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ABSTRACT We consider the binary classification problem of static and dynamic mixed data in this paper.
Different from mixed categorical and numerical data, the dynamic variables in the new type of data vary
with time and are recorded at discrete time points. This discrete form results in the high correlation within
each variable, at the same time, more shape and dynamic information need to be explored, then an efficient
fusion model is urgently needed. To tackle the challenge, we propose a novel fusion method, where the
discrete observations from dynamic variables are transformed to continuous functions via basis expansion,
and then are combined with static variables via a hybrid logistic regression model, with a group lasso penalty
term to select the important features. Consequently, the proposed method makes full use of the correlation
and dynamic information, then discards the useless information. It can be regarded as an efficient tool to do
the classification. In addition, two numerical examples and a real dataset are utilized to further illustrate the
effectiveness of the proposed method.

INDEX TERMS Mixed data, binary classification, variable selection, functional data, functional principal
component analysis.

I. INTRODUCTION
The mixed data usually refer to the data including categorical
and numerical variables, and they are ubiquitous in many
practical applications. There are extensive relevant studies in
the literature, among many others, by [13], [23] on classifi-
cation, by [8], [27] on clustering, and by [12] on regression.
Recently, owing to the advancement of technology, some new
kinds of mixed data emerge and have received considerable
attention. For example, [34] handled the classification of
mixed data stream, where the data are not completely col-
lected but come sequentially; [17] considered clustering the
data with a mixture of categorical, numerical, sequential, net-
work and other kinds of variables. In this paper, we consider
the data with mixture of static and dynamic variables, where
the static variables refer to the ones remaining unchanged for
a long time or even forever, while dynamic variables vary over
time continuously, to some extent, which can be regarded as
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time series. This type of data is denoted as static and dynamic
mixed data, and it can be regarded as an extension of clas-
sic mixed data. More details and illustration can be seen
in Figure 1.

The static and dynamic mixed data exist in quite a few
fields, for a better understand, two examples are displayed
as follows. The first example is physical examination data,
where height, weight and the indicators in routine blood
tests are static, while the data from electrocardiogram (ECG)
or electroencephalogram (EEG) are constantly recorded and
presented in the curve form. In addition, the data for evalua-
tion of urban comprehensive strength are also representative,
where the indicators from economy, politics, technology,
ecology and education fields all need to be considered to
do the evaluation. Among these indicators, some remain
unchanged for a long time such as the greening rate and
number of cultural relics, while others like Gross Domestic
Product (GDP), personal income and urban population are
always changeable.

We consider the binary classification for static and
dynamic mixed data in this paper. Since the classification of
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FIGURE 1. The illustration of static and dynamic mixed data. Dynamic
variables vary with time while are recorded in discrete time points.
Therefore, different from numerical variables, dynamic variables are
represented with the form of vector, and the length is determined by
sampling frequency and duration.

mixed categorical and numerical data has been well studied,
naturally, an extension of the existing methods to the new
setting is considered, and the methods for mixed categorical
and numerical data are summarized as follows. As we expect,
one popular approach is to handle categorical and numerical
variables separately, then combine the results to do a com-
prehensive analysis [32]. In another framework, all variables
are treated as one kind. For example, categorical variables are
transformed into numerical ones, or numerical variables are
treated as categorical by discretization. More statistically
significant, some research assume a joint distribution with
prior information, then figure out the probability of different
classes. Classic models contain conditional Gaussian regres-
sion model [36], general mixed-data model [13], [14], and
generalized linear mixed model [6], [11], [21].

However, the above approaches cannot achieve a satisfying
performance or even cannot work for static and dynamic
mixed data classification, since there are two challenges
simultaneously. First, dynamic variables continuously vary
with time, however in practice, the data are recorded in
discrete time points with the measurement error, then two
problems appears. On the one hand, as mentioned above,
the discrete record makes dynamic variables exist in the
form of vector. Consequently, different frequency and dura-
tion generate different length of vector, even including high
dimensional or high frequency case. On the other hand, the
data from the same dynamic variable are highly correlated,
which can be called as within-variable correlation, and is
similar to within-subject correlation in [45] and [47]. The
within-variable correlation contains more shape, dynamic
and changing information, which can’t be ignored in the
classification.

Another main challenge is related with the fusion method
of static and dynamic information. If discrete form of
dynamic variables are combined with static ones directly, the
correlation and dynamic information will be lost. Addition-
ally, high-dimensional discrete dynamic variables will reduce
the predictive power of static variables.

