
Received 4 May 2022, accepted 5 June 2022, date of publication 1 July 2022, date of current version 11 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3187701

A Review of Intelligent Computation Offloading
in Multiaccess Edge Computing
HENGLI JIN , (Student Member, IEEE), MARK A. GREGORY , (Senior Member, IEEE),
AND SHUO LI , (Member, IEEE)
School of Engineering, RMIT University, Melbourne, VIC 3000, Australia

Corresponding author: Mark A. Gregory (mark.gregory@rmit.edu.au)

ABSTRACT Multi-Access Edge Computing (MEC) is a standardized architecture that enables cloud
computing capabilities at the edge of heterogeneous networks. The concept is to reduce network congestion
by running applications and network services closer to end-users. MEC is designed to be implemented at
key locations on the network edge, including co-location with cellular base stations. MEC aims to facilitate
computation intensive and delay sensitive applications, such as vehicular networks, face recognition,
augmented reality and virtual reality. The service requirements for MEC are stochastic and time varying.
Coupled with advances in artificial intelligence, a vast number of computation offloading approaches have
been developed based on intelligent algorithms. This article provides a comprehensive review of intelligent
computation offloading with critical issues, metrics and future directions.

INDEX TERMS Multi-access edge computing, computation offloading, artificial intelligence, computer
networking.

I. INTRODUCTION
With the advent of the 5G technologies and the proliferation
of computation and storage devices [1], new applications and
scenarios have emerged, such as smart real-time navigation
system applications or the ubiquitous Internet of Things (IoT)
devices that have in-built sensors, which typically have high
energy consumption, and generate data that is processed
upstream. There is a need to reduce the network traffic from
the edge to the cloud by introducing massively distributed
computing capability with strict latency requirements [2].
To this end, Multi-Access Edge Computing (MEC) was intro-
duced as a new paradigm that complements and extends cloud
computing to the network edge. MEC provides computing
and storage with the aim to carry out resource-intensive tasks
offloaded by the end-user devices and to carry out IoT data
collection, processing and aggregation [3], thus alleviating
the transit network workload and enhancing the end-user
quality of experience [4], [5].

MEC was defined initially as ‘mobile-edge computing’
in 2014 by the European Telecommunication Standards

The associate editor coordinating the review of this manuscript and

approving it for publication was Ali Kashif Bashir .

Institute (ETSI) and encompassed non-mobile capabilities
in 2017 when ‘mobile’ became ‘multi-access’ [6] to reflect
the additional use-cases that MEC would address including
computing and storage support for end-user devices over
fixed access technologies, e.g., fibre, satellite, wireless, fibre-
wireless, and light-fibre. MEC development has embraced
Software Defined Networking (SDN) and virtualization [7].
SDN and Network Function Virtualization (NFV) are a log-
ical addition to MEC nodes as they provide intelligent net-
work integration and resource optimization capability [8].
The MEC nodes utilise virtualization to host third party Vir-
tual Machines (VM) and containers forming a multi-tenant
ecosystem on the network edge [9], [10]. As MEC nodes
are located on the network edge, there is a need to facili-
tate service mobility, and VM handoff techniques [11] and
container-based handoff techniques [12] can be found in
the literature. The original definition of MEC focused on
providing support for mobile cellular networks and the need
to provide computation offloading support to mobile cellular
Base Stations (BS) and User Equipment (UE). As other sce-
narios were explored the research community introduced fog
computing and mist computing. To some extent, MEC now
incorporates fog computing and other scenarios.

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 71481

https://orcid.org/0000-0002-6508-0430
https://orcid.org/0000-0003-4631-6468
https://orcid.org/0000-0002-0357-8284
https://orcid.org/0000-0003-2601-9327

H. Jin et al.: Review of Intelligent Computation Offloading in Multiaccess Edge Computing

Computation offloading is the transfer of computation
intensive tasks from the UE to an edge server or to a cloud
server to achieve an optimal balance between the execution
time and energy power consumption [13]. Fig. 1 depicts
task offloading in an MEC environment. The workflow starts
with the UE execution request. The applications that sup-
port and benefit from computation offloading are prioritized
using the relevant metrics, e.g., latency, resource availabil-
ity and energy consumption. For the low priority applica-
tions, task computation is likely to occur on the UE. The
offloading scheduling in the edge server is a sophisticated
process to cope with the constant dynamic multi-access het-
erogeneous networks. The computation offloading approach
is usually a joint optimization solution that considers the
offloading decision, resource allocation, mobility manage-
ment, content caching, security, and privacy. It can be treated
as a multi-dimension and multi-objective optimization prob-
lem and is known to be non-deterministic polynomial time
(NP-hard) [14], [15].

FIGURE 1. Computation offloading process.

Traditional optimization approaches, such as convex opti-
mization, usually require prior knowledge about mobile user
patterns and network parameters. The traditional optimiza-
tion approaches are more suitable for static networks or
slowly varying environments [16]. By contrast, artificial
intelligence (AI) approaches provide a means to tackle com-
plex optimization problems [17], [18]. In a typical MEC
deployment intelligent computation offloading can predict,

for different computation tasks, demand in terms of type,
size, and computing resource requirements. Intelligent com-
putation offloading adapts to dynamic network environments
to deal with the changing computation tasks and network
resource demands, while ensuring robustness and computa-
tional tractability [19], [20].

The AI algorithms that are applied to MEC optimization
are generally divided into three categories: Machine Learning
(ML), Evolutionary Algorithms (EA), and Swarm Intelli-
gent Algorithms (SIA). There are other practical algorithms,
such as Fuzzy [21], Intelligent Reflecting Surface [22] and
Game-Theoretic Learning [23], that have been applied to
MEC computation offloading optimization and the results
were encouraging. Nevertheless, the three categories are
more prevalent in recent research [24], [25]. In particular,
the Genetic Algorithm (GA) [26]–[29] and Ant colony algo-
rithms [30], [31] as well as Particle Swarm Optimization [32]
have been applied widely for job scheduling optimization.
GAs have various crossover and mutation operators that can
deal with the discrete and continuous optimization problems.
The ant colony algorithm (ACO) can be assigned to VMs to
optimize the scheduling process [33]. Deep Reinforcement
Learning (DRL) in ML has been applied to resource alloca-
tion, task offloading and combinational problems [33]–[35],
DRL is adaptive and efficiently learns from experiences or
data sets.

The MEC paradigm has attracted the attention of
researchers in both academia and industry. MEC related
review and survey papers have been published that cover
characteristics, framework, enabling techniques, use cases,
implementation, standardization, and connections with IoT
and 5G [36], [37]. For an overview of MEC, the author
in [38] presents the related concepts, a brief background
on edge computing and showcases computation offloading
application scenarios. The survey [9] focuses on the enabling
techniques in MEC and includes a description of how MEC
with VM, NFV, and SDN provide flexible control and multi-
tenancy support. The author in [1] described three MEC
case studies: mobile edge orchestration, collaborative video
caching and processing two-layer interference cancellation.
Meanwhile, the author in [13] presents an overview on task
offloading and classified existing works as greedy heuristics,
integer programming, machine learning branch and bound
and convex optimization.

The article [24] reviewed the applications of communica-
tion intelligence techniques to four critical issues in cloud
computing and edge computing: job scheduling, resource
allocation, task offloading, and joint issues. The authors
of [20] surveyed applications of computational intelligence
techniques along with five different problems related to wire-
less sensor and actuator networks: actuation, communication,
sink mobility, topology control and localization. The conver-
gence of AI and edge computing was discussed in [39] with a
focus on the AI approaches for edge intelligence. The authors
propose a broader perspective that distinguishes edge intelli-
gence into AI for the edge and AI on the edge by presenting

71482 VOLUME 10, 2022

H. Jin et al.: Review of Intelligent Computation Offloading in Multiaccess Edge Computing

state of the art work and explaining how to carry out the
training and inference of AI models on the edge. Similarly,
the survey [40] introduced and discussed scenarios and funda-
mental enabling techniques for edge intelligence and reviews
the deployment issues of DL for edge computing, span-
ning networks, communication, and computation. As one
of the mainstream AI techniques, ML-based approaches
have been widely used in edge computing. The review
paper [16] briefly introduced, compared and summarized the
basic characteristics, prominent advantages, limitations, and
typical applications of ML-based approaches used in MEC
offloading. The surveys [33], [41] focus on the ML-based
computation offloading mechanisms in the MEC environ-
ment, [41] points out limitations for some algorithms, [33]
classified ML algorithms into three main categories: super-
vised learning, unsupervised learning, and reinforcement
learning, and proposed a taxonomy of offloading ML-based
mechanisms. Potential business opportunities related toMEC
were discussed in [42] from the perspectives of applica-
tion developers, service providers, and network equipment
vendors.

Recent surveys on the edge computing paradigm [38]–[41]
highlight thatMEC is expected to adopt intelligent scheduling
with self-optimization and self-adaption, which is not only
applied in protocols or algorithms design. The joint opti-
mization to construct a systematic framework can be realized
with the aid of AI [31]. The ML breakthroughs are pushing
AI closer to the edge computing environment. To this end,
this paper provides a review on intelligent approaches inMEC
computation offloading, identifies the use case and metrics.
The challenges that remain are discussed. The contributions
of this review paper are:
• An outline of the MEC architecture from the UEs and
edge perspectives. In particular, metrics and related crit-
ical issues about computation offloading.

• To provide an overview of intelligent offloading, this
research identifies the concepts and uses cases in the
three categories: ML, EA, and SIA.

• Discusses the remaining challenges for intelligent opti-
misation in MEC.

The rest of this paper is as follows. Section II describes
the computation offloading process in an MEC network.
Section III investigates AI based computation offloading
approaches. Section IV discusses future research challenges.
The paper is concluded in Section V.

