
Received 30 May 2022, accepted 23 June 2022, date of publication 1 July 2022, date of current version 11 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3187704

A Unified Mechanism for Cloud Scheduling of
Scientific Workflows
ALI KAMRAN1, UMAR FAROOQ 2, IHSAN RABBI 2, KASHIF ZIA3, MUHAMMAD ASSAM4,
HADEEL ALSOLAI5, AND FAHD N. AL-WESABI 6
1Department of Physical and Numerical Sciences, Qurtuba University of Science and Information Technology, Dera Ismail Khan 29050, Pakistan
2Department of Computer Science, University of Science & Technology Bannu, Bannu 28100, Pakistan
3Faculty of Computing and Information Technology, Sohar University, Sohar 311, Oman
4Department of Software Engineering, University of Science and Technology Bannu, Bannu 28100, Pakistan
5Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
6Department of Computer Science, College of Science and Art at Mahayil, King Khalid University, Abha 62529, Saudi Arabia

Corresponding author: Ihsan Rabbi (ihsanrabbi@gmail.com)

This work was supported in part by the Deanship of Scientific Research at King Khalid University through the Large Groups Project under
grant number 18/43; and in part by the Princess Nourah Bint Abdulrahman University Researchers Supporting Project under grant number
PNURSP2022R303 of Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.

ABSTRACT Scheduling plays a vital role in the efficient utilization of the available resources in clouds.
This paper investigates the capabilities of the current scheduling algorithms of WorkFlowSim framework for
processing scientific workflows. These investigations used four different sizes of workloads each, for, five
well-knownworkflows. It was revealed that none of the existing algorithms is capable of efficiently executing
all the four sizes of workload for the complete set of workflows. Different algorithms performed better,
when they were applied to various workloads of a particular workflow. This fact was used in developing an
improved unified mechanism, which is capable of using an existing algorithm that performed well in the
past, against the given workload. Evaluation results showed that the proposed mechanism improved over
the existing algorithms for 4 out of 5 workflows (Epigenomics, Inspiral, Cyber Shake, and Montage), when
tested against an aggregated load of all sizes, in terms of simulation time. For the workflow named SIPHT,
however, it responded exactly the same as Max-Min algorithm. The minimum and maximum improvements,
against the existing best and worst algorithms, in percentage, for Epigenomics, Inspiral, SIPHT, Cyber Shake
and Montage were 16-63, 30-68, 0-69, 30-68, and 9-71 in corresponding order. This work has an additional
overhead in terms of a dedicated module to find and store algorithmic performance. It is, however, required
once and, thus, the increase in execution timemight be marginal. The future work intends to check the impact
of compute time towards optimization parameters such as makespan, pricing and deadlines.

INDEX TERMS Cloud computing, scheduling, scientific workflows, WorkFlowSim, CloudSim.

I. INTRODUCTION
Cloud Computing (CC) is a platform, which uses Internet
for the provision of data and compute resources based on
demand. It enables ubiquitous access to a large set of recon-
figurable resources such as servers, computer networks and
services [1]. The resources are provided and released rapidly
with a little managerial effort. CC and storage solutions pro-
vide users and enterprises with various capabilities to store
and process their data in either privately owned or third-party

The associate editor coordinating the review of this manuscript and

approving it for publication was Agostino Forestiero .

data centers [2]. It allows the companies to avoid spending on
developing their infrastructure, thus, enabling organizations
to concentrate on managing their core businesses [3]. Further,
it helps the organizations to quickly deploy their applications,
whose maintenance requires very little effort. The resources
in clouds are adjusted rapidly, thus, enabling organizations
to meet the unpredictable and fluctuating demands [3]. The
factors behind the tremendous growth of CC include not
only the inexpensive computers, storage devices and efficient
computer networks but also machine virtualization, service
oriented architectures, and utility based computing [4]. CC
has attracted much attention from different communities for

VOLUME 10, 2022
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 71233

https://orcid.org/0000-0003-4947-7267
https://orcid.org/0000-0003-1699-6300
https://orcid.org/0000-0002-4389-4927
https://orcid.org/0000-0002-3025-7689


A. Kamran et al.: Unified Mechanism for Cloud Scheduling of Scientific Workflows

developing not only compute and storage environments but
also different cloud based applications. The huge popularity
of these environments is due to the fact that providing very
own information technology, compute, and storage services
need massive investments [5].

Clouds require very limited interaction between the users
and service providers [6]. They offer a broad network access
and provide resources on demand. It develops a resource
pool and provides rapid elasticity. It uses metering facility
to provide a measured service [7]. The services offered by
the service providers in CC select an appropriate model
from a wide range of models available today. However, the
three basic models are called, Software as a Service (SaaS),
Platform as a Service (PaaS), and Infrastructure as a Service
(IaaS) [7]. The deployment of applications on the clouds use
the SaaS model. To facilitate the applications running on
clouds, the PaaS model provides the platforms used by the
applications including various tools, languages and libraries,
which are supported by service providers. The infrastruc-
tural entities such as store, compute and network are offered
using the IaaS model [8], [9]. Cloud deployment could be
private, community, public or hybrid in nature. However,
public clouds are the most favorable choice [10]. Commercial
cloud environments such as Microsoft’s Azure platform [11]
and Google App Engine [12] are serving the customers with
varied set of requirements.

