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ABSTRACT Detecting faults and anomalies in real-time industrial systems is a challenge due to the
difficulty of sufficiently covering an industrial system’s complexity. Today, Industry 4.0 makes it possible
to tackle these problems through emerging technologies such as the Internet of Things and Machine
Learning. This paper proposes a hybrid machine-learning ensemble real-time anomaly-detection pipeline
that combines three Machine Learning models –Local Outlier Factor, One-Class Support Vector Machine,
and Autoencoder–, through a weighted average to improve anomaly detection. The ensemble model was
tested with three air-blowing machines obtaining a F1-score value of 0.904, 0.890, and 0.887, respectively.
The results of the ensemble model showed improved performance metrics concerning the individual
metrics. A novelty of this model is that it consists of two stages inspired by a standard industrial system:
i) a manufacturing stage and ii) an operation stage.

INDEX TERMS Anomaly detection, industry 4.0, machine learning, predictive maintenance, real-time.

I. INTRODUCTION
Thanks to the fourth industrial revolution (4IR), traditional
industrial processes face new challenges: improving current
or establishing new processes that efficiently use novel tech-
nologies and fully exploit their potential. 4IR or Industry
4.0 is viewed as a disruptive innovation in a highly compet-
itive market that positively impacts several industrial sectors
by incorporating new enabling technologies: 3D printing,
the Internet of Things (IoT), Cyber-Physical Systems (CPS),
Artificial Intelligence (AI), BigData, Robotics, Nanotechnol-
ogy, and Quantum Computing are examples of these tech-
nologies [1]. In industrial machines, high volumes of data are
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generated and acquired by data acquisition systems such as
a Supervisory Control and Data Acquisition (SCADA) or an
embedded system. AI algorithms can then process this data
to generate new knowledge of the process and identify new
machine conditions, which represents one of the advance-
ments provided by Industry 4.0. Predictive maintenance is an
industrial process that is the subject of the work presented in
this article and highly benefits from the Industry 4.0 technolo-
gies mentioned above [2].

Nowadays, most industrial companies face problems aris-
ing from maintaining their systems. However, multiple tech-
niques –involving predictive or condition-based maintenance
(CBM)– allow predicting critical situations to reduce these
problems. According to An et al. [3], in terms of diagno-
sis, predictive maintenance is divided into two categories:
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i) Models that take into account physical principles and
ii) models based on historical observations. One of the tech-
niques used in the second group consists of the early detection
of abnormal behavior in industrial equipment. This early
detection can avoid possible breakdowns of equipment and
reduce associated maintenance costs.

Anomaly detection is being researched in several appli-
cation fields. Some of the associated research fields are
disease detection, intrusion detection, fraud prediction, and
fault detection in industrial equipment [4]. It is possible to
identify anomalous states that do not match the normality
data, which usually corresponds to the predominant states
through anomaly detection.

The detection of anomalous states presents a challenging
task. The detection becomes more complicated than usual if
it is to be done in real-time due to the restrictive features of the
streaming data. Unlike batch learning, where all the historical
data are available, and no new information is added to the
models already built, stream learning has five restrictions that
must be taken into account [5]. i) Streaming data samples
arrive online and can be read at most one time, which is a
strong restriction for processing them since the system has
to decide whether the current data sample is discarded or
archived. ii) Past data samples can only be accessed if stored
in memory. Otherwise, a forgetting mechanism in charge of
discarding past samples is applied. iii) Since not all data
samples can be stored, a decision made on past samples
cannot be undone. iv) The data processing time of each data
sample should be short and constant. v) The data processing
algorithm must produce a model equivalent to what a batch
algorithm would produce.

The former five restrictions are why most anomaly detec-
tion algorithms –for batch processing– do not apply to stream
processing. Nonetheless, there are hybrid approaches that use
batch-learning algorithms to build an initial model as the first
step and then apply streaming anomaly-detection algorithms
as the second step.

The contribution of this work is the evaluation and com-
parison of different methods to detect anomalies that, due to
their performance-control metrics, establish the weight (or
incidence) of each method in the final combined model, thus
responding better and efficiently to the challenge of real-time
anomaly detection. Specifically, the present work combines
the predicted output of three Machine Learning (ML) mod-
els: Local Outlier Factor (LOF), One-Class Support Vector
Machine (OCSVM), and Autoencoder employing a weighted
average –using as weight the F1-score value of each model.
The goal of the combined model is the detection of anomalies
in industrial systems in real-time. The proposed hybrid model
was implemented using a data set from a real industrial
system of air-blowing machines. Thus, it can be said that the
proposed hybrid anomaly detection model applies to Industry
4.0 systems as well as other industrial frameworks where
real-time data acquisition systems are available.

