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ABSTRACT Recent Deep Neural Networks (DNNs) based edge detection methods claim to beat human
performance on small scale datasets like BSDS500. But is the problem of edge detection really solved? To
answer this question, we review the existing dataset limitations as well as the generalization capabilities
of the proposed architectures. To this end, we develop a Synthetic Textured Masks Dataset (STMD) that
contains 28,000 grayscale images. The performance of several edge detection methods is severely degraded
on STMD. To further validate these results we propose a baseline Single Scale Feed Forward Edge Detector
(SFED), which is a simple 9-layer feed-forward convolutional neural network with no pooling layers. The
performance of SFED is better than most state-of-the-art architectures on BSDS500 and is superior to all
the compared architectures on STMD. These results show that most of the architectural advancements of
existing architectures are at the cost of generalizability where if we change the dataset set distribution (both
training and testset), the performance becomes significantly degraded and therefore the problem of edge
detection is still far away from being solved. There are also severe limitations of existing datasets in the
field, and STMD provides a framework for designing and testing better edge detection architectures for
novel application areas, such as, medical imaging and self-driving cars.

INDEX TERMS Computer vision, edge detection, segmentation.

I. INTRODUCTION objects for autonomous vehicles. Edge detection can also

Edge detection is one of the classical problems of computer
vision. It is important for several high level vision tasks like
segmentation [1], detection [2], recognition [3], and photo-
sketching [4]. In recent years, this problem has regained
significance because of its utility in practical applications,
such as, self-driving cars [5], [6], augmented reality [7], [8],
image colorization [9]-[11] and medical imaging [12], [13].

In [5] edge detection is used to assist self-driving cars with
lane detection. In [6] the authors propose edge detection to
detect road obstacles like speed bumps, potholes, and other
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be used to precisely identify buildings in augmented reality
applications [7]. In [8] contour-based methods are used to
detect and track objects in videos. Authors in [9] use edge
detection to colorize grayscale images to reduce bleeding
across boundaries. Similarly, authors in [10] utilize edges to
generate new colored icons and to change the color of old
ones.

In the medical imaging area, [12] uses edge detection
for the extraction of important features like length, width,
and angle of blood vessels in the retina of the human eye.
These features are then used for screening and diagnosis of
diseases including hypertension, arteriosclerosis, glaucoma,
and diabetic retinopathy. Furthermore, the segmentation of
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blood vessels in eye images can be used for computer-assisted
surgery and biometric identification. In [13], authors employ
edge detection for tumor marking in mammography images
to classify them as benign or malignant. It is interesting
to note that medical images are primarily grayscale tex-
tured mages where the change in textons of different regions
encode semantically meaningful patterns. Therefore, edges
hold great semantic importance for the segmentation of
important features from the background. This principle has
been proposed in [14] for brain tumor segmentation in MRI
scans of patients.

The images in standard edge detection datasets mostly lack
textures [15]. Therefore, the performance of edge detection
algorithms for large textons images remains relatively under-
studied. In this work, we bridge this research gap and we
also propose a technique to create large-scale synthetic edge
detection dataset with accurately marked ground truth.

A. OUR CONTRIBUTIONS

In this paper, we undertake a study of state-of-the-art in
edge detection and its performance. The objective is to ver-
ify whether the edge detection problem is indeed solved as
claimed for recent DNN based methods. It is important to
point out that these methods have been trained and tested on
small scale datasets like BSDS500 [15]. To this end, we make
the following contributions.

o« We introduce a Synthetic Textured Masks Dataset
(STMD) pipeline, which allows us to create a complex
textured dataset of 28,000 images with known ground
truth.

« We propose a baseline Single Scale Feed Forward Edge
Detector (SFED) architecture, which consists of a sim-
ple 9-layer feed-forward convolutional neural network
with no pooling layers (to avoid complexity).

o We train SFED and several state-of-the-art edge detec-
tion architectures on STMD and BSDS500 datasets.
Various experiments are conducted, and qualitative and
quantitative results are obtained to test the generalization
and performance claims of available architectures.

The rest of the paper is organized as follows. In Section II
we review the literature and discuss various edge detection
algorithms and datasets. In Section III we provide the details
of STMD and SFED. In Section IV, the quantitative and
qualitative experiments are presented. The paper is concluded
in Section V.

Il. LITERATURE REVIEW
In this section, we review edge detection methods and
datasets.