Clouds are experiencing promising growth, however,
CC has a number of issues that must be addressed for making
its services user friendly and reliable [13], [14]. Scheduling is
an extremely challenging task, which believes in the efficient
utilization of resources for an improved end user experience.
In general, it follows a set of rules to efficiently execute the
given set of sequential tasks on a computer system. However,
scheduling in CC is more difficult as it assigns the tasks (such
as scientific workflows) submitted by various users to the
available resources in such a way that the total response time
is reduced. This overall response is called makespan, which
represents the overall time from submission of task to getting
response after the successful computation. Compute time is a
major factor contributing towards makespan and its reduction
will reduce the overall response time.

This paper investigates the current scheduling algorithms,
employed in WorkFlowSim (WFSim) framework, in terms
of simulation timings and, then, proposes an improved uni-
fied mechanism to overcome the major issue stating that
none of them is capable of efficiently executing workloads
of different sizes for a particular workflow. The rest of
this paper is organized as follows. Section II provides the
background information especially the scientific workflows,
WFSim framework and the scheduling mechanisms found
in the literature with an emphasis on those incorporated in
WFSim. Investigation results are presented in section III.
Section IV presents the problem statement, motivation and
goals of this work. Section V describes the proposed mecha-
nism. It, then, provides the evaluation results, which are used
to compare the proposed mechanism with existing methods.

The space time complexity of the proposed method in pre-
sented in section VI. Conclusion and future work is presented
in section VII.

II. BACKGROUND AND RELATED WORK
This section describes a number of well-known scientific
workflows. It explores the WFSim framework and the
scheduling methods both heuristic and meta-heuristic in
nature with an emphasis on those employed in WFSim to
facilitate the execution of workflows on clouds.

A. SCIENTIFIC WORKFLOWS
A scientific workflow is a logical sequence of tasks con-
stituting an application service. Generally, scientific work-
flows are represented usingDirectedAcyclic Graphs (DAGs).
To evaluate different aspects of CC such as clustering and
scheduling, scientific workflows of different domains are
used as a benchmark in the literature. A brief description of
the workflows used in this work are presented below:
1. Montage: is an astronomical application, which is used

to develop large mosaic images of the sky [15]–[17].
2. Inspiral: is an application of physics domain, which

is used to analyze the data obtained from the Laser
Interferometer Gravitational Wave Observatory (LIGO)
experiment. The data, it uses to search gravita-
tional waves signatures is obtained using scalable
interferometers [16], [17].

3. CyberShake: is an application falling in the seismology
domain, which is used to develop seismic hazard curves
for geographical sites in southern California [16], [17].

4. Epigenomics: is a workflow exhibiting data parallelism.
It takes multi-lanes DNA sequences generated by solexa
machines. The data, thus, received is, then, converted in
to a form suitable for mapping [16], [17].

5. SIPHT: is a workflow implementing a search service
and it is developed to find out small un-translated RNAs
(sRNAs), which are capable to regulate processes such
as secretion and virulence in bacteria. A number of
programs are involved in predicting and annotating the
sRNAs encoding patterns [18], [16], [17].

B. WORKFLOWSIM
Simulation studies are usually conducted to measure the
effectiveness of different aspects of clouds [19]. CloudSim
(CSim) [20] emerged as one of the best simulation environ-
ments for clouds. However, it lacks the capability to process
scientific workflows. Similarly, it does not include support
for the overhead involved in failures and heterogeneity. The
optimization techniques such as clustering is also missing
in CSim.

To incorporate these features, WFSim [19] was developed
as an extension to CSim, by adding an additional layer for
managing workflows in it. Researchers can easily extend the
basic capabilities ofWFSim. They can also check its behavior

71234 VOLUME 10, 2022



A. Kamran et al.: Unified Mechanism for Cloud Scheduling of Scientific Workflows

by conducting tests for different scenarios and configurations
regarding workflows. WFSim [19] is open source in nature
and it models scientific workflows in terms of DAGs. The
basic features, it supports include modeling delays, handling
node failures and the implementation of task scheduling for
workflows. It includes dynamic as well as static schedul-
ing techniques such as Min-Min and Heterogeneous Earliest
Finish Time (HEFT).

WFSim is based on the WorkFlow Management Sys-
tem (WMS) model, which is similar to the well-knownWMS
called Pegasus [13]. It includes modules related to workflows
namely a mapper, an engine, a scheduler and a partitioner.
It also includes a clustering engine and a provenance collec-
tor. Themapper converts the abstract workflows to executable
workflows. The workflow engine manages the flow of data
and dependencies between the data. The scheduler assigns
resources to jobs while the partitioner splits a workflow in
different sub-tasks. The clustering engine is used to make
large jobs by combining the small tasks. The module named,
provenance collector, is used for tracing the execution of tasks
by looking into the historical data [19]. Failure support is
available for both task and job levels in WFSim. The WFSim
component called, Failure Generator, introduces job or task
failures randomly at the compute nodes. The component
called, Failure Monitor, maintains the complete record of
failures. This information is, then, provided to WMS for
re-scheduling.