The following sections of the article are divided into
four sections. The state-of-the-art section shows existing

approaches and research for anomaly detection in real-time.
Next, the third section shows a detailed explanation of
the proposed hybrid anomaly detection. Finally, the results
section describes the scores obtained by applying the hybrid
anomaly detection methodology to a testing data set. A Con-
clusions section ends this paper, showing some concluding
remarks and a future work proposal.

II. STATE OF THE ART
According to [6], [7], an anomaly can be defined as a point in
time where the system’s behavior is unusual and significantly
different from previous, normal behavior. An anomaly may
imply an adverse change in the system, for instance, a fluc-
tuation in a jet engine’s turbine rotation frequency, which
possibly means an imminent failure. An anomaly may also
mean positive behavior; for instance, many web clicks on
a new product page imply higher demand. In both cases,
anomalies in data provide an insight into abnormal behavior
that can be translated into potentially useful information.

The challenge of detecting anomalies –in an industrial
environment– can be twofold. Firstly, to propose a method
to understand different data obtained from various sensors,
often with excessive noise. Secondly, to obtain an overview of
normal behavior to characterize such behavior from historical
data. Therefore, to correctly detect anomalies in a data set,
one must first characterize and define normal data behav-
ior [8]. In addition, normal behavior can be characterized
by the following three stages. (i) Consider data describing
normal behavior through historical data (without considering
anomalies) segmented into different classes according to the
context in which they were recorded. (ii) Extract the most
frequent behaviors, thus characterizing each class. (iii) Detect
anomalies in newly recorded data based on previous knowl-
edge.

In general, anomalies are classified into three types: spe-
cific, contextual, and collective [9]–[11]. It is considered a
point anomaly when this single data point is recognized as
anomalous concerning the rest of the data. According to [10],
these anomalies must be identified before processing or ana-
lyzing the data.

• Contextual anomalies are those where the data are con-
sidered anomalous in a specific context (e.g., the same
sample data are ‘‘normal’’ in a given scenario but anoma-
lous in another context). These types of anomalies are
more common in time-series data flows [10].

• Collective anomalies are those that occur when a collec-
tion of related data are considered anomalous to the total
data. Collective anomalies can also be spatial if they are
outside a typical range or temporal, where the value is
not outside the typical range. However, the sequence in
which it occurs is unusual.

Anomaly detection methods can be distinguished as super-
vised, semi-supervised and unsupervised. Using one method
or another usually depends on the existence or not of descrip-
tive labels of the anomaly. The labels can be categorical,
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e.g., we can have a case of binary or all/nothing labels such
as ‘‘anomalous behavior’’ (1) and ‘‘non-anomalous / normal
behaviour (0)’’, or numerical, e.g., a value of ‘‘anomaly
score’’ ranging from 0 (‘‘non-anomalous / normal’’) to 1
(‘‘totally anomalous’’). While anomaly detection could be
posed as a supervised learning problem, this is –generally–
not the case, as there is often no or little data labeled with the
anomalous behavior [12].

Once the data is available, normally, a series of transfor-
mations of the data needs to be performed before starting the
anomaly detection process [13].

• Aggregation methods: A set of consecutive values from
a time-series data is replaced by a corresponding rep-
resentative value. It provides benefits such as reducing
dimensionality, although it can make detecting anoma-
lies in subsequent steps difficult.

• Discretisation methods: Time-series data are converted
into a discrete sequence of finite alphabets. Techniques
such as symbolic sequence and editing distance can be
applied to detect anomalies.

• Digital Signal Processing (DSP) techniques (such as
Fourier transform, Gabor, and Wavelets filters): Time-
series data are transformed into a lower-dimensional
representation of the input data where anomaly detection
can take place.

A common type of problem detected, whichmay be present
in the data, is noise and outliers. Noise among normal data
may cause the model not to obtain the desired optimal pre-
dictions. Outliers are data points that may be caused by noise
or may have an irregular pattern of behavior. Therefore, this
unusual behavior must first be identified and decided whether
it should be considered an anomaly or an outlier.

Usually, data are created by one or more generation pro-
cesses, representing system’s activities. When the generation
process behaves unusually, it creates anomalies. Therefore,
an anomaly often contains valuable information about the
abnormal characteristics of the systems and elements that
impact the generation process [11].

A. CLASSIFICATION OF TECHNIQUES FOR ANOMALY
DETECTION
There are currently six techniques to detect anomalies. These
techniques are i) Statistics, ii) Classification, iii) Clustering,
iv) Similarity-based, v) Soft Computing, and vi) Knowl-
edge and Combined Techniques based, as explained in [13].
In Table 1, these techniques –and some examples of the
algorithms– used can be seen in detail. Themost relevant ones
for this work will be detailed next.

1) STATISTICS BASED ANOMALY DETECTION TECHNIQUES
Statistical techniques adjust a predefined distribution to
a given data and apply statistical inference to determine
whether an instance belongs to that model. Instances with a
low probability are reported as anomalies [14].