A. EDGE DETECTION METHODS

The earliest edge detection methods were based on image
gradients. Various hand-crafted methods were proposed to
improve the detection of edges [19]-[22]. These methods
showed some promise but were unable to capture the vast
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TABLE 1. Datasets available for training and evaluation of edge detection
techniques.

Dataset Year | Images
BSDS500 [15] | 2011 500

Important Features
Manually annotated by
multiple annotators for
segments and edges.
Includes Depth informa-
tion and multi-class labels.
Both edge and boundary
annotations included.
Highly-detailed  ground-
truth.

NYUDv2 [16] | 2013 1449

MDBD [17] 2016 100

BIPED [18] 2020 250

array of edges present in natural scenes, especially in the
presence of textured regions. In [20] Canny edge detec-
tor was proposed, which applied Gaussian smoothing to
the image followed by gradient and thresholding operators.
One of the most successful classical hand-crafted descriptors
approaches was presented in [15], where a set of Gabor filters
was used to provide the feature, which was fused to achieve
the edge maps.

Another set of methods for edge detection relies on region
based segmentation. In these methods, regions are segmented
and the edges are detected as boundaries of these regions.
Popular among the region based methods are [23]-[25]. Gen-
erally, the results for regions based methods on edge met-
ric are not on par with that of the classical edge detection
methods. However, on challenging textured datasets where
the appearance of regions form an important cue for bound-
ary detection, region based methods outperform edge based
methods [26].

Instead of considering edges as high intensity points, some
authors have also proposed frequency domain techniques
where images are considered as being formed by a Fourier
series and features are assumed to lie at maximum phase
congruency points [27]. Normalized cuts methods have also
been used for edge detection. These methods use hand crafted
features like a custom Gabor filter and then employ normal-
ized cuts followed by post processing steps like edge thinning
on the edge maps [15], [28]. Prior to DNN techniques, these
methods were considered state-of-the-art in the edge detec-
tion field.

The first Deep Learning method for edge detection was
proposed in [29]. This method, called Holistically-Nested
Edge Detection (HED), used a multi-scale model with
VGG16 (Visual Geometry Group - 16 Layer CNN) back-
bone [30] to learn edges. Inspired by HED, the authors
in [31] proposed a new model by adding deep supervision
to improve the directness and transparency of the learning
network. Another method that was also inspired by HED
addressed the problem of blurred boundaries [28]. By adding
arefinement module to HED and replacing bilinear interpola-
tion with sub-pixel convolution they were able to obtain local-
ized and crisp boundaries on the BSDS500 dataset. Another
similar approach was proposed in [32], where the authors
tried to predict more localized and crisp edges by using
dice loss along with the weighted binary cross-entropy loss.
In a more recent work [33] called Bi-Directional Cascade
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TABLE 2. Some sample images and their ground truths from available datasets that are used for training and evaluation of edge detection techniques.
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Network (BDCN), the authors introduced a Scale Enhance-
ment Module (SEM) that uses dilated convolution to generate
multi-scale features. SEM helps in generating less repet-
itive edges. Moreover, the BDCN model is bi-directional
and it produces output at each layer to learn a multi-scale
representation.

In Richer Convolutional Features (RCF) [34], the authors
make use of multi-scale and multi-level knowledge to detect
edges by adding convolutional features in a holistic frame-
work. In Dense Extreme Inception Network (DexiNed) [18],
which is inspired by HED [29] and Xception [35] networks,
the authors presented a new dataset along with the model
called inception network where RGB image is fed into the
network. Then the learned feature maps were up-sampled to
generate thin edge maps.

VOLUME 10, 2022

Semantic edge detection methods try to uniquely identify
the edges of each semantically meaningful class. Many state-
of-the-art methods use Fully Connected Networks (FCNs) but
due to delicate structures of edges, FCNs are vulnerable to
misaligned labels. The authors in [36] tried to address the
misaligned labels issue through simultaneous learning and
edge alignment. This method was further improved in [37]
where authors proposed a boundary thinning layer together
with a loss function to produce thin and precise edges. Feature
extractor with a normalizer and adaptive weight fusion mod-
ule was introduced in [38]. The authors in [39] combined both
semantic boundary detection task and semantic segmentation
task into a joint learning framework with an iterative pyramid
context module. Duality loss was proposed which improved
the boundary pixel accuracy.