C. WORKFLOW SCHEDULING MECHANISMS
The schedulers for workflows ensure that the tasks are exe-
cuted in the correct order. When a workflow is submitted
to the scheduler/broker, it invokes the scheduling algorithm,
which decides about the cloud and execute node on the cloud
for processing the workflow. The scheduler takes a DAG
(representing the workflow), the processing capabilities of
resources and channel capacity of the communication link,
as input. The information in DAG is used to estimate the
execution time and make-span for the specific workload
size of a particular workflow. Scheduling could be static or
dynamic when applied to scientific workflows. To manage
virtualized environments in existing WMS systems, dynamic
schedulers are used to cope with the randomness of work-
loads and resources. However, static scheduling is highly
recommended, when it is possible to calculate good execution
timings for the tasks, and resource availability time and the
beginning time for a workflow are known in advance. This is
because static scheduling considers the workflow structure in
the scheduling process [21].

According to Roger [22], clouds are not great for tradi-
tional usage, however, they have some amazing uses. They are
costlier than traditional servers for continuous use. However,
need based usage of clouds that adopt a pay as you use
model has an advantage over traditional servers [22]–[24].
They greatly help organization to concentrate on improving
their operational capabilities by eliminating the need for huge
investment in developing and subsequently maintaining a

dedicated computational infrastructure. Compute intensive
applications such as scientific workflows believe in dynamic
scheduling as their compute requirements do change with
time. This is witnessed by many techniques and studies pro-
posed in recent years [23]–[28].

Scheduling algorithms could use heuristic and meta-
heuristic approaches and, therefore, two well-known
categories of the heuristic and meta-heuristic algorithms
do exist in the literature. The traditional and well known
heuristic algorithms include First Come First Serve (FCFS)
[29], Round Robin (RR) [29], [30], Minimum Completion
Time (MCT) [31]–[33], Min-Min [34], Max-Min [35], Het-
erogeneous Earliest Finish Time (HEFT) [34], [36], Dynamic
HEFT (DHEFT) [37] and Data Aware [36]. The literature
exists recently proposed extended versions of these algo-
rithms such as those presented in [38] and [39]. On the
other hand, many meta-heuristic methods are proposed in
the literature. According to Singh et al. [40], they include
ant colony optimization, particle swarm optimization, genetic
algorithm, cat swarm optimization and artificial bee colony
based optimiztion. Ramathilagam and Kandasamy [25] and
Toussi and Mahmoud [24] presented novel optimization
techniques for workflow scheduling in clouds. The latter tech-
nique (presented in [24]) used divide and conquer approach
to achieve deadline constrained cost optimization. A flexible
deadline driven resource management algorithm for multiple
workflows is presented in [26]. Similarly, a bi-objective
multi-workflow cloud scheduling mechanism based on re-
enforcement learning is presented in [27] while an energy
aware multi-workflow scheduling for hybrid clouds is pre-
sented in [28].

This work uses WFSim environment to investigate
the existing methods employed for scientific workflows.
We believe that the recently developed methods are not
only complex as compared to basic algorithms but their
source code is unavailable to experiment with. Furthermore,
we do not develop a new algorithm but proposes an inte-
grated environment which uses existing algorithms based on
an identified fact during this work that current algorithms
employed inWFSim behave differently against different sizes
of a given workflow. Therefore, we currently investigate
the algorithms employed in WFSim – the tool used in this
research work. The proposed mechanism is made scalable
using a flexible structure for storage along with a dedicated
module for storing and, then, using additional algorithms,
in future.

WFSim framework provides a number of static and
dynamic scheduling algorithms for handling workflows. The
mechanisms, investigated in this work, are briefly explained
below:
1. First Come First Serve (FCFS): believes in smallest

wait timings and, thus, the resource, which comes first
is selected for the task assignment. It is a simple non
preemptive strategy. FCFS has small turnaround and
response time. However, the jobs smallest in size but
arriving late might wait for longer to get processed.

VOLUME 10, 2022 71235



A. Kamran et al.: Unified Mechanism for Cloud Scheduling of Scientific Workflows

CSim assigns Virtual Machines (VMs) to hosts using
FCFS strategy [29].

2. Round Robin (RR): is a preemptive strategy, which
believes in fairness. The jobs are stored in a circular
queue and they are processed in turn. They are all given
the same time slice for execution. When a job is not
finished in the currently assigned turn, it waits to resume
its execution in the next turn. The RR strategy achieves
fairness by giving, each job, an equal share in CPU time
[29]. The longest jobs, however, need huge amount of
time to complete. To avoid this issue, job prioritization
is introduced in scheduling. Round Robin (RR) strategy
is also used by CSim for the internal assignment of
resources to jobs [30].

3. MinimumCompletionTime (MCT): allocates random
tasks to a VM, which offers minimum completion time
based on its already assigned workload [31], [32]. It uses
the processor speed and current workload of a VM to
determine, if it offers the minimum completion time.
However, the resources inMCTmight be poorly utilized
as this strategy might select resources for the execu-
tion of tasks, which do not process them in minimum
time [33].