A satisfactory recovery and fusion method is urgently
required while there are relatively scarce studies, and we
notice that most existing methods base on deep learning

framework. For example, [33] adopted Hidden Markov
Models (HMM) and Long Short-Term Memory (LSTM)
while [24] utilized Recurrent Neural Network (ANN) to
extract and combine information, then do the classification.
The deep learning framework is merely a black box, and
overly depends on the data. In this paper, we proposed a
fusion model via an efficient tool named functional data.

Functional data [3], [40], [44] refer to the data collected
from dynamic and continuous process while only discrete
forms are attained owing to the limitations in reality. The
same essence makes the functional data become an efficient
tool to handle dynamic variables. Furthermore, it is worth
mentioning that there are plenty of research focusing on the
functional data classification problem [1], [2], [29], [42], to a
certain degree, which can be regarded as the classification
for dynamic variable. The majority of existing research work
focus on the univariate functional data classification, and until
recently the multivariate functional data classification begins
to receive limited attention. However, in some scenes, it is
also not comprehensive because the static information is lost.

In this paper, we propose a complete and systemic frame-
work to classify static and dynamic mixed data. In the
proposed method, the dynamic variables are regarded as
functional predictors, and static variables are regarded as
scalar predictors. We adopt a sequence of data-driven basis
functions to recover the functional predictors, then combine
the comprehensive information by a hybrid logistic regres-
sion model. In addition, a grouping rule is proposed and
the corresponding penalty term are used to select impor-
tant features. Consequently, the useful information is suffi-
ciently captured and extracted, while redundant information
is discarded. Two numerical examples and a real dataset in
Section III and IV illustrate that the proposed method has a
higher classification accuracy and more robust performance.

The paper is structured as follows. In Section II, we for-
mally introduce an advanced hybrid logistic model to classify
static and dynamic mixed data. In Section III, the numerical
performance of the proposed method is evaluated by two
numerical experiments. Besides, a real dataset is adopted
to further demonstrate the efficiency in Section IV. Finally,
Section V concludes the paper and provides directions for
future work.

II. HYBRID LOGISTIC REGRESSION WITH PENALTY TERM
A. PRELIMINARIES
Define static and dynamic mixed data:

{X1(t), . . . ,Xp(t),Z1, . . . ,Zm,Y },

and X (t) = (X1(t), . . . ,Xp(t)) ∈ L2(T ) are termed as
dynamic variables or functional predictors, where Xj(t) =
(Xj(ti1), . . . ,Xj(tili )) for j = 1, 2, . . . , p. It’s because Xj(t)
are recorded in discrete time points and are represented in
the form of discrete vectors, and it’s remarkable that the time
points can be regular or irregular. Z = (Z1, . . . ,Zm) are
termed as static variables or scalar predictors, and Y is a
binary response. Our goal is to propose a model to combine
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mixed predictors and then finish the classification. Note that
the domains of Xj(t), j = 1, 2, . . . , p can be different, while
we assume the same domain in this section for simplicity,
then we consider the different domains with a real dataset in
Section IV.

B. HYBRID LOGISTIC REGRESSION MODEL
Assume the static and dynamic mixed data come from a
hybrid logistic regression model:

logit(Y ) =
p∑
j=1

∫
T
βj(t)Xj(t) dt + Z>γ + ε, (1)

where β(t) = (β1(t), . . . , βp(t))> and γ = (γ1, . . . , γm)> are
the coefficients of functional predictors and scalar predictors
respectively. The intercept term is not contained since the data
are zero-centered. ε is the noise term with Eε = 0 and Eε2 =
σ 2 < ∞. Once the coefficients β(t) and γ are estimated,
we can use the model to conduct the classification.

C. MODEL TRANSFORMATION
The estimation of β(t) is not trivial due to the form of func-
tion, for that we adopt the basis expansion method to tackle
the challenge. The idea is to expand Xi,j(t) and βj(t) with a
sequence of basis functions φ1(t), φ2(t), . . ., specifically,

Xi,j(t) =
Lj∑
k=1

ξijkφk (t),

and

βj(t) =
Lj∑
k=1

bjkφk (t),

where φ(t) can be pre-determined or data-driven, and Lj, j =
1, 2, . . . , p are the number of bases, which can be determined
by 90% cumulative variance contribution rate. In order to
make the method more adaptive, we utilize the principle
component basis functions, which come from original data.
Specifically, for a functional data object X (t), t ∈ T with
mean function µ(t) and covariance function 6X (s, t) =
Cov(X (s),X (t)), we do the eigen-decomposition to the
covariance function:

6X (s, t) = µ(t)+
+∞∑
k=1

λkφk (s)φk (t),

where λk , k = 1, 2, . . . , are ordered eigenvalues, and
φk (t), k = 1, 2, . . . are orthogonal eigenfunctions, also
named functional principal component basis.