70543



IEEE Access

M. Mubashar et al.: Have We Solved Edge Detection? A Review of State-of-the-Art Datasets and DNN Based Techniques

The current state-of-the-art edge detection methods are
based on very large and complex DNNs with a huge num-
ber of parameters in most cases (at least 15 million). Fur-
thermore, their architectural complexity is enhanced while
keeping in mind the datasets that are available for train-
ing. As a result, we believe that most of these methods
are prone to performance degradation even after they are
trained on challenging unseen textured datasets. In the next
subsection, we discuss the edge detection datasets and their
limitations.

B. EDGE DETECTION DATASETS

In this subsection, we provide an overview of datasets that are
mostly used for training edge detection algorithms. A brief
summary of datasets and some sample images from these
datasets are given in Tables 1 & 2 respectively.

1) BERKELEY SEGMENTATION DATA SET 500 (BSDS500)
BSDS500 [15], an extension of BSDS300, is the most popular
dataset in edge detection literature. It consists of 500 images,
which are divided into 200 training, 100 validation, and
200 testing images. Each image is annotated by multiple
annotators for both image segmentation and boundary detec-
tion. The final boundary ground truth is achieved by averag-
ing the annotations of all annotators. We identify two main
issues in this dataset. Firstly, the number and scale of edges
marked are not consistent across images i.e., one ground truth
may also mark the edges in texture while a similar texture
is ignored in another image. Secondly, each annotator marks
his own path for the edges, which results in the very untidy
ground truth. Due to the very small number of images, both
these problems significantly affect the training and evaluation
of edge detection methods.

2) THE MULTI-CUE BOUNDARY DETECTION DATASET
(MDBD)

MDBD [17] consists of high definition (1280 x 720) videos
of 100 natural scenes from both left and right views. The
last frame of each left view is annotated for both boundary
and edge detection separately by six annotators result-
ing in a total of 100 annotated images for edge detec-
tion. This dataset was released in 2016 and is mostly
used with a random split of 80-20 for training and testing
respectively.

3) NEW YORK UNIVERSITY DEPTH v2 (NYUDv2)

NYUDv2 [16] comprises 1449 pairs of densely labeled RGB
and depth images. It is split into 381 training, 414 val-
idation, and 654 testing images and is widely used for
scene understanding and edge detection. It also contains
407,024 unlabeled frames from 464 scenes but the labeled
1449 frames only come from 26 scene types. It also comes
with class and instance labels for each object. However,
the range of image scenes is very limited as it only covers
indoor images and does not capture a rich variety of real-life
scenes.
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4) BARCELONA IMAGES FOR PERCEPTUAL EDGE
DETECTION (BIPED)

BIPED [18] contains 250 high definition (1280 x 720) out-
door images from the city of Barcelona. The images have
been annotated by experts in the computer vision field at a
very fine level instead of the general public used in most
datasets. It is split into 200 training & validation and 50 test-
ing images. However, the images in this dataset come from
an urban setting and mostly only cover roads, buildings, cars,
and other roadside objects. Thus, this dataset fails to capture
arich variety of real-life scenes.

Most of the edge detection datasets are extremely small
(~10%) and the images in these datasets are limited to a
few scenarios like indoor and non-textured images. Most
papers use data augmentation on these small datasets using
image transformations, such as, rotations, translations, and
scaling. However, these augmentations do not add any new
semantically meaningful information to the datasets. As a
result, the DNNs are over-fitted to these datasets.

It is also important to highlight that there are sev-
eral large scale image segmentation datasets such as
Microsoft Common Objects in COntext (MS-COCO) [40]
and PASCAL Visual Object Classes (PASCAL VOC) chal-
lenge datasets [41]. However, these datasets are not too use-
ful for edge detection problems because several images in
these datasets have piece-wise constant regions, which do not
present a significant challenge for edge detection. Most of the
images particularly in MS-COCO are from indoor settings
and contain indoor objects, which do not have a textured
appearance and the edges between these objects are easy to
detect. For these reasons, image segmentation datasets are not
routinely used as edge detection benchmarks.

Ill. SYNTHETIC TEXTURED MASKS DATASET (STMD) AND
SINGLE-SCALE FEED FORWARD EDGE DETECTOR (SFED)
In this section, we propose STMD, which is a fully labeled
large scale dataset of textured images. We also propose a
simple and small benchmark DNN for edge detection called
SFED with the objective of demonstrating the overfit of
existing DNN methods on non-textured datasets that are com-
monly used in literature. To this end, we train SFED and state-
of-the-art DNN methods on STMD and BSDS500. Further
details of STMD and SFED are provided in the following
subsections.