TABLE 1. Classification of the different techniques for anomaly
detection [13].

The two typologies covered by this technique are para-
metric and non-parametric. The first assumes an underlying
data distribution. Although somewhat less efficient in finding
anomalies, the second is preferred because, a priori, it does
not define any model structure as this is determined from the
data.

The most common parametric techniques are divided into
those based on Gaussian models and those based on regres-
sion models. If a non-parametric approach is to be followed,
such a classification can be made based on histograms or
kernels.

Statistical techniques work well for simple structured data
with small dimensions and volume. In such cases, sev-
eral methods can be used [13], such as Box-plots, Blum
Floyd Pratt Rivest Tarjan (BFPRT) algorithm, and similar
central-value estimations on data streams; Medcouple and
Grubbs test (for univariate data); Comparison of distributions
(QQ charts, Kolmogorov-Smirnov test, Kruskal-Wallis test,
andWilcoxon signed range tests); Auto-regressive techniques
(Auto-regressive Integrated Moving Average - ARIMA,
Auto-regressiveMovingAverage - ARMA);ML-basedmeth-
ods; Bayesian networks. Principal Components Analysis
(PCA) / Independent Component Analysis (ICA) (e.g.,
sequence micro-batch analysis).

2) CLASSIFICATION BASED ANOMALY DETECTION
TECHNIQUES
Classification-based anomaly detection techniques perform
two main stages called training and testing. In the training
phase, the system learns from the available samples and
generates a classifier. In the testing phase, samples that the
classifier has not seen are tested to measure the model’s
performance. According to the labels available for training,
classifiers can be grouped into two categories: i) one-class
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and ii) multi-class. Examples of single and multi-class classi-
fiers are neural networks, Bayesian networks, Support Vector
Machines (SVM), and decision trees. These, together with
fuzzy logic, are alsomethods that present a good performance
in the presence of strong noise [15]–[18].

Classification-based techniques have the advantage of
being able to distinguish between observations that belong
to different anomalies (instead of an overall class called
‘‘anomaly’’), and their testing phase is quick, as the test
instance is compared to the predefined model [19]. Although,
classification techniques are based on the availability of
assigning labels to various normal and abnormal classes,
which is a difficult task. Also, these techniques assign labels
to test data, which can be a disadvantage when an anomaly
score is desired.

Classification-based techniques can also be categorized
according to the type of anomaly. Radial-Base Functions
(RBF), SVM, and derivates are commonly used for individual
anomalies. RBFs are very accurate and fast, particularly for
the supervised classification of individual anomalies. For
multiple anomalies, DeepNeural Networks (DNN), induction
rules, and decision trees are used. DNNs can provide excep-
tional recognition rates in static scenarios but can give data
problems that vary over time.

3) CLUSTERING-BASED ANOMALY DETECTION TECHNIQUES
Clustering techniques are generally divided into two stages:
first, the data are grouped with clustering algorithms, and
then the degree of deviation is analyzed according to the
results obtained by the clustering [4]. There are some prior
considerations about the data instances in these unsupervised
techniques. On the one hand, normal-data samples belong to
global clusters. On the other hand, anomalies do not belong to
any defined cluster. In addition, normal data samples are near
the centroids of the closest cluster, while anomalous data are
further away. Finally, normal-data samples belong to large,
dense groups, but anomalies belong to local, small, disparate
groups.

Cluster-based methods are applied in both supervised
and unsupervised learning. Most techniques work well for
complex, large-sized, and voluminous data and –optimally–
if the anomalies do not form significant clusters in a
short time series. Examples of this type of algorithm are
k-Means, Shared Nearest Neighbour (SNN), Density-Based
Spatial Clustering of Applications with Noise (DBScan),
Self-Organizing Map (SOM), or Clustering-based Dynamic
indexing Tree (CD-Tree) [4].

4) SIMILARITY BASED ANOMALY DETECTION TECHNIQUES
These techniques are the most widely used to detect anoma-
lies. One of the techniques, based on similarity, is known
as k Nearest Neighbours (k-NN). k-NN is a non-parametric
method that requires a distance metric to measure the similar-
ity between data observations. Although Euclidean distance
is the most commonly used metric for data with continuous
attributes, it is not usually employed on a practical level.

The above is because the Euclidean distance does not work
well in high-dimensional sets, and measurements such as
Mahalanobis, Hamming, or Chebyshev distances are used
instead. The k-NN algorithm is based on the data score given
by the distance to most of the data around it. So, new data
are classified according to this score. Although, there are
some considerations to be taken into account in this type
of technique [13]: i) A shortage of data can be seen as an
anomaly in unsupervised techniques. ii) The performance is a
function of the distance method chosen; therefore, the criteria
must be clear when choosing a metric. iii) It is valid only
in cases of low-dimensional data. Defining a measure of the
distance between instances can be complicated when the data
dimension is increased.