II. COMPUTATION OFFLOADING IN THE MEC
ARCHITECTURE
As shown in the typical MEC architecture (Fig.2), the end
device consumes and produces data [35]. At the edge,
MEC consists of hardware, software and networking
resources. Virtualization layers are employed to manage the
resources based on network and task functions. The hardware
resources provide the computing, storage and control func-
tionality. Virtualization is ued to provide computing, storage,
caching, virtual exchange, networking and corresponding

management functions. The computation solutions are
generally defined by theMEC systemmodel assumptions and
reference architecture: Single MEC server colocated with a
mobile cellular network BS, Multiple MEC servers colocated
with a BS and one or more MEC servers colocated with one
or more BS [13].

A. MEC METRICS
An optimal edge computing load distribution strategy can be
developed using multiple allocation strategies for the hetero-
geneous network and generally utilizes four metrics.

1) LATENCY
Latency is a metric that is important for time sensitive appli-
cations and services. It is not only determined by application
or service processing time at the server but it is also affected
by the transmission time to and from the UE.

2) BANDWIDTH
Bandwidth requirements and availability make it a key met-
ric as it can either reduce or increase transmission delay.
Transmission technologies, e.g., wireless and optical, can
have a fundamental impact on bandwidth availability and
transmission delay. As mobility is an important requirement
for end users, particularlywhen usingmobile cellular devices,
it is helpful to position MEC servers at the network edge to
reduce the need for UE to connect directly to the centralized
cloud computing resources.

3) POWER CONSUMPTION
For terminal devices, migrating loads to the network edge
can save energy. Therefore, there is a trade-off between local
computing and transmission power consumption. It is neces-
sary to determine whether the energy consumption charac-
teristics of the load are computationally intensive and how
much computing power is required. Besides the transmis-
sion energy consumption and network signal strength, the
data size and available bandwidth affect transmission energy
consumption.

4) COST
For the service provider, edge computing can guarantee
reduced latency and lower energy consumption, thus increas-
ing throughput, improving user experience and ultimately
reducing costs.

In general, the correlation between the metrics should be
considered for computation offloading and resource alloca-
tion. Optimization metrics should be weighted and prioritized
for different workloads so that the system can identify the
allocation strategy.

B. COMPUTATIONAL TASK MODEL
From a computer programming perspective, the essence of
a program is a list of tasks that the computer completes
step-by-step to achieve a specific outcome. In other words,
a task is a logical unit of a program that contains a set

VOLUME 10, 2022 71483

H. Jin et al.: Review of Intelligent Computation Offloading in Multiaccess Edge Computing

FIGURE 2. MEC architecture [16].

of coupled instructions. Depending on how an application
is developed, a task can be a complete program or a col-
lection of one or more functions within a program. Since
a user program can cooperate with the services of other
utilities, a utility program can also be considered a separate
task (or subtask). The MEC computational offload models
includes both binary and partial offloads. Among them, the
binary offload computation model is suitable for highly inte-
grated computation tasks with indivisible data, which require
the user to offload the task either locally or to a single
MEC server. The key parameters for this type of computing
task can be represented by a three-field notation A(L,Td ,X)
with the amount of data to be computed L (number of
bits), the computational intensity X (number of CPU clock
cycles required per bit of data), and the computational latency
requirements Td (completion time in seconds) [43]. The
parameters are related to the specific computational task
and can be derived by profiling and modelling the computa-
tional task. The partitionable tasks can be mainly categorised
as data-partitioned oriented, code-partitioned-oriented, and
continuous-execution tasks [44]. For those tasks that can
be executed in parallel, the offloading strategy only consid-
ers computation resource allocation. However, the process
should include queuing and scheduling for those dependency
required tasks.

C. LOCAL EXECUTION COMPUTATION OFFLOADING
MEC computation offloading strategies are determined by
considering the decision strategy, resource allocation, and
mobility management. From the user perspective, the primary
function of computation offloading is to minimize the energy
usage and speed up task execution time [45]. For binary or
partial offloading, the decision process can be seen as an opti-
mization problem that combines wireless channel selection
and energy allocation while considering the network state
variables for the UE concurrently, which involves the task
queuing state, the cumulative UE energy consumption, the
occupying wireless channel, and available wireless channel
quality [46].

The author in [47] considers utilizing Time DivisionMulti-
ple Access (TDMA) for an arbitrary time slot allocation. The
transmission rate is calculated as:

rk = B log2
(
1+

pkh2k
N0

)
(1)

B and N0 are the bandwidth and the variance of complex
white Gaussian channel noise, and pk and hk are UE k’s
transmission power and channel gain respectively.

Orthogonal FrequencyDivisionMultipleAccess (OFDMA)
takes into account n sub-channels, which can be denoted by a
setN = {1, 2, ,N } [48]. If hk andN0 are considered constant,

71484 VOLUME 10, 2022

H. Jin et al.: Review of Intelligent Computation Offloading in Multiaccess Edge Computing

the function (1) is concave (convex). Otherwise,the random
processes of white Gaussian channel noise and channel gain
should be considered [49]. In practice, the interferencemodel,
e.g., Code DivisionMultiple Access (CDMA), should also be
considered as one of the channel models. The transmission
rates are calculated as [50]:

rk = B log2

(
1+

pkh2k
N0 +

∑
i6=k pih

2
i

)
(2)

The
∑

i6=k pih
2
i denotes the interference from other UEs.

Applications with high computational demand that have
low data transmission needs are more suitable for offload-
ing [51]. Local computation energy consumption is mainly
association with CPU power consumption, which is gener-
ally inversely proportional to the square of the CPU operat-
ing frequency. CPU performance is controlled by the clock
cycle frequency (also known as clock speed). Mainstream
mobile device CPU architectures employ advanced Dynamic
Frequency and Voltage Scaling (DVFS) techniques, which
permit the CPU cycle frequency (or voltage) to be increased
or decreased, thereby increasing and decreasing power con-
sumption, respectively. For local computation, the compu-
tation latency is proportional to the number of CPU clock
cycles required for the computation process to complete and
inversely proportional to the CPU’s operating frequency [52];
therefore, the local computation latency can be reduced by
increasing the CPU’s operating frequency, however, energy
consumption increases as a result. It is cost effective to
compute locally, especially if the channel quality between
the UE and the nearest computation offloading server is
low [53]. Data transmission energy consumption is expensive
at the UE. For applications that support partitioning, a par-
tial offloading approach can reduce UE energy consumption
when compared to a binary offloading approach [54].

The radio access technology used for the radio link
between access point and UE can affect energy minimization
strategies [45]. UE energy savings increase when OFDMA is
used when compared with TDMA due to the higher granular-
ity of radio resources [55]. Emerging techniques including
wireless power transfer [56] and non-orthogonal multiple
access (NOMA) should further enhance the performance of
MEC [57], [58].

D. CLUSTERING ALGORITHMS
All tasks have latency sensitivities, thus tasks can be clustered
using latency sensitivity as a factor. The clustering process
aids with the computation offloading scheduling of the tasks.
Clusters are prioritized and within each cluster, the
tasks are ranked in priority order so that latency-sensitive
tasks can be actioned first, thus effectively reducing the
queuing latency of subsequent tasks. The role of clustering
algorithms, like unsupervised learning algorithms, is to divide
a data set into multiple subsets, or clusters. Clustering is the
process of using an algorithm to divide samples in a dataset
into disjoint subsets. The purpose of clustering algorithms

is to classify a data set into clusters that satisfy two con-
ditions: the tasks in the same cluster are similar based on
pre-determined criteria, and the tasks in different clusters
are different based on pre-determined criteria. A common
approach for determining the similarity between points in
clustering algorithms is to use the Euclidean andMahalanobis
distances between two points. The Euclidean distance in
n dimensional feature space can be denoted as:

dx,y =

√√√√ n∑
i=1

(xi − yi)2 (3)

Mahalanobis distance can be denoted as:

dx,y =
n∑

i=1

|xi − yi| (4)

Minkowski Distance is a generalization of Mahalanobis dis-
tance and can be expressed as:

dx,y =

(
n∑
i=1

|xi − yi|p
)1/p

(5)

It can be seen that for the Ming distance, when p = 1,
it corresponds to the Mahalanobis distance, and when p = 2,
it corresponds to Euclidean distance.

For the task clustering problem in the MEC system,
we need to determine the metrics of task similarity before
classifying tasks. Assume that there are N tasks num-
bered as {S1, S2, S3, . . . , SN }. The total amount of com-
putation consumed to complete each task is respectively
{L1,L2,L3, . . . ,LN }. The sensitivity of all tasks to delay can
be divided into M categories, numbered as {1, 2, 3, . . . ,M}.
The delay sensitivity of N tasks can be expressed as
{P1,P2,P3, . . . ,PN }, For Pi ∈ {1, 2, 3, . . . ,M}, i =

{
S1,

S2, S3, . . . , SN
}

The classified cluster can define as
{C1,C2,C3, . . . ,CN }. A minimal maximum standard devi-
ation of the clusters, obtained after classification, is sought.
At a particular time, the task in the SDN controller

is
{
S∗1 , S

∗

2 , . . . , S
∗
n
}
. The corresponding time delay sensitiv-

ity is
{
P′1,P

′

2, . . . ,P
′
n
}
respectively. After the normalization

of the delay sensitivity, the delay sensitivity obtained is:{
P∗1,P

∗

2, . . . ,P
∗
n
}
.

P∗i =
P′i∑n
j=1 P

′
j

(6)

The calculations consumed to complete the task is{
L ′1,L

′

2, . . . ,L
′
n
}
. The calculations consumed after the nor-

malization operation is
{
L∗1 ,L

∗

2 , . . . ,L
∗
n
}
.