A. SYNTHETIC TEXTURED MASKS DATASET (STMD)

We create a new synthetic texture dataset called STMD,
which is a fully labeled dataset with no annotation bias
because the images are generated from the ground truth. The
technique adopted to generate STMD is novel and it can
be used to create very large datasets for supervised edge
detection. The method relies on a database of masks [42] and
textures [43] that are used to produce challenging textured
images. The method is explained in Figure 1. The major steps
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FIGURE 1. Procedure for creating a single image and its ground truth in STMD.

needed for the generation of images and their ground truths
are also listed below.

1) Select a random binary mask from the masks database
denoted by m(x).

2) Select a random texture from the texture database and
multiply it with the mask m(x). This will add texture in
the foreground.

3) Select another texture and multiply it with the additive
inverse of the mask (1 — m(x)). This will add texture in
the background.

4) Add the foreground and background textured masks
in steps 2 and 3 to get the final image and store it in
STMD.

5) Find horizontal edges in the mask by taking a gradient
in the horizontal direction.

6) Find vertical edges in the mask by taking a gradient in
the vertical direction.

7) Add the norm of the horizontal and vertical edges and
binarize the output. This will be the ground truth for the
final image obtained in step 5. Store the ground truth in
STMD.

We use 1400 masks and 500 textures for the generation
of 28,000 grayscale images. The total dataset is divided
into 22,400 training, 2800 validation, and 2800 test images.
This dataset provides a precise and consistent ground truth
because it is created synthetically from masks and is not
biased/dependent on humans. In many applications, finding
edges between regions of unique statistics is more important
than edges within the textons. This practice is ubiquitous
in edge detection benchmarks, such as BSDS500, BIPED,
and MDBD. Finding edges that separate different regions in
a textured image is more challenging. On the other hand,
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finding all edges including region edges and within-textons
edges can be achieved by training a network to find intensity
edges. The SMTD contains images having complex textures,
which allows the edge detection methods to learn the bound-
aries between textures while ignoring the edges of the textons
within the textures.

B. SINGLE-SCALE FEED FORWARD EDGE DETECTOR
(SFED)

Our proposed DNN architecture called SFED is shown in
Figure 2. It is a simple 9-layer feed-forward convolutional
neural network with no pooling layers (to avoid complex-
ity) and we use it as a baseline model in our experiments.
To reduce the model complexity, SFED employs single-scale
approach in which the loss is calculated only on the last layer.
This single-scale configuration is computationally more effi-
cient in both training and testing. To deal with the problem of
scale, we use large filters of size 7 x 7 in the starting layers and
slowly work our way down to smaller 3 x 3 filters. The large
filters in the early layers help the network to better capture
the properties of large scale textures and somewhat alleviate
the need of pooling layers and multi-scale configuration. The
number of filters at each layer varies and decreases as the
depth increases starting from 256 and ending at 1. The details
of SFED layers are summarized in Table 3.

SFED has about 1.5 million parameters. This network is
chosen because we want to test the hypothesis that current
state-of-the-art methods for edge detection are overly com-
plex and biased on training datasets, and a simple network
like SFED can perform just as well or better on general
datasets compared to the very complex networks with at least
10 times more parameters.
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TABLE 3. SFED convolution layers details.

Layer Filter Size | Number of Filters | Padding | Stride | WidthxHeightxDepth
Input Layer - - - - 256x256x3
Layer 1 7x7 256 3 1 256x256x256
Layer 2 5x5 128 2 1 256x256x128
Layer 3 5x5 128 2 1 256x256x128
Layer 4 3x3 128 1 1 256x256x128
Layer 5 3x3 64 1 1 256x256x64
Layer 6 3x3 64 1 1 256x256x64
Layer 7 3x3 32 1 1 256x256x32
Layer 8 3x3 32 1 1 256x256x32
Output Layer Ix1 1 0 1 256x256x1

Given an input image X;, the proposed method outputs
an image Y; in which the value at each pixel represents the
probability of that pixel being an edge. We use a single
weighted binary cross-entropy loss function L(-) at the last
layer for network learning:

D] |Yil

1 . o
D73 (Byilog(i) + (1 — yi)log(l — i)
i

L(-) D]
where D is the dataset, Y; is the ground truth of ith image,
y;j and y;; are the respective ground truth and prediction at
j™ pixel of i image, and B is the weight for positive ground
truth. We use 8 = 5 in our method.