With the basis expansion method, the discrete record of
dynamic variables are transformed into continuous terms, and
the dynamic and correlation information are fully utilized.
More importantly, we just need to estimate expansion coeffi-
cients bjk for k = 1, 2, . . . ,Lj and j = 1, 2, . . . , p but not the

functions βj(t). Consequently, the model (1) turns into:

logit(Yi) =
p∑
j=1

Lj∑
k=1

bjkξijk + Z>γ. (2)

Denote (b11, . . . , b1L1 , b21, . . . , b2L2 , . . . , bp1, . . . , bpLp )
>

as b, which is a vector of length L1+ L2+ . . .+ Lp. Besides,
define the parameter vector a = (b, γ )>, if a is estimated, the
model can be adopted to do the classification.

D. ESTIMATION WITH PENALTY TERM
As mentioned above, we truncate the basis series with first
Lj basis functions according to cumulative variance contri-
bution rate, and some redundant information are discarded.
However, When the model (1) are adopted to do classi-
fication, some functional and scalar predictors may have
little contribution to classification. Therefore, we introduce
a penalty term to select the important predictors when do the
estimation.

We notice that some connections exist in the parameter
vector a = (b, γ )>: (bj1, bj2, . . . , bjLj )

> is the expansion
coefficient of βj(t) for j = 1, 2, . . . , p, then there is a natural
group structure existing in the b. Naturally, we put forward a
grouping principle: divide bj1, bj2, . . . , bjLj into group j, and
divide each element in γ = (γ1, γ1, . . . , γm)> into one group,
that is, γj is in group p + j for j = 1, 2, . . . ,m. Finally, the
total number of group is p + m. With the log likelihood loss
function and penalty term, the coefficients a can be estimated
by solving the minimization problem,

â = min
a
{− lnL(a)+ λ

J∑
j=1

‖aj‖22}, (3)

where aj for j = 1, 2, . . . , (p + m) are the elements

in the jth group, and lnL(a) is defined as ln a =

lnL(b, γ ) =
∑n

i=1[Yi(
∑p

j=1
∑Lj

k=1 ξijkbjk +
∑m

j=1 Zijγj) −

ln(1+ e
∑p

j=1
∑Lj

k=1 ξijkbjk+
∑m

j=1 Zijγj )]. Additionally, λ is a turn-
ing parameter to control the penalty term, and it can be
selected by K-fold cross validation method. We can adopt
gradient descent or expectation maximum methods to do the
estimation for the objective function (3).

After attaining the estimator â, the coefficient functions
βj(t) can be estimated by β̂j(t) =

∑Lj
k=1 b̂jkφk (t), and the

model (1) can be used for binary classification. Combining
the model 1 and the penalty term, we call the proposed
method hybrid logistic model with group penalty (HLRgroup)
method.

III. SIMULATION
A. ILLUSTRATION
To evaluate the performance of the proposed method, two
numerical experiments are displayed in this section. Since
we are interested in binary classification problem, without
loss of generality, two classes are denoted as 0 and 1 with
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equal amount of observations. Both functional and scalar
predictors are contained to predict the class label, and we
mainly consider the period and monotonous cases for func-
tional predictors, then normal, uniform and two-point cases
for scalar predictors.

Different noise levels and train-test split ratio (abbreviated
as ‘split ratio’ in the following text) are considered to further
illustrate the behavior of the proposed method. Specifically,
the noise of data is generated with two levels of SNR, namely,
SNR = 2 and SNR = 4, where SNR is the signal-to-noise
ratio, which is defined by E||x− µ||2/Var(ε). Additionally,
we divide the data into train and test set under the split ratio
of 2:8, 3:7, 5:5, 7:3 and 8:2 to do the stability and robustness
analysis.