L∗i =
L′i∑n
j=1 L

′

j
(7)

The Euclidean distance between S∗i and S∗j in the same
cluster can define as

di,j =

√(
P∗i − P

∗
j

)2
+

(
L∗i − L

∗
j

)2
(8)

VOLUME 10, 2022 71485

H. Jin et al.: Review of Intelligent Computation Offloading in Multiaccess Edge Computing

The standard deviation corresponding to tasks in the same
cluster is defined as D, when the cluster Ci have the tasks{
S∗1 , S

∗

2 , . . . , S
∗
n
}
. The corresponding standard deviation is:

Di =

√√√√∑n′
i=1

∑n′
j=1,j6=i

(
di,j − d̄

)2
C2
n′

(9)

In the same cluster, the smaller the standard deviation of all
tasks, the higher the similarity of the tasks. Therefore, when
all tasks are divided intoK clusters, the optimal result is given
by:

min {maxDi} , i = 1, 2, 3, · · · , k (10)

Clustering techniques are considered to be one of the
promising solutions for topology management for large-scale
and dense wireless sensor networks. The author in [59] iden-
tifies the clustering problem as a multi-objective optimization
issue and uses a GA to solve it. A wireless sensor network is
partitioned into interference-free clusters, making time-slot
management easier to achieve. Meanwhile, the k-means algo-
rithm is a widely used clustering algorithm often used when
clustering large-scale data sets [52].

E. COMPUTATION OFFLOADING CONSTRAINTS
The computation offloading process is complicated since
there are constraints to be considered and other factors
including mobility management, content cache and security
and privacy. In recent years, joint optimization approaches
have been proposed to minimize the overall system cost
and reduce the execution and latency times [32], [60]. How-
ever, efficient scaling decisions for MEC deployments are
also affected by constraints, including workload changes
due to UE mobility, CPU cycles, and processor capabil-
ity. For latency and execution time reduction, the execu-
tion delay of the offloaded application depends on backhaul
quality and topology. For instance, a mesh topology connects
the computing nodes directly, which will improve distri-
bution, though it also requires a higher investment in the
backhaul [45], [61].

III. AI FOR COMPUTATION OFFLOADING OPTIMIZATION
Generally, the optimization problem can be considered as an
inherent relationship between the individual and the system.
The individual stands for a point or one solution in a joint
optimization function, which means the optimization aims
to find the optimal solutions for an overall system function
or the model solution set. For MEC computation offloading,
the proposed solutions aim to find an optimal outcome in
some way to improve the overall performance, maximize the
computation and revenue, and consider latency and energy.
Fig. 3 illustrates the categories for the algorithms widely used
in computation offloading, and the rest of this section will
focus on three types of AI algorithms, review the state of art,
and discuss challenges.

A. EVOLUTIONARY ALGORITHMS
Evolutionary Algorithms (EA) are a ‘‘cluster of algo-
rithms,’’ including GA [62],Multi-Objective Evolution Algo-
rithm [63], Differential evolutionary algorithm (DE) [64],
Artificial immune system [65] and others. They utilize similar
mechanisms with different ’evolution modes’ (functions) in
their iteration processing [66].

1) GENETIC ALGORITHM
A GA is a mathematical simulation of the process of biolog-
ical evolution [62]. The optimization method was developed
in the 1990s to simulate the law of biological evolution [61].
A GA is a solution space consisting of a set of random
solutions, which is known as the parent populations. New
populations, the next generation, are formed using crossovers
and mutations of the parent populations. The next step is to
extract the good solutions (including the new solution) to
generate further generations. The process continues until the
iterative condition is reached or an optimal solution (usually
a local optimal solution) is obtained. Just as with biological
evolution, by inheriting excellent genes, the process aims to
produce the most adapted individuals.

GA is preferred for use with large search spaces and
requires substantial computational effort to find the actual
Pareto [67]. In addition, when used for computation offload-
ing optimisation, the computational cost is a key issue. There-
fore, it has been proposed that GA used with particle swarm
optimization and local search methods reduce the computa-
tional cost [32], [68], [69]. As GAs have improved global
search performance for multi-object optimization, GA is
frequently used for decision strategy analysis in computa-
tion offloading [29], [70], [71]. For example, the author
in [70] proposed computation offloading methods based on
Non-dominated Sorting GA III (NSGA-III). GA is utilized to
find the optimal global solution for the schedules of concur-
rent workflow in cloud-edge computing. This activity defines
the computing tasks in each schedule as a multi-objective
optimization problem. The process considers the fitness func-
tion and constraints for the problem, and then adopt the
crossover and mutation operations from the GA to create
the new workflow schedule solutions. In [29] there is a pro-
posed priority offloading mechanism to reduce the computa-
tion load; the GA is executed at the edge computing server
to search for the best offloading strategy and transmission
power.

2) DE DIFFERENTIAL EVOLUTIONARY ALGORITHM
The DE was developed by Storn and Price in 1996 [72]. The
algorithm can be divided into two phases. First, it generates
a set of uniformly distributed populations, and the next phase
is named the evolution, which is to put the generated pop-
ulation through mutation, crossover and selection processes
a number of times until the target criteria is achieved [73].
DE has an advantage for multi-dimensional problems with
a fast convergence rate and can be adapted for continuous

71486 VOLUME 10, 2022

H. Jin et al.: Review of Intelligent Computation Offloading in Multiaccess Edge Computing

FIGURE 3. AI categories.

and discrete problems. The DE algorithm has been widely
adopted for optimization problems, related to MEC utiliza-
tion, such as to determine UE fine-grained offloading deci-
sions [74], to optimize resource allocation [75] and applied
to context-aware offloading strategies [76].

The authors of [74] proposed DE to determine the UE
fine-grained offloading decisions by initialising the network
and executing the DE algorithm, namely initialisation, muta-
tion, crossover, and selection, to minimise the UE energy
consumption. In [75] a proposed solution is provided for min-
ing decisions. The approach adopts DE to optimise resource
allocation. Since the population size is equal to the number
of participating miners, it transfers the update of the number
of participating miners to adjust the population size to do the
optimisation. Finally, [76] proposed a context-aware offload-
ing strategy based on DE that considers vehicle mobility,
roadside unit (RSU) coverage, and vehicle priority.

3) MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM
Multi-objective evolutionary algorithm (MOEA) is a stochas-
tic optimization technique that is similar to EA. The main
difference is that the MOEA calculate the objective value
for individuals at every iteration to determine the domi-
nance relationship in the population [77]. In order to cope
with scalar optimization, A MOEA Based on Decompo-
sition (MOEA/D) was proposed by Zhang in 2007 [78],
which transforms the multi-objective optimization problem

into single-objective optimization by an aggregation func-
tion. In recent MEC research, MOEA/D is one of the algo-
rithms used for multi-objective computation offloading, e.g.,
the problem-specific population initialization scheme uses a
latency-based execution location [79] and to optimize the task
offloading process in vehicular networks with RSU [80].

The algorithm in [79] focuses on the trade-off between
UE execution time and energy consumption in MEC net-
works. MOEA/D has been proposed for use to order tasks
in energy consumption based task prioritisation. The paper
proposes two performance-enhancing schemes that initial-
ize the execution location using a latency-based execution
location initialization method that uses MOEA/D to compare
the average computing time based on energy consumption
and edge server locations. The scheme aims to decrease the
energy consumption by considering the dynamic voltage and
frequency scaling.

B. SWARM INTELLIGENT ALGORITHMS
SIA are inspired mainly by biological systems that adopt the
collective behaviour of an organized group of animals. The
SIA can generally be divided into inspect-based and animal-
based [82]. SIA follow a few fundamental phases: update
and move the agents by specific mechanisms to reach the
defined end condition that returns the globally optimal solu-
tion [83]. The ACO and particle swarm optimization (PSO)
are described in this section.

VOLUME 10, 2022 71487

H. Jin et al.: Review of Intelligent Computation Offloading in Multiaccess Edge Computing

TABLE 1. EAs for intelligent offloading.

1) PARTICLE SWARM OPTIMIZATION
PSO was firstly proposed by Kennedy and Eberhart in
1995 [84] as a population-based globalized search algo-
rithm that mimics a swarm (cognitive and social behaviour).
As aforementioned, SIA does not simulate natural phenom-
ena like EA but instead uses the characteristics of swarms,
and the key difference between PSO and evolving populations
is how new samples are generated. GA’s new samples are
selected by some recombination of group solutions, which
may then replace members of the population. And the PSO’s
new samples are generated by perturbation of existing solu-
tions [85]. PSO starts from a random solution, which gen-
erates a population of particles; each particle has a memory
of its moving path and an adaptable velocity for moving
in the search space in each iteration. The movement is an
aggregated acceleration toward the best previously visited
position. Finally, particle fitness is evaluated and the optimal
solution occurs after one or more iterations [86]. PSO is more
straightforward than the GA, and it does not have operations
like the GA crossover and mutation. Instead, PSO follows
the current optimal value to find the optimal global value.
PSO has been adopted widely for computation offloading
decision making, e.g., as the decision strategy to reduce total
computing overhead of UE [87], optimizing the time required
for calculation tasks in an IoT environment [88], and to mini-
mize the total energy consumed by UE and edge servers [32].

The author of [87] aims to minimize the total UE com-
puting overhead when computation offloading. The problem
is divided into two sub-problems. The resource allocation is
defined as a convex problem, and the offloading decision
is solved using Binary PSO (BPSO). The BPSO is used to
solve the offloading decision problem by considering a few
constraints defined by the author. Each candidate solution
in the sub-problem, i.e., the offloading decision, and the

offloading place, is constructed according to a single position
for each particle and its velocity. [32] proposes a partial
computation offloading method using joint GA Simulated-
Annealing (SA) and PSO. This approach jointly optimizes
the task offloading ratio, CPU speeds, channel bandwidth
availability, CPU cycles and memory in edge servers. PSO is
applied to update the velocities of the particles in this
case.