To summarize, the main highlights of SFED are:

1) Single scale approach to make it computationally more
efficient in training and testing.

2) Use of large filters in the beginning to capture large
scale textures and to compensate for single scale.

3) Use of a small network with only 1.5 million parame-
ters (at least 10 times less than state-of-the-art DNNs).

The ground truth for the edge detection datasets is
binary. This is ubiquitous for all edge detection benchmarks
(BSDS500, BIPED, MDBD). The evaluation metrics for edge
detection benchmarks look at the overlap of two binary edge
maps, i.e., the ground-truth and the output. All methods
including ours must first convert the output map [0,1] into
a binary edge map {0, 1} before evaluation of the output can
be performed. This is done by selecting a threshold. All edge
detection methods perform this thresholding step.

For performance quantification, we use two widely used
edge detection evaluation metrics called Optimal Dataset
Scale (ODS) and Optimal Image Scale (OIS) [15]. ODS
represents the average score when a single edge best threshold
is chosen for the entire dataset. Similarly, OIS represents the
average score when the best threshold is chosen for each
individual image in the dataset. The optimum threshold of
ODS and OIS are selected by exhaustively going over all the
values of the threshold {0, 0.01, 0.02, ... .1} and selecting the
best value (the value for which we get the best results). For
ODS we have a single best threshold for the entire dataset. For
OIS we have an individual best threshold for each individual
image in the dataset. The same process of threshold selection
is used in all state-of-the-art edge detection architectures.

We would also like to highlight that segmentation architec-
tures such as [44], [45] can also be used for edge detection.
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However, state-of-the-art in edge detection is generally better
in the task compared to these networks [29]. Moreover, in this
paper, we have also proposed SFED to show that even with
a very simple architecture we can outperform complex archi-
tectures, which are biased due to their training on small scale
datasets. Thus, our aim is to use the simplest configuration
of CNN to highlight the existence of biases in the current
state-of-the-art networks being used for edge detection. It is
important to note that establishing the generalization ability
of SFED on unseen datasets is important. In the experimental
results, we will test this aspect of SFED by training it on the
BSDS500 dataset and testing it on NYUD-v2, MDBD, and
BIPED datasets.

IV. EXPERIMENTS

In this section, we describe our experimental setup and dis-
cuss the quantitative and qualitative results. The objective is
to show the overfit of state-of-the-art DNNs to small datasets.
To show this we train and evaluate four DNNs (BDCN [33],
HED [29], DexiNed [18], and RCF [34]) on STMD
and BSDS500 and compare them against SFED baseline
architecture.

We trained our models from scratch on each dataset
until the validation loss converged. SFED was trained
on 22400 STMD images for 100 epochs using Adam opti-
mizer with a learning rate of 0.0001. For training on
BSDS500, we used 200 images for 30 epochs using an Adam
optimizer with a learning rate of 0.001 which was decayed
to 10% every 10 epochs. All other state-of-the-art models
were trained using the same images as our model with their
original hyper-parameters and backbones until the validation
loss converged. The corresponding training and validation
loss graphs of all the models are given in the appendix.

A. QUALITATIVE RESULTS

Figure 3 presents the qualitative (visual) results of SFED,
BDCN, DexiNED, RCF, and HED on BSDS500. Please note
that all the architectures are trained on the BSDS500 train-
ing dataset (200 images). We can notice that even though
BDCN is the current state-of-the-art on augmented BSDS500
dataset [29], its performance is subpar producing thicker
and blurry edges. RCF also has more blurry edges on the
BSDS500 dataset. HED produces thicker edges but overall
does a better job than the rest because of its ability to navigate
through some finer edges not annotated in ground truth due to
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FIGURE 2. SFED Architecture - it consists of 1 input layer, 8 convolution layers and 1 output layer. The numbers inside the box donate the filter size

whereas the numbers below the box donate number of filters.
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Image

its multi-scale approach BDCN and RCF also use multi-scale
approach but they fail to get a higher score because their
architectures are very complex and require a large amount
of data for effective training. DexiNed performs the worst
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FIGURE 3. Visual results of our architecture (SFED) and existing methods on BSDS500 Test data when trained on BSDS500 training data.

with smudgy edges. This can be attributed to the fact that
DexiNed has a huge number of parameters (about 20 million)
and unlike BDCN, HED, and RCEF, it trains from scratch
without employing transfer learning. Therefore, it requires a
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FIGURE 4. Visual results of our architecture (SFED) and existing methods on STMD Test data when trained on STMD training data.
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FIGURE 5. Output of a single channel for each layer of SFED. It consists of 1 input layer, 8 intermediate layers and 1 output layer.

huge dataset for effective training. Our baseline SFED archi-
tecture having a very small number of training parameters
outperforms almost all state-of-the-art DNN methods.