For the purpose of comparison, we also adopt other
approaches to conduct the classification. Two groups of
approaches including discrete data-based and functional data-
based methods are considered. From the discrete data per-
spective, we focus on the logistic regression (LR) and related
methods in this paper. It’s because that the hybrid logis-
tic model (1) can be regarded as the extension of logistic
regression, and the comparison is more intuitive. Although
the data are discrete, they are highly correlated within the
same dynamic variable. We additionally add L2 and group
lasso penalty term but not L1 penalty to LR model. As a
result, Group 1 includes three approaches, namely, logistic
regression (LR), logistic regression with L2 penalty (LRL2 )
and logistic regression with group penalty (LRgroup). Simi-
larly, Group 2 consists of the hybrid logistic regression model
(HLR), hybrid logistic regression model with L2 penalty
(HLRL2 ) and group lasso penalty (HLRgroup).

The performance of the method is evaluated by classifica-
tion accuracy, which is defined as

accuracy =

∑nte
i=1 I (Ŷi == Yi)

nte
,

where Yi is the true class label while Ŷi is the estimated one,
and nte is the sample size of the test set. All methods run
twenty times in R to reduce error.

B. NUMERICAL EXPERIMENT 1
1) DATA DESCRIPTION
The numerical example 1 contains 200 observations. Six
functional predictors Xj(t), j = 1, 2, . . . , 6 and three scalar
predictors Zk , k = 1, 2, 3 exist in this data set, and six
functional predictors are generated from:

X1(t) = at,

X2(t) = sin(b1π t)+ b2sin(b3π t +
b4
2
π ),

X3(t) = c1sin(c2π t),

X4(t) = |t − 0.5|,

X5(t) : dXt = (µ1 − xt )dt + σ1 dWt ,

X6(t) : dXt = (µ2 − xt )dt + σ2 dWt ,

where Wt is a wiener process. The domains of these six
functional predictors are all set to [0, 1], which is then divided
equally into 100 discrete time points. The parameters a ∼
N (1, 2.5), b2 = 0.5, c1 = 0.8, µ1 = 2 and µ2 = 1 are
identical for Y = 0 and Y = 1, and other parameters are
set as follows: b1 = 2, b3 = 2, b4 = 0, c2 = 6, σ1 = 1,
σ2 = 1 in Y = 0 case; b1 = 4, b3 = 4, b4 = 1, c2 = 5,
σ1 = 3, σ2 = 3 in Y = 1 case. Some functional subjects with
noise are shown in Figure 2.
Z1, Z2, Z3 are scalar predictors, where Z1, Z2 are numerical

variables following normal distribution and uniform distribu-
tion respectively, and the specific form is presented in (4).
Z3 is a category variable randomly sampled from {0, 1}. The
boxplot of the scalar predictors is displayed in Figure 3.

Z1 =

{
N (40, 1) Y = 0
N (39, 1) Y = 1,

Z2 =

{
U (5, 10) Y = 0
U (0, 5) Y = 1.

(4)

2) RESULTS AND ANALYSIS
The classification results are summarized in table 1, and we
notice that:

First, as expected, almost in all settings, the performance
of the approaches improve as the noise becomes smaller or
the sample size of training set increases.

The approaches in Group 2 perform significantly better
than those in Group 1 with different noise levels and split
ratios. This is because in the methods of Group 2, the cor-
relation within the functional predictors, as important infor-
mation, are extracted and combined to do the classification,
and it makes classification more accurate and robust.

Now, we compare the results of different approaches in
fixed noise level and split ratio. In most cases, the proposed
method can achieve the highest classification accuracy, while
LRgroup approach outperforms the others in some scenarios,
fortunately, where the proposed method can achieve almost
the same accuracy. For example, when SNR is fixed to 4 and
the split ratio is set to 5:5, 3:7 and 2:8 respectively, the
highest accuracy is 98.90%, 98.43% and 97.44%, and they
are all achieved by LRgroup model. While the corresponding
accuracy of the proposed method are 98.65%, 98.25% and
97.00%, which are pretty close to the best results.

In order to make the results more intuitive, we transform
the contents of table 1 into Figure 4, then the curves of clas-
sification results with different split ratios and methods are
depicted. According to the trend and comparison of curves,
the proposed method almost achieves the highest classifica-
tion accuracy in different noise levels and split ratios. Addi-
tionally, it’s noticed that both the penalty term and the tool of
functional data can improve the classification accuracy.

C. NUMERICAL EXPERIMENT 2
1) DATA DESCRIPTION
Different from numerical example 1, we extend the domains
of functional predictors to [0, 10], and narrow the difference
among the parameters in different classes, then classification
task becomes more difficult in this numerical experiment.
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FIGURE 2. Some functional subjects with SNR = 2 noise in the numerical
example 1, where color red represents Y = 0, while blue represents Y = 1.