2) ANT COLONY OPTIMIZATION
ACO is a meta-heuristic swarm intelligence approach pro-
posed by Colorni in 1991 [89] and further improved by
Dorigo in 1996 [90]. The main idea is based on the effect
of pheromones on ants. The process is to derive a finite
set of solution components, and by iterating the pre-defined
pheromone values to assign the higher pheromone values to
the better solution components probabilistically. It is more
like a weighted random function. The weight is calculated
using existing pheromones [91]. ACO has been applied to
maximize the profits of the edge service provider [92], and
to execute an offloading strategy based on two array signal
processing schemes [93]. The author in [93] proposed an
intelligent offloading strategy framework for MEC networks
assisted by using array signal processing at the user level.
The strategy is used in the ACO algorithm, where the ants
randomly visit the computational access points (CAPs) to
achieve optimization. The proposed ACO algorithm is uti-
lized for scheduling in the computation offloading MEC
networks. The optimization goal is to convert the shortest
path to the minimal cost, each ’ant’ matches a task with
a given CAP, and it will leave a ’pheromone’. Then, the
ant colony will make the decision based on the pheromones
to achieve the optimal decision strategy for computation
offloading.

71488 VOLUME 10, 2022

H. Jin et al.: Review of Intelligent Computation Offloading in Multiaccess Edge Computing

TABLE 2. SIAs for intelligent offloading.

TABLE 3. ML for intelligent offloading.

C. MACHINE LEARNING
ML is the technique lying at the intersection of computer sci-
ence and statistics, one of the most rapidly growing technolo-
gies in AI fields [106]. An offloading decision in an MEC
environment must be carried out quickly. The ML-based
offloading is a promising method that automatically maps a
given system settings to arrive at the best offloading decision.
ML algorithms vary greatly and can be categorized differ-
ently. The three general ML algorithms are categorized as:

Supervised Learning (SL), Unsupervised Learning (UL), and
Reinforcement Learning (RL). ML can be broadly defined
as computation methods learning from experience collected
data, a dataset, to improve performance or to make accurate
predictions without manual manipulations [107]. In essence,
ML allows users to feed a computer algorithm large amounts
of data, and then let the computer analyze the data and make
data-driven recommendations and decisions based solely on
the input data. If the algorithm identifies any corrections,

VOLUME 10, 2022 71489

H. Jin et al.: Review of Intelligent Computation Offloading in Multiaccess Edge Computing

it integrates the corrections to improve future decisions. Deep
learning (DL) is an ML sub-field. The commonality between
the two is that the rules are summarized through algorithms
from a limited sample of a specific type of task, and can
be applied to new unknown data. DL is more inclined to
automatically learn effective features from raw data through
algorithms. Another ML sub-field RL, which is used to train
an offloading model through online interaction between a
learning agent and the environment. This section will intro-
duce DL and RL and consider the relative, and combination
scenarios, e.g., Deep Reinforcement Learning.

1) DEEP LEARNING
DL represents a learning method that uses raw data and
a multi-layer neural network without any manual set. The
network consists of the input layer, hidden layer and output
layer. Each neuron has a non-linear transformation function.
Through the superposition of the functions of each layer,
the output of the DL network approximates the target output
infinitely [81]. The mainstream DL network structures are
convolutional neural network (CNN), recurrent neural net-
work (RNN), deep neural network (DNN), and the DL frame-
works include MXnet, TensorFlow, and Caffe. DL can be
applied to MEC by extracting selected features from mobile
cellular networks and training the DL model on the MEC
server. The trained model can be used as a decision-making
engine for computation offloading [108].

FIGURE 4. Deep Learning [16].

As shown in Figure 4, the input layer of the neural network
obtains the input data from the UE, MEC and the network.
After considering the number of neurons required by the
requested resources and its corresponding utility value to
train, the trained network calculates the required labels for
the input data. The hidden layer is used to find relationships
and links between output data and input data. The output layer
takes the desired outcomes as labels during training. Increas-
ing the number of hidden layers can improve performance
and permit models of complex decision boundaries and to
learn patterns in the data [110]. The author of [96] proposed
methods to search the local space to achieve an offloading
decision. The method can be used to exploit the action state

FIGURE 5. Reinforcement Learning [109].

and generate candidate offloading decisions, thus enhancing
DL convergence.

2) REINFORCEMENT LEARNING
RL is a learning method that is based on the agent interacting
with the environment to choose the optimal actions [111].
Specifically, the RL model is to select the action for each
state of the system to maximize cumulative reward in the
long term. Reinforcement learning is not learning from the
data; instead, it has to learn from its own experience. Markov
Decision Process (MDP) is one of the standard techniques
used in RL models. The MDP system consists of four parts:
state, action, transition probability and rewards. The Bellman
equation [112] is derived as:

V (s) = R(s)+ γ
∑
s′∈S

P
(
s′ | s

)
V
(
s′
)

(11)

where R is the immediate reward, γ is a discount factor,
P
(
s′ | s

)
represents the transition probability from state s to

the next state s′ and V is the expected total rewards. The aim
of MDP is to find an optimal policy that can maximize the
sum of rewards. Regarding task offloading, the MEC system
can be seen to be in a state at each time point of observation,
the agent will take action based on the computation offloading
policy. The author in [113] has formulated the offloading
problem using MDP, which maximizes the utility of the
offloading system under a task delay constraint. The problem
of making an offloading decision for UE in formulated using
MDP in [114], and using a variable time step learning method
to train the model in order to ensure the approach only makes
offloading decisions when UE generate a task. The author
of [115] models the process of solving an optimal computa-
tion offloading policy into a Markov decision process, where
the computational offloading policy is based on task queue
state and channel state between the UE andBS. To address the
sharing of limited resource in an MEC system, [116] has for-
mulated the computation offloading problem as a multi-agent
MDP, and proposed a distributed learning framework which

71490 VOLUME 10, 2022

H. Jin et al.: Review of Intelligent Computation Offloading in Multiaccess Edge Computing

allowed eachmobile terminal to learn an optimal computation
offloading policy from the interactions with the MEC system
independently, and transforming the multi-agent MDP into a
single-agent MDP.

In a practical network, the system model for the transi-
tion probability that can be used to solve MDP is unknown,
so Q-Learning can be used as a feasible method to achieve an
optimal policy. Q-Learning is a selector policy mode, which
uses a traditional algorithm to create q-tables and helps the
agent find the outcome.

To apply Q-Learning in MEC, the first step is to iden-
tify the actions, states, and reward functions. Then, based
on exploration and exploitation, Q-Learning can update the
action-value function by observing the feedback from system
states and actions carried out. For Q-Learning, the agent
chooses an action a on the state s using the greedy method.
When the system changes to the next state s′, the agent
gets the reward R. For each step, the agent computes and
stores Q(s, a) in a q-table. This value can be regarded as
a long-term reward through constant interaction with the
environment [117].

Q(s, a) = Q(s, a)+α
[
R(s, a)+γ maxQ

(
s′, a′

)
−Q(s, a)

]
(12)

As illustrated in Figure 3, the RL can be classified in three
ways: value-based, policy-based and model-based. Value-
based is to optimize the value function. The value function
regards the maximum expected future rewards that the agent
can expect in each state. Policy-based is optimizing the strat-
egy function directly, while ignoring the value function. The
strategy function evaluates an agent’s performance at a par-
ticular point in time, and can be categorized as: deterministic
strategy and random strategy. Model-based is to create a
suitable model for the specific environment [118].

The most significant difference between supervised and
unsupervised learning is that there is no dataset for the agent
to learn when utilizing RL. The environment is constantly
changing, and the RL agent has to make decisions about
a series of actions in the changing environment rather than
a single action decision and RL is updating policy through
constant interaction with the environment.

3) DEEP REINFORCEMENT LEARNING
DL provides a more powerful prediction model and often
produces good predictions, and RL provides a faster learning
mechanism with adaptability to the varying environment.
DL enables RL to scale to more complex problems [119],
[120], which leads to the new field that was named DRL.
A neural network is integrated into RL to approximate the
q-values. The actor-critic method is a DL and RL integration
approach. Therefore, the current mainstream policy gradient
method uses the Actor-Critic (AC) framework. Actor models
are used to provide the strategy, while critic models provide
the value function. DRL and its related sub-fields have been
widely used in MEC.

DeepQ-Network (DQN) is a typical value-based approach,
and it was proposed in 2015 [121]. This approach acquires
unlimited training samples through Q-Learning, and then
trains the neural network. There are two key DQN steps. The
first is Experience Replay, which stores the data obtained
from an exploration of the system environment and then
randomly samples to update the parameters of the deep neural
network. The second is TargetNet, where the target q-value
will remain unchanged for a period of time, which reduces
the correlation between the current q-value and the target
q-value to a certain extent and improves the stability of the
algorithm.

For policy-based DRL, AC is a general name of a class
of algorithms that can be divided into two parts: actor and
critic. The actor is responsible for making decisions, used
to improve the current policy. The critic is responsible for
telling the actor the validity of the decision, which is used
to evaluate the current state. In addition, the Deep Determin-
istic Policy Gradient (DDPG) [122] algorithm combines the
advantages of both AC architecture and deterministic strat-
egy. DDPG can operate over continuous action spaces and
readily converges. In [123], the author proposed a resource
allocation algorithm based DDPG to effectively solve the
continuous power distribution. DDPG combines Determinis-
tic Policy Gradient (DPG), uses an actor network to generate
continuous behaviour, and uses a critic network to evaluate
current actions, which improves convergence performance.