Another essential similarity-based anomaly detection tech-
nique is based on relative density rather than distance. This
technique estimates the neighborhoods’ density so that a
data item in a low-density neighborhood will be anomalous
while one in a high-density neighborhood will be considered
normal. An existing method for the above is the Local-Outlier
Factor (LOF), which introduces the concept of local outliers
and is based on scoring a data sample according to the
average ratio of the neighborhood’s density to the instance’s
density [20].

B. RELATED WORKS
Many studies on anomaly detection in static data sets in
the literature exist. Examples of supervised approaches are
SVM and Decision Tree [12], or cluster-based methods
such as the Distributed Matching-based Grouping Algorithm
(DMGA) [21]. Other examples use self-adaptive and dynamic
clustering to learn weights for anomaly detection [22] or
statistical methods such as auto-regressive techniques (e.g.,
ARIMA models [23]).

The problem with these methods is that they are not
designed to process streaming data as they need to have the
data set previously stored in the main memory. Therefore,
these traditional techniques have been adapted first and then
applied to streaming-data environments in many cases.

In this sense, Tan et al. [24] propose a fast-anomaly detec-
tion of a class that uses only normal data and works well
when anomalous data are rare. To do this, they use the
Half-Space Trees (HS-Trees) algorithm. The HS-Trees algo-
rithm presents a set of randomHS trees. EachHS tree consists
of a set of nodes, where each node captures the number of data
elements (called mass) within a subspace of the data stream.
The mass is used to profile the degree of an anomaly as it
is quick and straightforward to calculate compared to other
methods based on distance or density. The tree structure is
constructed without any data, making it very efficient as it
does not require restructuring the model once it is running on
streaming data. HS-Trees only need normal data for training.

Another technique that is worth mentioning is the
isolation-Forest Algorithm for Streaming Data
(iForestASD) [25], based on the Isolation-Forest algo-
rithm [26]. This method handles streaming data using sliding
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windows. In this case, the authors start from the ‘‘concept
drift’’, which is a common occurrence handling the streaming
of data in dynamic and non-stationary environments pro-
ducing a change in the distribution of the data [27]. The
‘‘concept drift’’ is a problem that occurs when the statistical
properties of the target variable change over time and the
anomaly detection model is no longer compatible with the
data the model handles, resulting in less accurate predictions.
Therefore, to maintain the anomaly detection effectively, the
model needs to be retrained and updated based on the new
data the model receives [27].

Another research work on anomaly detection is proposed
by [28], which is based on an HT (Hoeffding tree). It is
an inductive-incremental decision-tree algorithm used for
anomaly detection. A handicap of this algorithm is that it
needs class labels to be available for training.

Another work to be highlighted would be that carried out
by a group of Yahoo researchers [29]. Their system –called
Extensible Generic Anomaly Detection System (EGADS)–
allows precise, flexible, scalable, and extensible detection of
anomalies, taking into account time series. The systemmakes
it possible to separate forecasting, anomaly detection, and
alerts into three separate components.

Finally, another interesting work is that contributed by [30]
in which, through the integration of various technologies, the
development of a disease in the leaf of a Colombian-coffee
variety is evaluated and diagnosed. The project contribution
relied on a model ensemble comprising four sub-models
that received the data according to their nature. Once the
prediction of each sub-model was made, its results were
combined, calculating the weighted average. The weight of
each sub-model was a value associatedwith itsF1-score value
in the final model.

Most of the approaches to detect anomalies existing in the
literature are based on models that first build a profile of
what is ‘‘normal’’ and then point out those instances that do
not fit that normal profile as anomalies (statistical methods,
classification-based methods, or cluster-based methods use
this approach).

A contribution of this work is to build an ensemble model
that uses different algorithms that, by combining their results,
will generate a new model to detect anomalies. Ensemble
learning, either for classification or regression, refers to
methods that generate multiple models that are combined to
make a prediction [31]. Ensembles have been –extensively–
used in the last decades as they are considered to provide
greater accuracy and increased robustness [32]. Additionally,
multiple ensemble approaches have been proposed, and sev-
eral studies have reported that model diversity enhances the
ensemble model’s performance as different learners general-
ize in different ways [33].

III. PROPOSED METHODOLOGY
The proposed ML hybrid pipeline for real-time anomaly
detection, as seen in Fig. 1, consists of two stages: i) the
Manufacturing stage and ii) the Operation stage.

