of the two fields
has very large growth. There is also an increasing need for
multidisciplinary research between QA-ML and other fields
such as chemistry, biology, security, and others, and this can
serve as a research opportunity in the future.

IV. CONCLUSION

QA is a new promising approach to handle NP-hard prob-
lems, specifically those related to optimization and prob-
abilistic sampling. The QA-related research trend tends to
increase due to the growth of the quantum annealer with
their impact significantly observed in 13 domains which
include machine learning, graphics, mathematics, routing,
scheduling, computational chemistry, computational biology,
security, portfolio, big data, hydrology, database, and sensors.
Moreover, four specific methods were used in QA research
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and these include basic, hybrid, reverse, and improved QA.
This research also mapped the implementation methods and
problem domains to find gaps for future research. Compar-
ative analysis of QA performance with other state-of-the-art
methods was also conducted to deepen the analysis. In addi-
tion, machine learning, as a domain with the greatest interest
in QA-related research, was explored comprehensively in
relation to the hardware and dataset used, detailed application
of QA, and method performances. It is important to note that
the results of this systematic review can be used as the basis to
identify the opportunities and challenges in the research area
related to the implementation of QA in the future.
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