4) ML FOR COMPUTATIONAL OFFLOADING
For a stochastic and constantly varying MEC environment,
the ML-based approach has been widely used in recent
years. [94] is a DL case applied to MEC offloading, which
generates data to train the DNN. Variables are selected,
e.g., the remaining UE energy, local and cloud resources,
the amount of data to transfer, and communication latency.
The cost function will then consider the parameters in the
decision-making process for computational offloading. The
author of [103] proposed an online computation offloading
algorithm based on DRL that is used to assign the appropriate
sub-carrier to the UEs in the case of remote computation
mode. An online computation offloading based on DRL is
proposed in [102] that can be used for binary offloading
decision making and resource allocation in wireless powered
MEC networks. The meta RL model (MRL) is applied to
MEC in [105]. MRL is a meta learning task based on RL
techniques. There are two loops of training: the ‘‘inner loop’’
training on the UE for the task-specific policy and ‘‘outer
loop’’ training on the MEC host for the meta policy.

IV. FUTURE CHALLENGES AND OPEN ISSUES
Research is ongoing into MEC and industry is in the early
stages of deploying MEC. This section will briefly outline
the challenges and open issues based on current research.
There are three research directions: AI and ML, services and
applications, security and privacy.

VOLUME 10, 2022 71491

H. Jin et al.: Review of Intelligent Computation Offloading in Multiaccess Edge Computing

A. ARTIFICIAL INTELLIGENT AND MACHINE LEARNING
1) INTELLIGENT OPTIMIZATION METHODS
MEC computation offloading is a multi-objective optimiza-
tion problem that needs to achieve outcomes for specific
scenarios. The current intelligent optimization methods all
have challenges in terms of the convergence, constraint-
handling, and dimensionality [42]. Therefore, it is necessary
to consider hybrid solutions for joint optimization to deal with
the dynamic multi-access heterogeneous networks.

2) EDGE INTELLIGENCE
The concept of edge intelligence is starting to draw atten-
tion; enabling UE to run the pre-trained DL model from
the network edge locally [124]. Federated learning (FL) is
promising distributed DNN training technique that can be
used to improve privacy. The author of [125] proposed leav-
ing the raw data distributed on UE and training a shared
model on the edge server by aggregating locally computed
updates. Therefore, FL is a feasible future way to apply edge
intelligence which enhances MEC operation.

3) COMPUTATION-AWARE NETWORKING TECHNIQUES
Computation resource awareness and a resource aware edge
AI model can be used to improve transmission efficiency
across the different edge nodes. In addition, the UE mobil-
ity prediction can provide efficient and stable computation
offloading scheduling in some scenarios. The author of [126]
proposed a weighted Markov prediction model to separately
predict the trajectory of pre-classified users.

B. SERVICES AND APPLICATIONS
1) EFFICIENT SERVICE DISCOVERY PROTOCOLS
The distributed nature of MEC means that edge nodes may
run different AI models and carry out different AI tasks.
Therefore, it is essential to design an efficient service discov-
ery protocol for fast identification. It can be difficult to find an
optimal MEC node if the management system cannot dynam-
ically locate UE and carry out task offloading scheduling
tasks due to resource or other constraints. A new framework
called ‘‘Named Function as a Service (NFaaS)’’ [127] was
developed to extend the named data networking architecture
to support function execution in the network by available
resources. This approach provides a new avenue for future
research.

2) APPLICATION PARTITIONING
Partitioning granularity is a challenge as some of the task
execution requires consistent runtime environments [38].
Research into the consistency of the MEC environment
remains ongoing.

C. SECURITY AND PRIVACY
Security and privacy are always critical issues in any network.
Therefore, the security and privacy of data and edge infras-
tructure is important for computation offloading. Security and

privacy challenges remain open for security configuration,
threat detection, threat remediation and network verifica-
tion. Software-defined segmentation and trust management
authentication are feasible options to reduce the attack surface
from the server side [36]. It is impractical to run SSL/TLS
protocols on the UE in some scenarios [128] so a challenge
remains to identify lightweight security protocols for the
MEC environment that can be used for user authentication,
access control, key and identity management. The trade-off
between task computation for data encryption or that required
to utilize security certificates should also be considered in the
application partitioning algorithm.

V. CONCLUSION
Computation offloading is one of the significant directions
being pursued that could enhance performance and the end
user experience. The computation offloading decision strat-
egy to be employed for the dynamic MEC environment
should include various factors, e.g., resource allocation
and content caching. Furthermore, the joint optimization
approaches should consider working with mobility man-
agement synchronization and service migration. This article
introduced computation offloading an MEC environment,
discussed concepts, intelligent computation offloading opti-
mization, and outlined future challenges and open issues.

REFERENCES
[1] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, ‘‘Collaborative

mobile edge computing in 5G networks: New paradigms, scenarios, and
challenges,’’ IEEE Commun. Mag., vol. 55, no. 4, pp. 54–61, Apr. 2017.

[2] H. Cao and J. Cai, ‘‘Distributed multiuser computation offloading for
cloudlet-basedmobile cloud computing: A game-theoreticmachine learn-
ing approach,’’ IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 752–764,
Jan. 2018.

[3] X. Deng, J. Li, E. Liu, and H. Zhang, ‘‘Task allocation algorithm and
optimization model on edge collaboration,’’ J. Syst. Archit., vol. 110,
Nov. 2020, Art. no. 101778.

[4] P. Cong, J. Zhou, L. Li, K. Cao, T. Wei, and K. Li, ‘‘A survey of hierarchi-
cal energy optimization for mobile edge computing: A perspective from
end devices to the cloud,’’ ACM Comput. Surv., vol. 53, no. 2, pp. 1–44,
Mar. 2021.

[5] C. Wu, Q. Peng, Y. Xia, Y. Ma, W. Zheng, H. Xie, S. Pang, F. Li,
X. Fu, X. Li, and W. Liu, ‘‘Online user allocation in mobile edge com-
puting environments: A decentralized reactive approach,’’ J. Syst. Archit.,
vol. 113, Feb. 2021, Art. no. 101904.

[6] P. Mach and Z. Becvar, ‘‘Mobile edge computing: A survey on architec-
ture and computation offloading,’’ IEEE Commun. Surveys Tuts., vol. 19,
no. 3, pp. 1628–1656, 3rd Quart., 2017.

[7] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and
P. A. Polakos, ‘‘A comprehensive survey on fog computing: State-of-the-
art and research challenges,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 1,
pp. 416–464, 1st Quart., 2018.

[8] P. Ameigeiras, J. J. Ramos-Munoz, L. Schumacher, J. Prados-Garzon,
J. Navarro-Ortiz, and J. M. Lopez-Soler, ‘‘Link-level access cloud archi-
tecture design based on SDN for 5G networks,’’ IEEE Netw., vol. 29,
no. 2, pp. 24–31, Mar./Apr. 2015.

[9] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
‘‘On multi-access edge computing: A survey of the emerging 5G network
edge cloud architecture and orchestration,’’ IEEECommun. Surveys Tuts.,
vol. 19, no. 3, pp. 1657–1681, 3rd Quart., 2017.

[10] A. C. Baktir, A. Ozgovde, and C. Ersoy, ‘‘How can edge computing
benefit from software-defined networking: A survey, use cases, and future
directions,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2359–2391,
4th Quart., 2017.

71492 VOLUME 10, 2022

H. Jin et al.: Review of Intelligent Computation Offloading in Multiaccess Edge Computing

[11] K. Ha, Y. Abe, T. Eiszler, Z. Chen, W. Hu, B. Amos, R. Upadhyaya,
P. Pillai, and M. Satyanarayanan, ‘‘You can teach elephants to dance:
Agile VM handoff for edge computing,’’ in Proc. 2nd ACM/IEEE Symp.
Edge Comput., Oct. 2017, pp. 1–14.

[12] L. Ma, S. Yi, and Q. Li, ‘‘Efficient service handoff across edge servers
via Docker container migration,’’ in Proc. 2nd ACM/IEEE Symp. Edge
Comput., Oct. 2017, pp. 1–13.

[13] A. Islam, A. Debnath, M. Ghose, and S. Chakraborty, ‘‘A survey on task
offloading in multi-access edge computing,’’ J. Syst. Archit., vol. 118,
Sep. 2021, Art. no. 102225.

[14] M. Chen and Y. Hao, ‘‘Task offloading for mobile edge computing in
software defined ultra-dense network,’’ IEEE J. Sel. Areas Commun.,
vol. 36, no. 3, pp. 587–597, Mar. 2018.

[15] X. Chen, L. Jiao, W. Li, and X. Fu, ‘‘Efficient multi-user computation
offloading for mobile-edge cloud computing,’’ IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2015.

[16] B. Cao, L. Zhang, Y. Li, D. Feng, and W. Cao, ‘‘Intelligent offloading in
multi-access edge computing: A state-of-the-art review and framework,’’
IEEE Commun. Mag., vol. 57, no. 3, pp. 56–62, Mar. 2019.

[17] M. Chen, W. Li, G. Fortino, Y. Hao, L. Hu, and I. Humar, ‘‘A dynamic
service migration mechanism in edge cognitive computing,’’ ACM Trans.
Internet Technol., vol. 19, no. 2, pp. 1–15, May 2019.

[18] Y. He, F. R. Yu, N. Zhao, V. C. M. Leung, and H. Yin, ‘‘Software-defined
networks with mobile edge computing and caching for smart cities: A
big data deep reinforcement learning approach,’’ IEEE Commun. Mag.,
vol. 55, no. 12, pp. 31–37, Dec. 2017.