The manufacturing stage or pipeline of the Hybrid
Anomaly Detection model construction process takes its
name from the manufacturing process of an industrial
machine. At this stage, an ML model is trained on machines’
quality control process data to validate whether the machine
meets its design standards or not [34]. Thus, the objective of
completing this manufacturing stage model construction task
is double: (i) to use the trained model for detecting machine
design/manufacturing anomalies; (ii) to later deploy it in the
operation stage of the machine when it is integrated into
an industrial production process, for performing a machine
operation anomaly detection task. This model construction
manufacturing stage is equivalent to the design phase of a
classical ML workflow. The metric chosen for measuring
models’ performance is the F1-score of label L. The data
set available is a slightly imbalanced (see Table 2 for class
sizes percentage), where more machine’s ‘‘normal data’’ than
‘‘anomalous data’’ exists, for which the F1-score metric is
considered appropriate. The F1-score is a value in the [0, 1]
range, and it’s calculated as the harmonic mean of the estima-
tor’s precision and recall with respect to L (see Equation (1))

F1−scoreL =
2× precisionL × recallL
precisionL + recallL

(1)

Finally, models’ F1-score (F1i) performance ratio with
respect to the sum of all F1-scores (

∑
j F1j) (see Equation 2)

is calculated and used as the weight (wi) for the weighted
average of the prediction done by each model multiplied by
the computed weights. This weighted average assembles the
HybridAnomalyDetectionmodel at themanufacturing stage.

wi =
F1 − scorei∑
j F1 − scorej

(2)

The operation stage or pipeline refers to the phase when
the machine is already running in production; in terms of a
classical ML pipeline, it represents the deployment phase.
Thus, this pipeline requires the machine to be able to measure
the same variables taken at the manufacturing stage through
industrial sensors. Once these sensors’ data are captured in
real-time, they are used as inputs for the Hybrid Anomaly
Detector, already trained during the manufacturing stage.
This detector will diagnose based on the data received to
generate an alarm for the operator in case of an anomaly. This
detector can also be tuned in operation through a supervised
action of the operator. If this action is triggered, the data are
captured during a timewindow and labeled as ‘‘normal’’ data.
The models are retrained within the hybrid anomaly detector
when the data capture is complete. Once the calibration is fin-
ished, the systemwill be able to continue detecting anomalies
in real-time.

A. MANUFACTURING-STAGE PIPELINE
As previously mentioned, this stage is executed when the
machine is in the factory. The proposed pipeline requires
that the manufactured machine goes through a quality control
process [34], where sensors can capture information about the
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FIGURE 1. Higher-level representation of the proposed Hybrid-ML
pipeline for Anomaly Detection in real-time.

manufactured machine’s operation during a period of time.
The data captured by the sensors during the quality control
process will be called sensor data set.

Once sensors’ data are stored, the data are pre-processed
for data cleaning purposes, i.e., those features that the system
cannot capture with sensors when the machine is in operation
are removed.

The pre-processed data are then normalized so that all
features are on the same scale and comparable in later stages
of the pipeline. A feature selection is then carried out to
extract those variables relevant to the study; this step includes
as a first filter the expert in the domain knowledge, which
can give an initial selection of what variables should be
maintained or discarded. Then an automatic algorithm [35] to
remove redundant features is applied. Following the above,
a dimensionality reduction is performed using a Principal
Components Analysis (PCA) to extract the data’s most rep-
resentative characteristics.

The next stage is to apply a clustering algorithm, the
K-means algorithm, with k = 2, which allows a distinction
between a group of data samples belonging to the transient
state and another group of data belonging to the steady state.
To correctly label the result of the groups generated by the
clustering algorithm, the cluster assigned value is first identi-
fied to the sample with the lowest timestamp of the data set.
This value will correspond to the Transient Data Group and,
therefore, all the samples containing this same cluster value
will correspond to this same state. The rest of the values will
be labeled as Steady-State Data Group.
It is also proposed for the steady-state data group to apply

an outlier detection algorithm. In this case, it is proposed
to use a density-based algorithm called DBSCAN, which is
useful to detect outliers in applications with noise, commonly
found in industrial sensor data [36].

Once the data group belonging to the transient state, stable
state, and outliers (in the stable state) have been identified,
a data set with new labels is generated. Furthermore, a depu-
ration stage is carried out to obtain the final label for the data
set. The transient state and outliers are labeled with a value
of -1, and the normal stable data is labeled with a value of 1.

The previous data set is then divided at random and stratified
into three sets: training, validation, and test. The training set
corresponds to 60%of all the data, where only the normal data
are used to build eachMLmodel with cross-validation, which
allows for testing its intermediate performance and tuning
model hyper-parameters.

For this pipeline, the following three ML algorithms were
used, selected as a result of the authors’ researchwork on state
of the art relating one-class anomaly detection for real-time
systems, as they present an optimum balance of computation
cost, implementation complexity, and performance [6]–[8],
[12], [19]: i) LOF, which finds anomalous data points using
the local deviation of a given data point to its neighbors [20];
ii) One-Class SVM (OCSVM), which finds a frontier that
encloses the vast majority of data (normal data) and new
upcoming data that lay outside the frontier are considered
abnormal [37], [38]; and iii) Autoencoder, which reduces the
input data’s dimensionality by encoding the information to a
smaller space. From this compressed space, it is decoded to
the same dimensions as the original input. The reconstruction
error in this process determines a possible anomaly [39].