4. Min-Min: dispatches a given task to the VM, which
is capable of processing the task in the lowest possible
time [34]. In simple words, it adopts the MCT strategy,
which randomly assigns tasks to the resources in such
a manner that the tasks must be processed in the least
possible time. Min-Min schedules the tasks based on
priorities, which are assigned highest to the shortest
jobs and lowest to the longest jobs. Min-Min might
suffer from significant workload imbalance. Similarly,
the longest jobs in Min-Min strategy might also suffer.

5. Max-Min: strategy allocates the highest priority to the
job, which has the longest processing time and lowest to
the job having the least processing time. In each assign-
ment step, a task with highest priority (the one with
maximum completion time) is allocated to a resource,
which is completed in the lowest time. Since, the longer
jobs are given preference over the smaller tasks, the
smaller jobs might get delayed [35].

6. Heterogeneous Earliest Finish Time (HEFT): is a
heuristic based scheduling method, which works in two
stages [34]. The former stage prioritizes the tasks by
assigning them upward ranks. The latter stage, then,
submits these tasks to the processing nodes using the
priorities calculated in the former stage. The upward
rank of a task is the expected distance between the
current and final tasks in the computation. The input
to the HEFT algorithm includes a set of tasks, a set
of processing nodes, estimated execution time of each
task on every available compute node and time needed
to provide the response of a job to the complete set of
compute nodes [36].

7. Dynamic HEFT (DHEFT): is the dynamic version of
HEFT algorithm, which had limitations while executing

scientific workflows. The HEFT schedules the tasks in
the planning phase, which are, then, allocated to selected
resources for processing. If a resource is assigned to a
job, which is processing an already assigned job, then,
the new job has to wait until a resource finishes that
job. DHEFT was developed to solve these issues by
equipping it with an efficient and dynamic scheduler
for more effective assignment of tasks to the compute
nodes [37].

8. The Data aware algorithm: included in WFSim
belongs to the category of algorithms, which are gen-
erally used for solving applications believing in data
parallelism. The job, which requires most of the data
provided as input is assigned to the selected VM. The
algorithm is localized in nature and it, therefore, takes
advantage of efficient data distribution at local sites [36].

III. INVESTIGATIONS
The cloud users for workflow scheduling usually target opti-
mization constraints such as deadline, cost, makespan and
latency. These constraints generally depend on both computa-
tion and communication costs [24], [39], [40]. The proposed
work is concentrating on the computation aspect, which cov-
ers a major portion towards latency, deadlines as well as the
prices paid to the cloud. For this reason, we investigate and
discuss the performance of exiting scheduling mechanisms
employed in WFSim for executing scientific workflows over
a pre-defined cloud environment in terms of simulation time.
The future work of this study includes checking the impact of
proposedmethod on the abovementioned parameters in terms
of its comparison with exiting mechanisms [24], [39], [40].

A. INVESTIGATION ENVIRONMENT
For investigation and evaluation purposes, this work used
a system with a 2.6GHz quad-core processor and a 4GB
primary memory, which was running Windows 8.1 operating
system. It used version 1.0 of the WFSim framework and
version 8.1 of NetBeans IDE.

The cloud environment, this work used, had one data cen-
ter with five VMs. Each VM had a single processing core.
The processing speed and the primary memory of each VM
was 1000 MIPS and 512MB RAM correspondingly. They
were capable of supporting image of sizes up-to 10000MB.

B. WORKFLOWS AND SCHEDULERS
This work used five workflows namely the Epigenomics,
Inspiral, Sipht, CyberShake, and Montage, which were dis-
cussed earlier in section II(A), for investigation and evalua-
tion purposes. Each workflow was investigated in terms of
four different workload sizes where the smallest jobs were
having 24-30 nodes, followed by the jobs having sizes from
46-50, and 100 nodes respectively. The longest jobs were
comprised of 997-1000 nodes.

For investigation and comparison purposes, all the
8 scheduling algorithms included in WFSim framework and
described earlier in section II(C) were used in this work.

71236 VOLUME 10, 2022



A. Kamran et al.: Unified Mechanism for Cloud Scheduling of Scientific Workflows

These schedulers are called FCFS, RR, MCT, Min-Min,
Max-Min, HEFT, DHEFT and data aware.

C. STATISTICAL PARAMETER(S)
This work used the parameter, Total Time (Simulated), for
investigation and comparison purposes. It records the total
simulation time needed by an algorithm to run a particular
workload size of a given workflow.

D. INVESTIGATION RESULTS
This work conducted a large number of experiments, where
each experiment applied an algorithm to a specific size work-
load of a workflow. Each experiment was conducted, five
times, to get an average value for fair results. For each algo-
rithm, we conducted four different experiments based on four
types of workload sizes. Investigation results, calculated in
terms of simulation time, of these experiments are presented
in Table-1. The best values against an algorithm are high-
lighted in gray.

The HEFT algorithm outperformed the rest of the algo-
rithms, when it was applied to Epigenomics, in all cases
except the workload made of 1000 nodes, where RR per-
formed better. In case of Inspiral, DHEFT had better response
for the workloads, smaller in size, especially consisting of
30 and 50 nodes. HEFT, however, performed the best for
workload comprised of 100 nodes. The RR for the Inspiral
workflow proved to be the most economical algorithm, when
they were applied to the workloads made of 1000 nodes.