[19] G. Carvalho, B. Cabral, V. Pereira, and J. Bernardino, ‘‘Computation
offloading in edge computing environments using artificial intelligence
techniques,’’ Eng. Appl. Artif. Intell., vol. 95, Oct. 2020, Art. no. 103840.

[20] N. Primeau, R. Falcon, R. Abielmona, and E. M. Petriu, ‘‘A review of
computational intelligence techniques in wireless sensor and actuator
networks,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp. 2822–2854,
4th Quart., 2018.

[21] Y. Tao, X. Wang, X. Xu, and Y. Chen, ‘‘Dynamic resource allocation
algorithm for container-based service computing,’’ in Proc. IEEE 13th
Int. Symp. Auto. Decentralized Syst. (ISADS), Mar. 2017, pp. 61–67.

[22] Y. Liu, J. Zhao, Z. Xiong, D. Niyato, C. Yuen, C. Pan, and
B. Huang, ‘‘Intelligent reflecting surface meets mobile edge computing:
Enhancing wireless communications for computation offloading,’’ 2020,
arXiv:2001.07449.

[23] Z. Xiao, X. Dai, H. Jiang, and D. Wang, ‘‘Vehicular task offloading
via heat-aware MEC cooperation using game-theoretic method,’’ IEEE
Internet Things J., vol. 7, no. 3, pp. 2038–2052, Mar. 2020.

[24] M. Asim, Y. Wang, K. Wang, and P.-Q. Huang, ‘‘A review on computa-
tional intelligence techniques in cloud and edge computing,’’ IEEE Trans.
Emerg. Topics Comput. Intell., vol. 4, no. 6, pp. 742–763, Dec. 2020.

[25] W. Tong, A. Hussain, W. X. Bo, and S. Maharjan, ‘‘Artificial intel-
ligence for vehicle-to-everything: A survey,’’ IEEE Access, vol. 7,
pp. 10823–10843, 2019.

[26] F. Guo, H. Zhang, H. Ji, X. Li, and V. C. M. Leung, ‘‘An efficient
computation offloading management scheme in the densely deployed
small cell networks with mobile edge computing,’’ IEEE/ACM Trans.
Netw., vol. 26, no. 6, pp. 2651–2664, Dec. 2018.

[27] Z. Mohamad, A. A. Mahmoud, W. Nik, M. A. Mohamed, and
M. M. Deris, ‘‘A genetic algorithm for optimal job scheduling and load
balancing in cloud computing,’’ Int. J. Eng. Technol., vol. 7, no. 3,
pp. 290–294, 2018.

[28] X. Xu, Q. Liu, Y. Luo, K. Peng, X. Zhang, S. Meng, and L. Qi,
‘‘A computation offloading method over big data for IoT-enabled cloud-
edge computing,’’ Future Gener. Comput. Syst., vol. 95, pp. 522–533,
Jun. 2019.

[29] J. Wang,W.Wu, Z. Liao, R. S. Sherratt, G.-J. Kim, O. Alfarraj, A. Alzubi,
and A. Tolba, ‘‘A probability preferred priori offloading mechanism in
mobile edge computing,’’ IEEE Access, vol. 8, pp. 39758–39767, 2020.

[30] T. Wang, X. Wei, C. Tang, and J. Fan, ‘‘Efficient multi-tasks scheduling
algorithm in mobile cloud computing with time constraints,’’ Peer Peer
Netw. Appl., vol. 11, no. 4, pp. 793–807, 2018.

[31] Y. Guo, Z. Zhao, R. Zhao, S. Lai, Z. Dan, J. Xia, and L. Fan, ‘‘Intel-
ligent offloading strategy design for relaying mobile edge computing
networks,’’ IEEE Access, vol. 8, pp. 35127–35135, 2020.

[32] J. Bi, H. Yuan, S. Duanmu, M. Zhou, and A. Abusorrah, ‘‘Energy-
optimized partial computation offloading in mobile-edge computing with
genetic simulated-annealing-based particle swarm optimization,’’ IEEE
Internet Things J., vol. 8, no. 5, pp. 3774–3785, Mar. 2021.

[33] A. Shakarami, M. Ghobaei-Arani, and A. Shahidinejad, ‘‘A survey
on the computation offloading approaches in mobile edge comput-
ing: A machine learning-based perspective,’’ Comput. Netw., vol. 182,
Dec. 2020, Art. no. 107496.

[34] J. Wang, L. Zhao, J. Liu, and N. Kato, ‘‘Smart resource allocation for
mobile edge computing: A deep reinforcement learning approach,’’ IEEE
Trans. Emerg. Topics Comput., vol. 9, no. 3, pp. 1529–1541, Jul. 2021.

[35] X. Xiong, K. Zheng, L. Lei, and L. Hou, ‘‘Resource allocation based on
deep reinforcement learning in IoT edge computing,’’ IEEE J. Sel. Areas
Commun., vol. 38, no. 6, pp. 1133–1146, Jun. 2020.

[36] B. Ali, M. A. Gregory, and S. Li, ‘‘Multi-access edge computing archi-
tecture, data security and privacy: A review,’’ IEEE Access, vol. 9,
pp. 18706–18721, 2021.

[37] B. Liang, M. A. Gregory, and S. Li, ‘‘Multi-access edge computing
fundamentals, services, enablers and challenges: A complete survey,’’
J. Netw. Comput. Appl., vol. 199, Mar. 2022, Art. no. 103308.

[38] L. Lin, X. Liao, H. Jin, and P. Li, ‘‘Computation offloading toward edge
computing,’’ Proc. IEEE, vol. 107, no. 8, pp. 1584–1607, Aug. 2019.

[39] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya,
‘‘Edge intelligence: The confluence of edge computing and artificial
intelligence,’’ IEEE Internet Things J., vol. 7, no. 8, pp. 7457–7469,
Aug. 2020.

[40] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan, and X. Chen,
‘‘Convergence of edge computing and deep learning: A comprehensive
survey,’’ IEEE Commun. Surveys Tuts., vol. 22, no. 2, pp. 869–904,
2nd Quart., 2020.

[41] G. Carvalho, B. Cabral, V. Pereira, and J. Bernardino, ‘‘Computation
offloading in edge computing environments using artificial intelligence
techniques,’’ Eng. Appl. Artif. Intell., vol. 95, Oct. 2020, Art. no. 103840.

[42] E. Ahmed and M. H. Rehmani, ‘‘Mobile edge computing: Opportuni-
ties, solutions, and challenges,’’ Future Generat. Comput. Syst., vol. 70,
pp. 59–63, May 2017.

[43] K. Cheng, Y. Teng, W. Sun, A. Liu, and X. Wang, ‘‘Energy-efficient joint
offloading and wireless resource allocation strategy in multi-MEC server
systems,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2018, pp. 1–6.

[44] O. Munoz, A. Pascual-Iserte, and J. Vidal, ‘‘Optimization of radio and
computational resources for energy efficiency in latency-constrained
application offloading,’’ IEEE Trans. Veh. Technol., vol. 64, no. 10,
pp. 4738–4755, Oct. 2015.

[45] P. Mach and Z. Becvar, ‘‘Mobile edge computing: A survey on architec-
ture and computation offloading,’’ IEEE Commun. Surveys Tuts., vol. 19,
no. 3, pp. 1628–1656, 3rd Quart., 2017.

[46] J. Ren, H. Wang, T. Hou, S. Zheng, and C. Tang, ‘‘Federated learning-
based computation offloading optimization in edge computing-supported
Internet of Things,’’ IEEE Access, vol. 7, pp. 69194–69201, 2019.

[47] H. Q. Le, H. Al-Shatri, and A. Klein, ‘‘Efficient resource allocation in
mobile-edge computation offloading: Completion time minimization,’’ in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2017, pp. 2513–2517.

[48] F.Wang andX. Zhang, ‘‘Dynamic interface-selection and resource alloca-
tion over heterogeneous mobile edge-computing wireless networks with
energy harvesting,’’ in Proc. IEEE INFOCOM Conf. Comput. Commun.
Workshops (INFOCOM WKSHPS), Apr. 2018, pp. 190–195.

[49] H. Lin, S. Zeadally, Z. Chen, H. Labiod, and L. Wang, ‘‘A survey on
computation offloading modeling for edge computing,’’ J. Netw. Comput.
Appl., vol. 169, Nov. 2020, Art. no. 102781.

[50] X. Chen, L. Jiao, W. Li, and X. Fu, ‘‘Efficient multi-user computation
offloading for mobile-edge cloud computing,’’ IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2015.

[51] S. Sardellitti, G. Scutari, and S. Barbarossa, ‘‘Joint optimization of
radio and computational resources for multicell mobile-edge computing,’’
IEEE Trans. Signal Inf. Process. Over Netw., vol. 1, no. 2, pp. 89–103,
Jun. 2015.

[52] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, ‘‘A survey on
mobile edge computing: The communication perspective,’’ IEEE Com-
mun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017.

[53] O. Munoz, A. Pascual-Iserte, and J. Vidal, ‘‘Optimization of radio and
computational resources for energy efficiency in latency-constrained
application offloading,’’ IEEE Trans. Veh. Technol., vol. 64, no. 10,
pp. 4738–4755, Oct. 2015.

[54] M. Deng, H. Tian, and B. Fan, ‘‘Fine-granularity based application
offloading policy in cloud-enhanced small cell networks,’’ in Proc. IEEE
Int. Conf. Commun. Workshops (ICC), May 2016, pp. 638–643.

VOLUME 10, 2022 71493

H. Jin et al.: Review of Intelligent Computation Offloading in Multiaccess Edge Computing

[55] C. You, K. Huang, H. Chae, and B.-H. Kim, ‘‘Energy-efficient resource
allocation for mobile-edge computation offloading,’’ IEEE Trans. Wire-
less Commun., vol. 16, no. 3, pp. 1397–1411, Mar. 2016.