Normal data are used for the training because the proposed
pipeline is designed to identify anomalies based on a single
class for novelty detection, and individual ML models use
unsupervised algorithms.

The validation set, which corresponds to 20% of the data
set, is used to obtain the definitive performance (in this case,
theF1-score value) of each trainedmodel. The weights for the
predictions of each model are then determined as the ratio of
each F1-score value (obtained using the validation set). The
weights are stored to be later used for the rounded weighted
average of the Hybrid Anomaly Detector component. The test
set corresponds to the final 20% of the data set and is reserved
for measuring the performance of the hybrid anomaly detec-
tor. The manufacturing stage pipeline is shown in Fig. 2.

B. OPERATION-STAGE PIPELINE
This stage is executed when the machine is in operation. The
operating machine generates real-time data from previously
installed sensors during this process, corresponding to the
same sensors used in the manufacturing stage. Each execu-
tion cycle is pre-processed and delivered to the previously
obtained hybrid model, giving a diagnosis if the machine is
in normal condition or if any anomalies should be reported
through an alarm.

The operation stage also allows for calibrating the Hybrid
Anomaly Detection models required in industrial systems
that degrade over time and can be planned (e.g., every time
maintenance is carried out). The operator must verify that the
machine is in a stable state and under optimal conditions of
normality and activate the ML models’ calibration routine
to carry out this process. Once this process is activated,
the system will collect data during a period of time, which
will depend on each system’s dynamics. Each data will be
stored with the normality label in the data set. This data set
with normal data is then used to retrain each ML algorithm
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FIGURE 2. ML manufacturing stage pipeline.

TABLE 2. Air-Blowing machines’ data set characteristics.

with cross-validation. Finally, the newly trained models are
updated in the Hybrid Anomaly Detector. It should be noted
that only the weights (obtained through the F1-scores) that
were acquired in the manufacturing process are used because,
in the operation process, usually, there are no anomalous data
tomeasure this performance. The operation stage pipeline can
be seen in Fig. 3.

C. EXPERIMENTAL SETUP
The proposed ML Hybrid real-time anomaly detection
pipeline was tested for three different industrial air-blowing
machines from the local industry, with a data set generated by
the quality-control process, and these machines are currently
operational.

The period for collecting machines’ data is between
7 January 2020 and 2 October 2020. The data are recorded
and stored at 2-second intervals. The final data set comprises
16 columns (15 variables and timestamps) with 1990 obser-
vations forMachine A, 2009 observations forMachine B, and
2132 observations for Machine C. The above-mentioned data
set characteristics are shown in the table 2.

TABLE 3. Variables pre-processing at manufacturing stage.

The sensors’ data set was composed of the variables mea-
sured by sensors installed in each machine in the Quality-
Control stage. The measured variables were Flow Rate,
Power, Water Temperature, Nozzle Temperature, Input Pres-
sure, Output Pressure, Flow Temperature, Machine Vibra-
tions, RPM, Active Power, Cos Phi, Motor Current, Motor
Voltage, Ambient Humidity, Ambient Temperature, Atmo-
spheric Pressure.

The pre-processing step selects the shared variables for
the manufacturing and operation stages. The variables’ pre-
processing can be seen in Table 3, with a total of 11 variables
selected (those with ticks in both manufacturing and oper-
ation). Additionally, samples with invalid or missing values
were checked and removed from the data set in the pre-
processing stage.

Afterward, the pre-processed data set was normalized to
scale variables’ values, as it is recommended for data prepa-
ration in ML since some of the variables have different
ranges [40]. The normalization used for this experiment was
theMin-Max scaling, which scaled the data to values between
0 and 1.
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FIGURE 3. ML operation stage pipeline.

TABLE 4. Outlier detection using DBSCAN.

The ‘‘Standard Scaler’’ (Z-score Normalization) was not
used as the normalization method due to two main rea-
sons: i) In the presence of outliers, the ‘‘Standard Scaler’’
does not guarantee balanced scales of characteristics due to
the influence of outliers on the calculation of the empirical
mean and standard deviation, and ii) the ‘‘Standard Scaler’’
assumes a normally distributed data set, which is not the
case of our data set. In cases where the distribution is not
Gaussian or the standard deviation is small, the ‘‘Min-Max’’
scaling works better [41]. Besides, ‘‘Min-Max’’ preserves
the original distribution, does not significantly change the
information embedded in the original data, and does not
reduce the importance of outliers.