Results for the workflow, SIPHT, showed that it was the
only workflow, in which the Max-Min algorithm was consis-
tent in terms of timings against workloads of all sizes.

Mixed results were achieved for the remaining workflows
namely: the CyberShake andMontage. The HEFT algorithm,
in case of CyberShake, showed optimal performance for the
workloads of sizes containing 50 and 100 nodes. However,
the Min-Min algorithm performed well for the workload
containing 25 nodes (the smallest possible workload). The
RR strategy was the best to process the longest workload
of size involving 1000 nodes. HEFT again performed better
for the workloads of sizes containing 25 and 100 nodes
while processing the Montage workflow. For the workload
comprised of 50 nodes, the Min-Min had better response. For
the longest job, containing 1000 nodes, however, data aware
algorithm outperformed the remaining algorithms.

E. DISCUSSION
The investigations, in this work, resulted-in mixed but inter-
esting results. It was revealed that none of the eight algorithms
investigated in this work, was able to have a constant behavior
against all the five workflows considered in this work. None
of them was, even, consistent in behavior, against various
sizes of workloads for a particular workflow except SIPHT.
In case of SIPHT, the Max-Min algorithm was throughout
consistent. HEFT and DHEFT had the most promising per-
formance in most of the cases but except the SIPHT. The
RR algorithm performed well for maximum size workloads

of all workflows except SIPHT and Montage. In a single
instance (the Montage’s workload comprises 50 nodes), the
Min-Min algorithm had a marginally better result than the
HEFT. The MCT and FCFS strategies failed to compete with
other algorithms, however, the response of MCT was better
than the FCFS in most of the cases.

IV. PROBLEM STAEMENT, MOTIVATION AND GOALS
This section formally presents the problem statement based
on investigations along with the motivation behind the pro-
posed work and goals set for this study.

A. PROBLEM STATEMENT
This work explored a large number of workflow schedulers
found in the literature with an emphasis on those included in
WFSim. It, then, investigated the WFSim schedulers against
various sizes of workloads for different scientific workflows.
It was revealed that none of these algorithms is able to pro-
vide a constant behavior against different sizes of a scien-
tific workflow. For a given workflow, different algorithms
achieved better simulation timings, when theywere applied to
different sizes of workloads. The advanced algorithms such as
HEFT and DHEFT showed a little improvement in terms of
performance, however, they introduce considerable amount
of additional burden and complexity.

This work, therefore, proposes an integrated scheduling
mechanism, which utilizes the existing algorithms based on
their previous performances instead of developing a new
algorithm. It uses the algorithm, which suits well to execute a
particular workload size of a specificworkflow. The proposed
mechanism provides a dedicated mechanism for finding and
storing algorithmic performance of an algorithm for its future
use.

B. MOTIVATION AND GOALS
The non-existence of a specific scheduling algorithm and a
unified mechanism, which is capable of processing different
workload sizes of a workflow in optimal timings motivated
us to develop the proposed method. The major goals of
this work include investigating the algorithms employed at
WFSim, proposing an alternate unified mechanism and, then,
evaluating and comparing it with current algorithms in terms
of simulation time.

V. THE PROPOSED MECHANISM
This section presents the proposed unified mechanism along
with its evaluation. It first describes the structure of storage
used to facilitate the proposed mechanism. It, then, presents
the proposed mechanism and its evaluation and comparison
with existing algorithms.

A. HANDLING THE REQUIRED DATA
Since, the proposed mechanism believes in using the past
performance of an algorithm as a feedback against a particular
workload size of a given workflow. In this connection, this
work uses a simple database for maintaining the performance

VOLUME 10, 2022 71237



A. Kamran et al.: Unified Mechanism for Cloud Scheduling of Scientific Workflows

TABLE 1. Summary of algorithmic responses to various workloads of different scientific workflows.

of an algorithm against a particular workload size of a given
workflow. This help in facilitating the proposed mechanism
and making it flexible - as it manages all the changes at
database level and, thus, avoids changes in the structure.

This database manages algorithmic descriptions, work-
flows and their corresponding workload sizes, and the best
performance of an algorithm against a specific size of a
workflow, in terms of simulation time. The conceptual model
of this database (the Entity Relationship Diagram) based on

a detailed study of requirements and keeping possible exten-
sion in mind is presented in Figure 1. It shows the strength
of relationships with the help of cardinalities and modalities.
However, the properties of basic and associative entities are
added to the logical design presented below:

Algorithm (AlgorithmCode, AlgorithmName, Authors,
Description)

ScientificWorkFlow (SciWorkFlowCode, SciWorkFlow-
Name, Description)

71238 VOLUME 10, 2022



A. Kamran et al.: Unified Mechanism for Cloud Scheduling of Scientific Workflows

FIGURE 1. The entity relationship model for data requirements of the
proposed mechanism.