[56] S. Bi and Y. Zhang, ‘‘Computation rate maximization for wireless pow-
ered mobile-edge computing with binary computation offloading,’’ IEEE
Trans. Wireless Commun., vol. 17, no. 6, pp. 4177–4190, Apr. 2018.

[57] Z. Ding, P. Fan, and H. V. Poor, ‘‘Impact of non-orthogonal multiple
access on the offloading of mobile edge computing,’’ IEEE Trans. Com-
mun., vol. 67, no. 1, pp. 375–390, Jan. 2019.

[58] J. Zhu, J. Wang, Y. Huang, F. Fang, K. Navaie, and Z. Ding, ‘‘Resource
allocation for hybrid NOMA MEC offloading,’’ IEEE Trans. Wireless
Commun., vol. 19, no. 7, pp. 4964–4977, Jul. 2020.

[59] Z. Chen, H. Lin, L. Wang, and B. Zhao, ‘‘Interference-free clustering
protocol for large-scale and dense wireless sensor networks,’’ KSII Trans.
Internet Inf. Syst. (TIIS), vol. 13, no. 3, pp. 1238–1259, 2019.

[60] A. Shahidinejad and M. Ghobaei-Arani, ‘‘Joint computation offloading
and resource provisioning for edge-cloud computing environment: A
machine learning-based approach,’’ Softw., Pract. Exper., vol. 50, no. 12,
pp. 2212–2230, Dec. 2020.

[61] J. H. Holland, Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis With Applications to Biology, Control, and Artificial
Intelligence. Cambridge, MA, USA: MIT Press, 1992.

[62] F. Guo, H. Zhang, H. Ji, X. Li, and V. C. M. Leung, ‘‘An efficient
computation offloading management scheme in the densely deployed
small cell networks with mobile edge computing,’’ IEEE/ACM Trans.
Netw., vol. 26, no. 6, pp. 2651–2664, Dec. 2018.

[63] X. Xu, X. Zhang, X. Liu, J. Jiang, L. Qi, and M. Z. A. Bhuiyan,
‘‘Adaptive computation offloading with edge for 5G-envisioned internet
of connected vehicles,’’ IEEE Trans. Intell. Transp. Syst., vol. 22, no. 8,
pp. 5213–5222, Aug. 2021.

[64] Y. Sun, C. Song, S. Yu, Y. Liu, H. Pan, and P. Zeng, ‘‘Energy-efficient
task offloading based on differential evolution in edge computing system
with energy harvesting,’’ IEEE Access, vol. 9, pp. 16383–16391, 2021.

[65] C. A. C. Coello and N. C. Cortés, ‘‘Solving multiobjective optimization
problems using an artificial immune system,’’ Genetic Program. Evolv-
able Mach., vol. 6, no. 2, pp. 163–190, 2005.

[66] P. A. Vikhar, ‘‘Evolutionary algorithms: A critical review and its future
prospects,’’ in Proc. Int. Conf. Global Trends Signal Process., Inf. Com-
put. Commun. (ICGTSPICC), Dec. 2016, pp. 261–265.

[67] Z.Wang andA. Sobey, ‘‘A comparative review between genetic algorithm
use in composite optimisation and the state-of-the-art in evolutionary
computation,’’ Composite Struct., vol. 233, Feb. 2020, Art. no. 111739.

[68] O.-K. Shahryari, H. Pedram, V. Khajehvand, and M. D. TakhtFooladi,
‘‘Energy and task completion time trade-off for task offloading in fog-
enabled IoT networks,’’ Pervas. Mobile Comput., vol. 74, Jul. 2021,
Art. no. 101395.

[69] P. Anusha and R. S. Balan, ‘‘Efficient power management in mobile com-
puting with edge server offloading using multi-objective optimization,’’
EAI Endorsed Trans. Energy Web, vol. 9, no. 37, Jul. 2021.

[70] X. Xu, Q. Liu, Y. Luo, K. Peng, X. Zhang, S. Meng, and L. Qi,
‘‘A computation offloading method over big data for IoT-enabled cloud-
edge computing,’’ Future Gener. Comput. Syst., vol. 95, pp. 522–533,
Jun. 2019.

[71] X. Xu, Y. Li, T. Huang, Y. Xue, K. Peng, L. Qi, and W. Dou, ‘‘An energy-
aware computation offloading method for smart edge computing in wire-
less metropolitan area networks,’’ J. Netw. Comput. Appl., vol. 133,
pp. 75–85, May 2019.

[72] R. Storn and K. Price, ‘‘Differential evolution—A simple and efficient
heuristic for global optimization over continuous spaces,’’ J. Global
Optim., vol. 11, no. 4, pp. 341–359, 1997.

[73] M. Pant, H. Zaheer, L. Garcia-Hernandez, and A. Abraham, ‘‘Differential
evolution: A review of more than two decades of research,’’ Eng. Appl.
Artif. Intell., vol. 90, Apr. 2020, Art. no. 103479.

[74] Y. Liao, X. Qiao, Q. Yu, and Q. Liu, ‘‘Intelligent dynamic service pricing
strategy for multi-user vehicle-aided MEC networks,’’ Future Gener.
Comput. Syst., vol. 114, pp. 15–22, Jan. 2021.

[75] Y. Wang, C.-R. Chen, P.-Q. Huang, and K. Wang, ‘‘A new differential
evolution algorithm for joint mining decision and resource allocation
in a MEC-enabled wireless blockchain network,’’ Comput. Ind. Eng.,
vol. 155, May 2021, Art. no. 107186.

[76] Z. Jin, C. Zhang, G. Zhao, Y. Jin, and L. Zhang, ‘‘A context-aware task
offloading scheme in collaborative vehicular edge computing systems,’’
KSII Trans. Internet Inf. Syst., vol. 15, no. 2, pp. 383–403, 2021.

[77] N. Gunantara, ‘‘A review of multi-objective optimization: Methods and
its applications,’’ Cogent Eng., vol. 5, no. 1, Jan. 2018, Art. no. 1502242.

[78] Q. Zhang and H. Li, ‘‘MOEA/D: Amultiobjective evolutionary algorithm
based on decomposition,’’ IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 712–731, Dec. 2007.

[79] F. Song, H. Xing, S. Luo, D. Zhan, P. Dai, and R. Qu, ‘‘A multiobjective
computation offloading algorithm for mobile-edge computing,’’ IEEE
Internet Things J., vol. 7, no. 9, pp. 8780–8799, Sep. 2020.

[80] S. Abdullah and A. Jabir, ‘‘A light weight multi-objective task offloading
optimization for vehicular fog computing,’’ Iraqi J. Electr. Electron. Eng.,
vol. 17, no. 1, pp. 1–10, Jun. 2021.

[81] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
pp. 436–444, May 2015.

[82] A. Chakraborty and A. K. Kar, Swarm Intelligence: A Review of Algo-
rithms. Cham, Switzerland: Springer, 2017, pp. 475–494.

[83] L. Brezočnik, I. Fister, and V. Podgorelec, ‘‘Swarm intelligence algo-
rithms for feature selection: A review,’’ Appl. Sci., vol. 8, no. 9, p. 1521,
Sep. 2018.

[84] J. Kennedy and R. Eberhart, ‘‘Particle swarm optimization,’’ in Proc.
IEEE ICNN, vol. 4, Nov./Dec. 1995, pp. 1942–1948.

[85] A. Banks, J. Vincent, and C. Anyakoha, ‘‘A review of particle swarm
optimization—Part I: Background and development,’’ Natural Comput.,
vol. 6, no. 4, pp. 467–484, Dec. 2007.

[86] K. E. Parsopoulos and M. N. Vrahatis, ‘‘Recent approaches to global
optimization problems through particle swarm optimization,’’ Natural
Comput., vol. 1, nos. 2–3, pp. 235–306, 2002.

[87] L. N. T. Huynh, Q.-V. Pham, X.-Q. Pham, T. D. T. Nguyen,
M. D. Hossain, and E.-N. Huh, ‘‘Efficient computation offloading
in multi-tier multi-access edge computing systems: A particle
swarm optimization approach,’’ Appl. Sci., vol. 10, no. 1, p. 203,
Dec. 2019.

[88] S. Dai, M. Liwang, Y. Liu, Z. Gao, L. Huang, and X. Du, ‘‘Hybrid
quantum-behaved particle swarm optimization for mobile-edge computa-
tion offloading in Internet of Things,’’ in Proc. Int. Conf. Mobile Ad-Hoc
Sensor Netw. Cham, Switzerland: Springer, 2017, pp. 350–364.

[89] A. Colorni, M. Dorigo, and V. Maniezzo, ‘‘Distributed optimization by
ant colonies,’’ in Proc. 1st Eur. Conf. Artif. Life, vol. 142, Dec. 1991,
pp. 134–142.

[90] M. Dorigo, M. Birattari, and T. Stutzle, ‘‘Ant colony optimization,’’ IEEE
Comput. Intell. Mag., vol. 1, no. 4, pp. 28–39, Nov. 2006.

[91] R. F. T. Neto and M. G. Filho, ‘‘Literature review regarding ant colony
optimization applied to scheduling problems: Guidelines for implemen-
tation and directions for future research,’’ Eng. Appl. Artif. Intell., vol. 26,
no. 1, pp. 150–161, Jan. 2013.

[92] M. K. Hussein and M. H. Mousa, ‘‘Efficient task offloading for IoT-
based applications in fog computing using ant colony optimization,’’
IEEE Access, vol. 8, pp. 37191–37201, 2020.

[93] Y. Guo, Z. Zhao, R. Zhao, S. Lai, Z. Dan, J. Xia, and L. Fan, ‘‘Intel-
ligent offloading strategy design for relaying mobile edge computing
networks,’’ IEEE Access, vol. 8, pp. 35127–35135, 2020.