Following Data Normalization, a Feature-Selection step
was carried out, where all the data features were vali-
dated with the expert in the domain of the machines tested.
The expert determined that the ‘‘environmental’’ variables
(Ambient Humidity, Temperature, and Atmospheric Pres-
sure) should not be taken into account since they can present a
change not necessarily related to the machine’s behavior and
generate information that can disturb the final prediction of
the system. The variable Cos-phi was removed because it had
zero variance. Finally, the motor voltage could be explained
through the motor current, and it was removed, as it was
considered redundant. Finally, seven variables remained, and
none of them had zero variance, so no additional variable
selection step was required.

A dimensionality reduction was performed using a
two-component PCA with the selected features, which

TABLE 5. Labelled data sets final samples observations.

explained the variance by 90% for each machine. A clus-
tering was then performed using k-Means to separate the
data between the Transient State and the Steady-state with
k = 2 groups. Furthermore, the Silhouette coefficient was
used to measure the clustering’s quality, presenting a value
of 0.6547 for machine A, 0.5895 for machine B presented,
and 0.6744 for machine C.

Once the Transient and Steady-state data groups were sep-
arated, outliers were detected using DBSCAN in the Steady-
state part. For this algorithm, two parameters calledminimum
samples (min_samples) and epsilon (eps) are required, which
are assigned to a list of initial values. Then the best values are
found automatically to maximize the Silhouette coefficient.
The list of initial values for the three machines are displayed
in equations 3 and 4.

initial_min_samples = [2, 3, 4, 5, 6, 7, 8] (3)

initial_eps = [0.010, 0.011, 0.012,

. . . , 0.029, 0.030] (4)

The selected DBSCAN parameters, their performance, and
the resulting number of outliers for the three machines are
shown in Table 4.
Afterward, the labeled data set was created for each

machine. The previously identified Transient group and Out-
liers are labeled as anomalies (‘‘-1’’), and the rest of the
Steady-state group is labeled as normal data (‘‘1’’). The final
sample observations of the three labeled data sets are shown
in Table 5.
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TABLE 6. Hyper-parameters selection table.

TABLE 7. Hyperparameters and F1-score for each generated submodel of
Machine A.

TABLE 8. Hyperparameters and F1-score for each generated submodel of
Machine B.

The labeled data set was then separated into three sets:
20%Validation set, 60%Training set (with only normal data),
and 20% Test set, as explained in the Manufacturing stage
pipeline section. For the Training set, a grid search with
cross-validation was performed with five folds (k = 5),
where a set of hyper-parameters for each model was defined
so that the search algorithm finds the best ones according to
their respective F1-score. These initial hyper-parameters are
displayed on Table 6.

Tables 7, 8, and 9 show the selected hyper-parameters and
the obtained F1-score values for the three machines.
The last step of the proposed ML pipeline consisted of

implementing an ensemble of three models: LOF, OCSVM,
and Autoencoder, through a weighted average distribution.
Autoencoder’s architecture is detailed in Table 10. Table 11
shows the weights for the predictions of each model, which
were determined as the ratio of each F1-score value in
Tables 7, 8, and 9 with respect to the sum of all F1-score
values for each class (‘‘-1’’ and ‘‘1’’). As an illustrative
example, for a given sample, the LOF model predicted an
anomaly (-1), the OCSVM predicted normality (1), and the
Autoencoder predicted an anomaly (-1) again, each output

TABLE 9. Hyperparameters and F1-score for each generated submodel of
Machine C.

TABLE 10. Autoencoder’s architecture.

TABLE 11. Weights for the predictions of each submodel.

is multiplied by its respective weight, this computing the
final classification of the hybrid model. Thus, considering the
weights from Table 10, the output of the hybrid model will
be 0.8. If this value is greater than 0, the hybrid model will
classify it as a normal data point (‘‘1’’).

IV. RESULTS
In addition to the pipeline proposed for real-time anomaly
detection, the proposed hybrid model must present improved
performance metrics for the individual models. In this case,
the precision, recall, and F1-score values, as well as the Area
Under the ROC Curve (AUC) of all models, were compared.

A. MANUFACTURING-PIPELINE RESULTS
Three machines were selected corresponding to three differ-
ent model versions to check that the hybrid models worked
equally well on heterogeneous equipment.

The confusion matrix allows checking which types of hits
and errors (type I or false-negative errors and type II or
false-positive errors) the current models have through their
different metrics, such as accuracy, precision, sensitivity, and
specificity. Finally, the confusion matrix of the ensemble
model was analyzed to check whether it improves the indi-
vidual models’ performance or not. In this respect, we focus
on two metrics: i) Precision: Anomaly data are classified as
normal. Also known as the False Positive Rate (FP) or Type
I error. ii) Recall: Normal data are classified as an anomaly,
also known as False Negative Rate (FN) or Type II error.
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TABLE 12. Machine A - confusion matrix (test set).