ScientificWorkFlowSize (SciWorkFlowSizeCode, Sci-
WorkFlowSize, Description)

SciWF-SciWFSize (SciWorkFlowCode, SciWorkFlow
SizeCode, Description)
SciWF-SciWFSize-Algorithm(AlgorithmCode, SciWork

FlowCode, SciWorkFlowSizeCode, SimulationTime)
The primary keys in the last two tables, developed for

associative entities, in conceptual model (See Figure 1)
also serve as foreign keys for their respective base tables.
Tables namedAlgorithm, ScientificWorkFlow and Scientific-
WorkFlowSize are base tables, which are representing the
descriptions of algorithms, scientific workflows and sizes
of scientific workflows. The SciWF-SciWFSize table man-
ages the sizes applicable to scientific workflows. The most
important information used by the propsoed mechanism (the
past optimal performance of an algorithm against a spe-
cific size of a workflow) is maintained by the table named:
SciWF-SciWFSize-Algorithm.

B. THE PROPOSED UNIFIED APPROACH
Instead of developing a new algorithm, this work develops a
unified scheduling mechanism, which selects and, then, uses
the best algorithm among those incorporated in the WFSim
framework against a particular workload size of a scientific
workflow. This mechanism uses the previously known per-
formances, which are explicitly maintained in a database
described in section V(A) while selecting the best known
algorithm for a particular size of a workflow.

Since, new scheduling algorithms, workflows, and sizes
of workflows might be introduced with the passage of
time. The proposed method is made capable of adding
this information to the database (specifically in tables
named: Algorithm, ScientificWorkFlow, ScientificWork-
FlowSize and SciWF-SciWFSize) through an explicit
dedicated mechanism. Similarly, simulation timings for addi-
tional combinations (based on particular algorithm, work-
flow and size) are determined and stored for future use in
a table named: SciWF-SciWFSize-Algorithm. This makes
the proposed mechanism very flexible as it always uses
up-to-date information. The proposed mechanism along with
adding new information is implemented in the form of three

algorithms. Algorithm-1 implements the unified schedul-
ing mechanism. Simulation time for an algorithm against
a specific size of a workflow is determined and recorded
in the database using Algorithm-2. A new scheduling algo-
rithm along with timing information for various sizes of
workload for a workflow is stored using Algorithm-3 with
the help of Algorithm-2. Algorithm-2 is responsible for
determining and storing the performance of an algorithm
against a given workflow size of a workflow and it is used
by both Algorithm-1 – that realizes the unified aproach and
Algorithm-3 – which manages to determine and store perfor-
maces of all existing combinations of known workflows and
their sizes against a new algorithm. Algorithm-1 uses it when
it finds an algorithm whose performance against a particular
size of a workflow is not recorded while it is in search of
detrmining the best available algorithm. Algorithm-3 uses
it when a new algorithm is found in the literature and,
thus, the performance of algorithm for all combinations of
current workflows and their corresponding workload sizes
are determined and stored in database. Algorithm-3 calls
Algorithm-2 iteratively until the complete set of combina-
tions are processed.

The working of the proposed mechanism is explained as
follows. Algorithm-1 determines the algorithm, which per-
formed better for a given size of workload against a scientific
workflow, in terms of simulation time. It requires a DAX file
as an input, which contains the workload of a workflow. This
file includes the description and size information, which is
obtained by the algorithm in sequential order. It first iden-
tifies the name of the workload and assigns it to a variable
called ScientificWorkLoad. If it encounters a new workflow,
which is not in the repository, it is added to the repository.
It, then, determines the workload size and assigns it to the
variable called, ScientificWorkLoadSize. It is also added to
the database, if it encounters a new workload size for a work-
flow. The proposed technique now collects the details of all
known algorithms against the given scientific workflow and
a particular workload size. Line 15 to 26 of Algorithm-1 are
responsible for determining the best algorithm to process the
given workload. This always guarantees the selection of best
algorithm as it determines the performance of a newly added
workflow or workload size against the current algorithm and
records its performance, by calling Algorithm-2 at line 23.
Line 24, then, help in reconsidering the performance of the
algorithm against workload size of the given workflow.When
the loop given in line 15 is terminated, the mechanism must
have determined the best algorithm for solving the work-
load size of given workflow, which is used to process the
workload.

Algorithm-2 is sole responsible for finding out the per-
formance of an algorithm in terms of simulation time
against a given size of a scientific workflow and storing it
in database for references purposes. The proposed unified
mechanism presented in Algorithm-1, at line 23, calls this
process (Algorithm-2) to calculate the performance of an
algorithm, if it is not yet calculated and stored in the database.

VOLUME 10, 2022 71239



A. Kamran et al.: Unified Mechanism for Cloud Scheduling of Scientific Workflows

Algorithm 1 The Proposed Unified Scheduling Mechanism for Scientific Workflows
Require: A ScientificWorkFlow to process; //a DAX file is provided as an input, which comprises of descriptive name and
size of the workflow.