FIGURE 3. Scalar predictors in the numerical example 1, where color red represents Y = 0,
while blue represents Y = 1.

The dataset, where exist 200 observations, includes four
functional predictors Xj(t), j = 1, 2, 3, 4, and three scalar
predictors Zk , k = 1, 2, 3. The functional predictors are

generated by
X1(t) = 10− a1t,

X2(t) = b1sin(b2π t),
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TABLE 1. Comparison of average classification accuracy (%) of numerical experiment 1.

FIGURE 4. The classification accuracy comparison in numerical experiment 1 with the
methods of LR (blue), LRL2 (purple) and LRgroup (black), HLR (red), HLRL2 (orange),
HLRgroup (green) respectively.

X3(t) = sin(c1π t)+ cos(c2π t),

X4(t) = d1t2,

where the domains of functional predictors are all divided into
1000 discrete time points. The parameters a1 ∼ N (1, 2.5),
d1 ∼ N (1, 0.5) and b1 = 2 remain unchanged for different
classes, and other parameters are set as follows: b2 = 2,
c1 = 4, c2 = 4 for Y = 0, while b2 = 1.5, c1 = 3, c2 = 3 for
Y = 1. Some functional subjects with SNR = 2 noise are
presented in Figure 5. Moreover, the scalar predictors Z1 and
Z2 follow the distributions described in (5), and Z3 is ran-
domly sampled from {0, 1}. The boxplot of scalar predictors
is displayed in Figure 6.

Z1 =

{
N (3, 3) Y = 0
N (2, 2) Y = 1,

Z2 =

{
U (0, 1) Y = 0
U (0, 1) Y = 1.

(5)

2) RESULTS AND ANALYSIS
The classification result is summarized in table 2. It’s not
surprising that there are many similar results with numerical
experiment 1. For example, the performance of almost all
methods improve with the decrease of noise and increase
of split ratio, and the methods in Group 2 can achieve

higher classification accuracy. Besides, LRL2 method seems
preferred with a high split ratio. The method has a poor
performance when there are limited training samples, but as
training samples increase, the classification accuracy quickly
improves.

Compared with numerical example 1, the observations are
recorded for a longer time in this numerical example, and
more discrete values of functional predictors are represented.
Furthermore, we narrow the difference of parameters, all of
these lead to a more difficult classification task. We notice
that the proposed method achieves the highest classification
accuracy in all cases and has an absolute advantage in this
dataset.

D. SUMMARY
From the results of two numerical examples, the proposed
method has a favorable and robust performance, even with
large noise and a small split ratio. Although LRgroup and
HLRL2 also have competitive performance in some cases,
when we are not familiar with data, the proposed method is a
safer option.

The data in these two numerical examples are balanced
and the domains of all functional predictors are identical.
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FIGURE 5. Functional predictors with SNR = 2 noise in the numerical example 2,
where color red represents Y = 0, while blue represents Y = 1.

FIGURE 6. Scalar predictors in the numerical example 2, where color red represents Y = 0, while
blue represents Y = 1.

However, the datasets in practice present more complex fea-
tures. As a result, we additionally utilize a real dataset to
further illustrate the efficiency of the proposed method in the
following section.

IV. APPLICATIONS
A. DATA DESCRIPTION
In this section, we applied the methods in Section III to
analyze a Diffusion Tensor Imaging (DTI) data set, which
was collected at Johns Hopkins University and the Kennedy-
Krieger Institute. To better understand the data, we briefly
introduce the DTI technology.

Diffusion Tensor Imaging (DTI) is a novel method to
describe brain structure, and it is a special form of Magnetic
Resonance Imaging (MRI). Similar to tracking the Hydrogen

atoms in water molecules at MRI, DTI is based on the direc-
tion of water molecules moving, and the effects of brain
tumors on nerve cell connections can be revealed. Conse-
quently, it can represent the abnormal changes associated
with stroke, multiple sclerosis, schizophrenia, and other brain
diseases. It is a useful tool for diseases diagnosis.

The DTI data set in this section records the detailed infor-
mation of multiple sclerosis patients and persons without
multiple sclerosis, in which 255 observations with 26 controls
and 229 cases are contained. Every observation contains two
functional predictors and five scalar predictors. Two func-
tional predictors are denoted as ‘cca’ and ‘rcst’, describing
the direction of water molecules moving in the corpus callo-
sum (cca) and right corticospinal tract (rcst) region. Different
from the data in Section III, the time domain of these two
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TABLE 2. Comparison of average classification accuracy (%) of numerical experiment 2.