In Figure 4 we present the qualitative results of SFED,
BDCN, DexiNED, RCF, and HED on STMD. All the archi-
tectures are trained on STMD training data (22,400 images).
SFED gives the crispest edges and successfully ignores the
texton edges. However, BDCN, HED, and RCF are unsuc-
cessful in ignoring texture and the visual quality of the edges
is blurry. DexiNed, on the other hand, successfully navi-
gates through texture but produces thick edges. These results
expose the limitations of existing architectures and datasets
where state-of-the-art methods on small scale datasets fail on
complex large scale datasets.

B. QUANTITATIVE RESULTS
In this subsection, we quantify the performance of SFED
and state-of-the-art architectures using ODS and OIS scores.
We also compute the percentage difference in the ODS and
OIS values of state-of-the-art architectures relative to SFED
using the following formula.

Difference (%)
_ Other Architecture Value - SFED Value
"~ min(SFED Value, Other Architecture Value)

ey

A negative difference would indicate the superiority of SFED
architecture over the compared architecture and vice versa.
Table 4 shows the quantitative results i.e., ODS and OIS
scores when we trained the architectures on BSDS500 till
the validation loss converged. The comparative performance
of the algorithms is also presented. We can see that our
method (SFED) is the second-best after HED. The complex-
ity of all the architectures in terms of number of parame-
ters is also given in this table. We can see that our SFED
architecture with 1.55 million parameters is almost ten times
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TABLE 4. Quantitative results of methods trained on BSDS500 dataset.
Red represents the best results,

represents the second best results.

Models ODS OIS Parameters
BDCN [33] 0.704 (-1.7%) 0.72 (-1.38%) 16,302,712
DexiNed [18] | 0.617 (-16.04%) | 0.63 (-15.87%) | 20,798,091
HED [29] 0.75 (+4.74%) 0.77 (+5.48%) 14,716,171
RCF [34] 0.70 (-2.28%) 0.72 (-1.38%) 14,803,781
SFED (Ours) 1,554,657

less complex than HED which has 14.7 million parameters.
DexiNed has the highest complexity with around 20.8 million
parameters which is almost 13.5 times higher than our SFED
architecture.

We then trained state-of-the-art architectures and SFED on
more challenging STMD training data that contains 22,400
textured images. The corresponding ODS and OIS scores
obtained for each architecture and comparisons with SFED
are presented in Table 5. On both measures, SFED has
the best performance compared to all other state-of-the-art
architectures. The degradation in the performance of state-
of-the-art architectures on textured dataset reveals that these
architectures do not generalize well to challenging images.
These architectures are overfitted to small scale datasets.
Thus, both quantitatively and qualitatively, SFED architec-
ture, which is much simpler than the rest of the architectures
has performed well on the challenging textured dataset. These
results expose the limitations of existing architectures and
datasets and validate the main hypothesis of this work.

In Table 6, we present the results on the generalization
ability of SFED. In these experiments, SFED is trained on the
BSDS500 dataset but then it is tested on NYUDv2, MDBD,
and BIPED datasets. We can notice that SFED performs quite
well on all the datasets. The best performance is achieved
on MDBD (Boundaries) dataset where the ODS and OIS
scores are almost similar to the ones obtained for the training
dataset. On the other hand, the performance slightly degrades
on NYUDv2 and BIPED datasets. However, these results
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TABLE 5. Quantitative results of methods trained on synthetic textured
dataset (STMD). Red represents the best results, represents the
second best results.

Models ODS OIS
BDCN [33] 034 (-111.8%) | 0.30 (-140%)
BDCN Finetuned [33] 0.30 (-140%) 0.29 (-148.2%)
DexiNed-avg [18] 0.64 (-12.5%) 0.62 (-16.12%)
DexiNed-fused [18] (-7.46%) (-5.88%)

HED [29] 0.52 (-38.46%) | 0.52(-38.46%)
RCF [34] 0.28 (-157.1%) 0.24 (-200%)
SFED (Ours) 0.72 0.72

TABLE 6. Performance of SFED trained on BSDS500 and tested on
NYUDv2, MDBD, and BIPED datasets.