//Initialisations
1: char ScientificWorkLoad = ‘‘’’;
2: int ScientificWorkLoadSize = 0;
3: char CurrentAlgorithms [] = ‘‘’’;
4: char AlgorithmToProcessWorkLoad = ‘‘’’;
5: int AlgorithmProcessTime =∞;

//Get information and assign them to corresponding variables and/or data stores
6: ScientificWorkLoad = Get scientific workflow name from the input file;

//Store ScientificWorkLoad if not already stored (a new domain) in database
7: if (ScientificWorkLoad is a new domain) then
8: add ScientificWorkLoad to the database;
9: end if
10: ScientificWorkLoadSize = Get scientific workflow size from the input file;

//Store ScientificWorkLoadSize if not already stored (a new size) in database
11: if (ScientificWorkLoadSize is a new size) then
12: add ScientificWorkLoadSize to the database;
13: end if

//Find the algorithm to process the workload, add it to the database if its response is not stored yet.
14: CurrentAlgorithms [] = Get the current implemented algorithms;
15: for (int i = 1; i <= CurrentAlgorithms [].Count; i++) do
16: int CurrentAlgorithmTime;
17: CurrentAlgorithmTime = Determine the processing time of CurrentAlgorithms [i] against the

ScientificWorkLoad and ScientificWorkLoadSize;
18: if (CurrentAlgorithmTime 6= NULL) then
19: if (CurrentAlgorithmTime < AlgorithmProcessTime) then
20: AlgorithmProcessTime = CurrentAlgorithmTime;
21: end if
22: else
23: Call GetAlgorithmProcessTime (CurrentAlgorithms[i], ScientificWorkLoad,ScientificWorkLoadSize);
24: decrement i by 1;
25: end if
26: end for
27: Process the ScientificWorkLoad using the algorithm having minimum processing time;

Algorithm 2 This Algorithm Finds and Store the Process Time of An Algorithm for a ScientificWorkLoad of a Specific Size
Require: char algorithm, char ScientificWorkLoad, int ScientificWorkLoadSize; //This algorithmfinds an average simulation
time and store in database

//Initialisations
1: int CurrentSimulationTime = 0;
2: int TotalSimulationTime = 0;
3: int AverageSimulationTime = 0;
4: int i = 1;
5: while(i ≤ 10) do
6: CurrentSimulationTime = Execute the algorithm for provided size of ScientificWorkLoad;
7: TotalSimulationTime = TotalSimulationTime + CurrentSimulationTime;
8: end while
9: AverageSimulationTime = Round (TotalSimulationTime / 10, 0);
10: Store AverageSimulationTime for the algorithm against ScientificWorkLoad of ScientificWorkLoadSize in the

database;

71240 VOLUME 10, 2022



A. Kamran et al.: Unified Mechanism for Cloud Scheduling of Scientific Workflows

Algorithm 3 Logic for Adding a New Algorithm
Require: an algorithm; //This procedure takes an algorithm and stores it along with simulation timings for all pairs of
workflows and their workload size.

//Initializations
1: char ScientificWorkLoads[] = ‘‘’’;
2: int ScientificWorkLoadSizes[] = 0;
3: if (algorithm is not already in the repository) then
4: add algorithm to the repository;
5: if (WorkLoads and their corresponding sizes are needed to add to the repository) then
6: determine the WorkLoads and their corresponding WorkLoadSizes;
7: add them to the repository;
8: end if
9: if (Processing time is needed to generate) then
10: ScientificWorkLoads[] = Get all existing scientific workflows from the repository;
11: while (ScientificWorkLoads[] is not exhausted) do
12: ScientificWorkLoadSizes[] = Get all possible workload sizes for the current

scientific workflow;
13: while (ScientificWorkLoadSizes[] is not exhausted) do

//Call Algorithm-2 to determine the performance of algorithm and
store it in database

14: Call GetAlgorithmProcessTime (algorithm, ScientificWorkLoad,
ScientificWorkLoadSize);

15: end while
16: end while
17: end if
18: else
19: return: already included in the repository;
20: end if

Algorithm-2 takes three input parameters, which are the cur-
rent algorithm, ScientificWorkLoad (the workflow), and Sci-
entificWorkLoadSize. To have a fair performance measure,
this algorithm calculates a mean value of simulation time
based on executing it ten times for the workload size of the
given workflow. When this value is calculated, it is recorded
for future use as a feedback on performance. It is believed
that line 23 in Algorithm-1 might increase the execute time
of the proposed algorithm. However, this is added here to
make the method robust. This might have very limited use
during determining the best known algorithm to execute a
given workload, as an independent module is presented in
Algorithm-3 to add a new algorithm along with its simulation
time for each possible pair of workflow and workload size,
to the database.

Algorithm-3 manages new algorithms, when they are
found in the literature. It takes a new scheduling algorithm as
an input and works as follows. Since, we believe in keeping
the simulation timings for an algorithm against all known
workflows and their various workload sizes, Algorithm-3 is
provided with the proposed integrated mechanism to per-
form this task. When it finds that the algorithm is not in
the repository, it adds it to the database (specifically to the
table called: Algorithm). It gets and stores the workflows
(interchangeably called Workloads) and their corresponding

sizes, if it is needed. Since, it has to process and store
simulation time for all combinations of workflows and their
corresponding sizes, it collects all scientific workflows in a
list called: ScientificWorkloads[]. Algorithm-3, then, iterates
this list one by one and collects the corresponding worklod
sizes in another list called: ScientificWorkloadSizes[]. The
inner while loop defined at line 13, then, iterates through all
the sizes one by one and call Algorithm-2 to calculate and
store its performance in the database (specifically in table
SciWF-SciWFSize-Algorithm). When the inner loop termi-
nates successfully, it suggests that performance of algorithm
against all sizes of a given workflow are recorded. When
the outer loop located at line 11 terminates, it assures that
performance of algorithm for all workloads and their cor-
responding sizes is recorded. The logic behind Algorithm-2
works exactly the same way described earlier.