TABLE 13. Machine B - confusion matrix (test set).

TABLE 14. Machine C - confusion matrix (test set).

The Confusion matrix for machine A, machine B, and
machine C are shown in Tables 12, 13, and 14 respectively.

The confusion matrix shows a generalized improvement of
the hybrid model’s performance compared to the other mod-
els in all three machines, both for recall and precision. For the
experiments being analyzed, precision should be maximized
as much as possible since it is indicative of the anomalous
values detected by the system.

TABLE 15. Machine A - metrics table (test set).

TABLE 16. Machine B - metrics table (test set).

TABLE 17. Machine C - metrics table (test set).

Tables 15, 16, and 17 show the models’ summary
results, both individually and jointly, using their metrics for
comparison.

As seen in the above tables, the performance obtained by
the hybrid model improves the performance of the individ-
ual models. Thus, this justifies integrating models through a
hybrid model using a weighted average improves the whole
pipeline’s final performance. It should also be noted that
the results presented by the Autoencoder are relatively low
compared to the other model; this is because the Autoencoder
operates better for anomaly detection using time windows
and a convolutional network architecture, which is not the
case. The problem of using a convolutional architecture is that
it requires time windows that could add significant delay in
the operation stage and would make it difficult to compare
its metrics to those of the rest of the models due to the
transformation of the training, validation, and testing data that
is needed to be done for being able to use the data with this
type of model.

B. OPERATION PIPELINE RESULTS
The above anomaly detection algorithmwould not be useful if
it could not process the trainedmodels smoothly in a standard,
real-time operation environment.

In order to measure performance, a data batch comprising
2012 samples was run for all individual models in a common
computer (8GB RAM and a minimum of Intel Core i5 or
equivalent; no graphic card required); the computation time
needed to get the results was measured. After that, we ran the
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TABLE 18. Performance results of each model in microseconds.

same data for the hybrid model and analyzed the computation
time needed to process the data. The results are presented in
table 18.

As expected, the hybrid model was slower than the indi-
vidual ones. Nevertheless, its time response is still over the
real-time response threshold defined for a run-of-the-mill
computer of 2020 (under 200 milliseconds in the worst loop
of the batch analysis), thus achieving the objective established
for the operation stage: real-time anomaly detection.

V. CONCLUSION
This research work has developed and presented a Hybrid
Machine-Learning Ensemble for Anomaly Detection for a
Real-Time Industry 4.0 System. This ensemble consists of
implementing two stages inspired by a standard industrial
system: i) A Manufacturing Stage and ii) An Operation
Stage. Up to our knowledge, there are no other ML meth-
ods that consider these industrial stages. The ensemble sys-
tem was tested on three machines, presenting an increased
F1-score value and AUC concerning individual ML sub-
models (LOF, OCSVM, and Autoencoder). The ensemble
model for Machine A presented a F1-score value of 0.904 for
anomalies (-1), a F1-score value of 0.944 for normal data
(1), and an AUC value of 0.913; the ensemble model for
Machine B presented a F1-score value of 0.890 for anomalies
(-1), a F1-score value of 0.946 for normal data (1), and an
AUC value of 0.905; finally, the ensemble model forMachine
C presented a F1-score value of 0.887 for anomalies (-1),
a F1-score value of 0.889 for normal data (1), and an AUC
value of 0.897.

The proposed system allows vertical scaling in the number
of algorithms used for the ensemble. As seen in section
Results, subsection B, the hybrid model presented a maxi-
mum computation time of approximately 190 milliseconds,
fast enough for real-time anomaly detection. Concerning
individual models’ performance, the Autoencoder results
showed a low F1-score value, so it is proposed to test
other algorithms (e.g., Isolation Forest, Elliptic Envelope)
to improve the overall performance of the whole assembly.
However, a study of the computational cost linked to the
retraining of more types of algorithms must be carried out.

Future work is proposed to study system retraining in
the Operation Stage pipeline and its computational cost.
It is also proposed to study the proposed system devel-
oped on machines with different levels of degradation. Addi-
tionally, a data imputation study should be carried out to
generate synthetic samples for systems where some infor-
mation is missing (a loss of data due to communication
breakdowns is a common problem in industrial systems).
Deep Learning techniques could be considered when creating

meta-classifiers using different base classifiers such as recur-
rent neural networks, like LSTMs, where time series need
to be considered. Furthermore, a study with a larger number
of machines must be carried out to see how well the hybrid
model generalizes against the individual sub-models. In cases
where the hybrid model does not provide any improvement,
other ensemble strategies such as taking the best of the indi-
vidual sub-models are considered.

Finally, as this project focuses on single-type anomaly
detection, a challenge to be addressed in future work will be
to be able to classify or categorize different types of faults.
For that, the authors might use appropriate methods such as
explainable ML or correspondingly labeled datasets.
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