Model Dataset ODS OIS
NYUDvV2 [16] 0.58 (-23.44%) | 0.59 (-23.72%)
MDBD (Boundaries) [17] 0.72 (0.55%) 0.73 (0%)
SFED MDBD (Edges) [17] 0.66 (-8.48%) 0.67 (-7.46%)
BIPED [18] 0.6 (-19.33%) 0.61 (-19.67%)

BSDS500 [15] 0.716 0.73

clearly demonstrate the generalizability of SFED architecture
on unseen datasets.

The output of the intermediate layers of SFED is shown in
Figure 5. Our architecture consists of 9 convolution layers
(including the final output layer). A single channel of the
output of each intermediate layer is shown. Notice that dif-
ferent types of features and edges are captured by each layer.
Layers 1-2 broadly capture the foreground and background in
the image. Layers 3-4 capture various types of edges. As the
filter size gets smaller, layers 5-8 capture more complex fea-
tures (finer edges). Finally, the output layer has the full edge
map of the image. These visualizations reveal the internal
working of SFED.

V. CONCLUSION & FUTURE WORK

DNN techniques have significantly contributed toward solv-
ing the edge detection problem. State-of-the-art algorithms
even claim to beat human-level performance. In this paper,
we explored the limitations of these claims by showing
that the architectural novelty of DNN based edge detection
algorithms does not improve their generalization capabilities.
To this end, we introduced the STMD pipeline that allowed
us to generate a set of 28,000 fully labeled grayscale textured
images. The images in this dataset are more challenging than
the BSDS500 dataset which is commonly used for training
edge detection algorithms. We also proposed SFED as a base-
line DNN architecture with 9 nine feed-forward convolutional
layers. Through various experiments, we showed that the
performance of several state-of-the-art algorithms degraded
on the STMD dataset. In comparison, SFED when trained
with a standard loss function performed better on both STMD
and BSDS500 datasets. These observations demonstrate that
the edge detection problem still requires more research and it
is not yet solved.

The future extensions of this work include the development
of a large-scale labeled dataset of complex real-life images
with ample textures and difficulty for benchmarking and
training algorithms for emerging application areas, such as
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medical imaging and self-driving cars. Our work also opens
up the possibility of designing novel edge detection architec-
tures that avoid the overfitting problem and have better gen-
eralization capabilities. The shortcomings of existing archi-
tectures can also be quantified along with suitable remedial
steps to improve their performance. New metrics to test and
evaluate the performance and generalization capabilities of
edge detection algorithms can also be developed.

APPENDIX

TRAINING AND VALIDATION LOSS GRAPHS

The training and validation loss of various edge detection
algorithms on STMD and BSDS500 datasets are plotted in
the following figures.

A. STMD DATASET

Training loss of BDCN, DexiNed, HED, RCF, and SFED
algorithms on the STMD dataset is given in Figure 6. Sim-
ilarly, the validation loss of these algorithms on the STMD
dataset is given in Figure 7.

All Models Train Loss for STMD

6000 T
—+— BDCN train loss
>— DexiNed train loss
5000 ff HED train loss —
\\ —<—RCF train loss
\ —&— SFED train loss
4000 ¢ &*A b
@ NENEVENEN
8 3000 r 8
|
2000 r 8
1000 8

Epochs

FIGURE 6. Training Loss of BDCN, DexiNed, HED, RCF and SFED
algorithms on STMD dataset.

All Models Validation Loss for STMD
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FIGURE 7. Validation Loss of BDCN, DexiNed, HED, RCF and SFED
algorithms on STMD dataset.
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B.

BSDS500 DATASET

Training loss of BDCN, DexiNed, HED, RCF, and SFED

alg

orithms on the BSDS500 dataset is given in Figure 8.

Similarly, the validation loss of these algorithms on BSDS500

dat.

aset is give in Figure 9.
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FIGURE 8. Training Loss of BDCN, DexiNed, HED, RCF and SFED
algorithms on BSDS500 dataset.
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FIGURE 9. Validation Loss of BDCN, DexiNed, HED, RCF and SFED
algorithms on BSDS500 dataset.
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