[94] Z. Ali, L. Jiao, T. Baker, G. Abbas, Z. H. Abbas, and S. Khaf, ‘‘A deep
learning approach for energy efficient computational offloading inmobile
edge computing,’’ IEEE Access, vol. 7, pp. 149623–149633, 2019.

[95] B. Fan, Z. He, Y. Wu, J. He, Y. Chen, and L. Jiang, ‘‘Deep learning
empowered traffic offloading in intelligent software defined cellular V2X
networks,’’ IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 13328–13340,
Nov. 2020.

[96] Z. Wan, X. Dong, and C. Deng, ‘‘Deep learning with enhanced conver-
gence and its application in MEC task offloading,’’ in Proc. Int. Conf.
Algorithms Archit. Parallel Process. Cham, Switzerland: Springer, 2021,
pp. 361–375.

[97] J. Liu, S.Wang, J.Wang, C. Liu, andY.Yan, ‘‘A task oriented computation
offloading algorithm for intelligent vehicle network with mobile edge
computing,’’ IEEE Access, vol. 7, pp. 180491–180502, 2019.

[98] Z. Cao, P. Zhou, R. Li, S. Huang, and D. Wu, ‘‘Multiagent deep rein-
forcement learning for joint multichannel access and task offloading of
mobile-edge computing in industry 4.0,’’ IEEE Internet Things J., vol. 7,
no. 7, pp. 6201–6213, Jul. 2020.

[99] A. Shahidinejad and M. Ghobaei-Arani, ‘‘Joint computation offloading
and resource provisioning for edge-cloud computing environment: A
machine learning-based approach,’’ Softw., Pract. Exper., vol. 50, no. 12,
pp. 2212–2230, Dec. 2020.

71494 VOLUME 10, 2022

H. Jin et al.: Review of Intelligent Computation Offloading in Multiaccess Edge Computing

[100] Z. Yang, Y. Liu, Y. Chen, andN. Al-Dhahir, ‘‘Cache-aided NOMAmobile
edge computing: A reinforcement learning approach,’’ IEEE Trans. Wire-
less Commun., vol. 19, no. 10, pp. 6899–6915, Oct. 2020.

[101] L. Huang, X. Feng, C. Zhang, L. Qian, and Y. Wu, ‘‘Deep reinforcement
learning-based joint task offloading and bandwidth allocation for multi-
user mobile edge computing,’’ Digit. Commun. Netw., vol. 5, no. 1,
pp. 10–17, 2018.

[102] L. Huang, S. Bi, and Y.-J.-A. Zhang, ‘‘Deep reinforcement learning
for online computation offloading in wireless powered mobile-edge
computing networks,’’ IEEE Trans. Mobile Comput., vol. 19, no. 11,
pp. 2581–2593, Nov. 2020.

[103] M. Nduwayezu, Q.-V. Pham, and W.-J. Hwang, ‘‘Online computation
offloading in NOMA-based multi-access edge computing: A deep rein-
forcement learning approach,’’ IEEE Access, vol. 8, pp. 99098–99109,
2020.

[104] J. Chen, H. Xing, Z. Xiao, L. Xu, and T. Tao, ‘‘A DRL agent for jointly
optimizing computation offloading and resource allocation in MEC,’’
IEEE Internet Things J., vol. 8, no. 24, pp. 17508–17524, Dec. 2021.

[105] J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Georgalas, ‘‘Fast adaptive
task offloading in edge computing based on meta reinforcement learn-
ing,’’ IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 1, pp. 242–253,
Jan. 2021.

[106] M. I. Jordan and T.M.Mitchell, ‘‘Machine learning: Trends, perspectives,
and prospects,’’ Science, vol. 349, no. 6245, pp. 255–260, 2015.

[107] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine
Learning. Cambridge, MA, USA: MIT Press, 2018.

[108] S. Yu, X. Chen, L. Yang, D. Wu, M. Bennis, and J. Zhang, ‘‘Intelli-
gent edge: Leveraging deep imitation learning for mobile edge compu-
tation offloading,’’ IEEE Wireless Commun., vol. 27, no. 1, pp. 92–99,
Feb. 2020.

[109] J. Liu, M. Ahmed, M. A. Mirza, W. U. Khan, D. Xu, J. Li, A. Aziz,
and Z. Han, ‘‘RL/DRL meets vehicular task offloading using edge and
vehicular cloudlet: A survey,’’ IEEE Internet Things J., vol. 9, no. 11,
pp. 8315–8338, Jun. 2022.

[110] Z. Ali, S. Khaf, Z. H. Abbas, G. Abbas, F. Muhammad, and S. Kim,
‘‘A deep learning approach for mobility-aware and energy-efficient
resource allocation in MEC,’’ IEEE Access, vol. 8, pp. 179530–179546,
2020.

[111] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[112] Z. Ding, Y. Huang, H. Yuan, and H. Dong, ‘‘Introduction to reinforce-
ment learning,’’ in Deep Reinforcement Learning. Cham, Switzerland:
Springer, 2020, pp. 47–123.

[113] K. Zhang, Y. Zhu, S. Leng, Y. He, S. Maharjan, and Y. Zhang, ‘‘Deep
learning empowered task offloading for mobile edge computing in urban
informatics,’’ IEEE Internet Things J., vol. 6, no. 5, pp. 7635–7647,
Oct. 2019.

[114] T. Zhang, Y.-H. Chiang, C. Borcea, and Y. Ji, ‘‘Learning-based offloading
of tasks with diverse delay sensitivities for mobile edge computing,’’ in
Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2019, pp. 1–6.

[115] X. Zheng, M. Li, M. Tahir, Y. Chen, and M. Alam, ‘‘Stochastic computa-
tion offloading and scheduling based on mobile edge computing,’’ IEEE
Access, vol. 7, pp. 72247–72256, 2019.

[116] X. Chen, C. Wu, Z. Liu, N. Zhang, and Y. Ji, ‘‘Computation offloading
in beyond 5G networks: A distributed learning framework and applica-
tions,’’ IEEE Wireless Commun., vol. 28, no. 2, pp. 56–62, Apr. 2021.

[117] C. J. C. H. Watkins and P. Dayan, ‘‘Q-learning,’’ Mach. Learn., vol. 8,
nos. 3–4, pp. 279–292, 1992.

[118] C. Szepesväri, ‘‘Algorithms for reinforcement learning,’’ Synth. Lectures
Artif. Intell. Mach. Learn., vol. 4, no. 1, pp. 1–103, 2010.

[119] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
‘‘Deep reinforcement learning: A brief survey,’’ IEEE Signal Process.
Mag., vol. 34, no. 6, pp. 26–38, Nov. 2017.

[120] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
‘‘A brief survey of deep reinforcement learning,’’ 2017,
arXiv:1708.05866.

[121] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, and S. Petersen, ‘‘Human-level control through deep
reinforcement learning,’’ Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[122] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D.Wierstra, ‘‘Continuous control with deep reinforcement learning,’’
2015, arXiv:1509.02971.

[123] J. Ren and S. Xu, ‘‘DDPG based computation offloading and resource
allocation for MEC systems with energy harvesting,’’ in Proc. IEEE 93rd
Veh. Technol. Conf. (VTC-Spring), Apr. 2021, pp. 1–5.

[124] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, ‘‘Edge intelli-
gence: Paving the last mile of artificial intelligence with edge comput-
ing,’’ Proc. IEEE, vol. 107, no. 8, pp. 1738–1762, Aug. 2019.

[125] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
‘‘Communication-efficient learning of deep networks from decentralized
data,’’ in Proc. Artif. Intell. Statist., 2017, pp. 1273–1282.

[126] M. Yan, S. Li, C. A. Chan, Y. Shen, and Y. Yu, ‘‘Mobility prediction using
a weighted Markov model based on mobile user classification,’’ Sensors
J., vol. 21, no. 5, p. 1740, 2021.

[127] M. Król and I. Psaras, ‘‘NFaaS: Named function as a service,’’ in Proc.
4th ACM Conf. Inf.-Centric Netw., Sep. 2017, pp. 134–144.

[128] S. T. Ali, V. Sivaraman, A. Radford, and S. Jha, ‘‘A survey of securing
networks using software defined networking,’’ IEEE Trans. Rel., vol. 64,
no. 3, pp. 1086–1097, Sep. 2015.

HENGLI JIN (Student Member, IEEE) received
the bachelor’s degree in electrical and electronics
engineering and the master’s degree in telecom-
munication and networks from RMIT University,
in 2018 and 2020, respectively. He is currently
pursuing the Ph.D. degree with the School of Engi-
neering, RMIT University, Melbourne, Australia.
His research interests include SDN networks and
MEC optimization.

MARK A. GREGORY (Senior Member, IEEE)
received the Ph.D. degree from RMIT Univer-
sity, Melbourne, Australia, in 2008. He is a fel-
low of the Institute of Engineers Australia, where
he is an Associate Professor with the School of
Engineering. In 2009, he received an Australian
Learning and Teaching Council Citation for an
outstanding contribution to teaching and learn-
ing. His research interests include telecommunica-
tions, network design, public policy, and technical

risk. He is the General Co-Chair of ITNAC. He is the Managing Editor of an
international journals International Journal of Information, Communication
Technology and Applications (IJICTA).

SHUO LI (Member, IEEE) received the B.Eng.
and Ph.D. degrees from the City University of
Hong Kong, Hong Kong, SAR, in 2009 and 2014,
respectively. She is a Lecturer with the School
of Engineering, RMIT University, Australia. Her
research interests include analysis and design of
telecommunications networks and multi-access
edge computing and security.

VOLUME 10, 2022 71495