FIGURE 7. The classification accuracy comparison in numerical experiment 2 with the
methods of LR (blue), LRL2 (purple) and LRgroup (black), HLR (red), HLRL2 (orange),
HLRgroup (green) respectively.

FIGURE 8. The functional predictors in DTI data, where color red represents the
persons without multiple sclerosis, while blue represents patients.

predictors are different, and the scan time is 93s in the cca
region while 55s in the rcst region. Five scalar predictors
are subject-specific visit numbers (visit), the subject-specific
visit time measured in days since the first visit (visit.time),
the total number of visits for each subject (Nscans), subject’s
sex (sex), and the PASAT score at each visit (pasat).

The functional predictors are depicted in Figure 8, and the
boxplot of five scalar predictors is displayed in Figure 9.
From the above figures, the scalar predictors belonging to dif-
ferent classes are easy to distinguish, however, two functional
predictors are hard to distinguish. Unfortunately, the informa-
tion of scalar predictors takes up a very little proportion, and

73630 VOLUME 10, 2022



M. Quan: Advanced Hybrid LR Model for Static and Dynamic Mixed Data Classification

FIGURE 9. The scalar predictors in DTI data, where color red represents the persons without multiple sclerosis, while blue
represents patients.

FIGURE 10. The first four FPCs of the data in cca region, where color red represents the
persons without multiple sclerosis, while blue represents patients.

the discrete date from functional predictors are themain influ-
ence factors, the classification thus becomes challenging.

Besides, the imbalanced class labels and different domains
increase the difficulty of classification.
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FIGURE 11. The first four FPCs of the data in rcst region, where color red represents the
persons without multiple sclerosis, while blue represents patients.

TABLE 3. Comparison of average classification accuracy of real data.

B. RESULTS AND ANALYSIS
Since we adopt the data-driven basis functions in this
paper, the functional principal components(FPCs) repre-
sent important information in real date analysis. For DTI
data, the first four FPCs are extract and depicted in
Figure 10 and 11, and their aggregated fractions of variance
explained (FVE) exceed 90% and 80% respectively. From
the figures, we observe that some FPCs show significant
differences between patients and persons without multiple
sclerosis, specifically, for FPCs in the cca region, the first
FPC of persons without multiple sclerosis presents fluctua-
tion while that of patients maintains relatively stable from 20s
to 60s, in contrast, the third FPC of persons without multiple
sclerosis maintain stable while that of patients show drastic
fluctuations from 10s to 20s. For FPCs in the rcst region, the
FPC pairs present an opposite trend from 15s to 20s in the

second FPC and from 10s to 20s in the fourth FPC. After
making the comparison, we find that the differences between
FPC pairs in rcst region are more significant than cca region,
and we are supposed to pay more attention to the rcst data,
which can help us to explore more information about multiple
sclerosis.

Now we consider the classification accuracy, and the
results are shown in table 3 and Figure 12. For this imbal-
anced dataset, the proposed method keeps the best perfor-
mance in all settings, and the classification accuracy exceeds
that of LRgroup about 2%-3%, and exceeds that of HLRL2

about 6%-8%. These results demonstrate the effectiveness of
the proposed method. It’s also noticed that the approaches
in Group 2 still perform significantly better than those in
Group 1, and themodels with penalty term surpass themodels
without penalty, especially with small split ratio.
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FIGURE 12. The classification accuracy comparison of DTI data with the
methods of LR (blue), LRL2 (purple) and LRgroup (black), HLR (red), HLRL2
(orange), HLRgroup (green) respectively.

V. CONCLUSION REMARKS
In this paper, we consider static and dynamic mixed data clas-
sification problem, and the main challenges are the discrete
form and high correlation of dynamic variables. To tackle
the challenge, we proposed the hybrid logistic with group
penalty (HLRgroup method), where HLR model is adopted
to fully combine static and dynamic predictors, then the
group penalty term is used to select important group vari-
ables. Consequently, the proposed method utilizes more use-
ful information like the correlation and shape of curve, and
discards redundant information, then it has a favorable per-
formance in the classification. The numerical experiments
and the comparison with other approaches also demonstrate
that the proposed method has a higher classification accuracy
and more robust performance, and it seems preferred when
the data are imbalanced and the split ratio is small. The
classification of static and dynamic data exists in plenty of
applications, and we can consider multi-class classification
problem and the extension to static and dynamic mixed data
stream in the future.
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