C. EVALUATION AND RESULTS
The evaluation of this work uses the same set-up considered
earlier for investigations. This includes the system and cloud
specifications listed in section III(A), the workflows and
schedulers presented in section III(B) and statistical parame-
ter described in section III(C).

To determine the efficiency of the proposed mechanism,
this work introduced the cumulative workloads based on

VOLUME 10, 2022 71241



A. Kamran et al.: Unified Mechanism for Cloud Scheduling of Scientific Workflows

TABLE 2. Comparison of existing and proposed mechanisms for scheduling scientific workflows based on accumulative load.

the individual workloads (the original workloads, provided
in terms of DAX files), which come bundled with WFSim
framework. The individual workloads were used for inves-
tigation purposes presented in section III. The cumulative
load for a workflow is an integrated load comprises of all
individual workloads for the given workflow. These different
workloads are assigned to the algorithm all together, which
are processed in sequence. The simulation time for a cumula-
tive workload is calculated in the similar fashion but it is now
based on timings for all workloads.

Evaluation results for the current algorithms against indi-
vidual workloads of various scientific were calculated in
section III and they were summarized in Table-1. The best

response offered by an algorithm against a workload size of
a scientific workflow was highlighted in gray.

Table-2 summarizes responses for cumulative loads for the
current as well as proposed mechanism, which uses the best
algorithm based on historical perspective against workload
size of a given workflow. It extends Table-1, where the value
of column-3 in Table-2 is almost the same as all responses
given in Table-1 for an algorithm against each individual
workloads. The response recorded for the proposed method
against a workflow, however, is almost the same as the sum-
mation of best responses recorded for different algorithms
against workloads of various sizes for the scientific work-
flow. For Example: the HEFT response against the workflow

71242 VOLUME 10, 2022



A. Kamran et al.: Unified Mechanism for Cloud Scheduling of Scientific Workflows

called, Epigenomics, in Table-2 is about 2115643.41Seconds,
which could be obtained by adding the values recorded in
Column 3 to 6 (individual responses of HEFT for workload
of size 25, 50, 100 and 1000) for Epigenomics in Table-1.
However, the response recorded for Epigenomics against the
proposed method (137610404 Seconds) in Table-2 is the
summation of the values given in column 3 to 5 for HEFT
(as HEFT performed better for workload sizes of 25, 50, and
100 nodes) and column 6 against RR (as RR performed better
for workload size of 100) of Table-1. Similarly, LIGO Inspiral
responses are compared as follows. When DHEFT algo-
rithm is used, it produced a response of 125398.64 Seconds
(Table-2), which comprises of DHEFT individual responses
of 3854.57, 4885.07, 9683.89 and 106975.12 seconds for
workload sizes comprises of 25, 50, 100 and 100 nodes
(produced in Table-1), in given order. The proposed method
on other hand took a total simulation time of 69983.92
Seconds (presented in Table-2). It is almost the same as the
combination of individul DHEFT responses of 3854.57 and
4885.07 seconds for workload of size comprises 25 and
50 nodes, 8091.66 seconds HEFT response for 100 nodes
and RR response of 53152.62 seconds for a workload size
of 1000 nodes. In case of SIPHT, it can be observed that the
propsoedmethod andMax-Min algorithm have both the same
simulation time. This is because Max-Min was consistent
in performance against all sizes of load and the propsoed
method always selected Max-Min based on its perfromance.
The rest of the results can be elaborated exactly the same way.

Column-4 of Table-2 is used to compare the proposed
method with current methods in terms of cumulative load.
Therefore, this column value against the proposed method
stands ‘Not Applicable’. This column produces the improve-
ment, in %, offered by the proposed method against the
individual algorithm for which the cumulative response time
is recorded. In case of Epigenomics, the proposed mecha-
nism improved a minimum of 16% against RR strategy but
a maximum of 63% against MCT, in terms of simulation
time. In case of Inspiral, it offered 30% improvement at min-
imum against RR but 68% improvement at maximum against
MinMin. In case of SIPHT, the proposed method had exactly
the same response as Max-Min (showed 0% improvemnet in
Improved by column), however, it improved a maximum of
69% against both data aware and RR strategies. Comparing
response for CyberShake revealed that the proposed method
improved a minimum 30% against HEFT but a maximum of
71% against FCFS. The proposedmethod has aminimum and
maximum improvement of 9% and 71% againstMCT and RR
for Montage, in corresponding order.

In short, the proposed method improved over the best
existing algorithms for various workflows from 9 to 30%
but 63 to 71% against the current worst algorithms based on
cumulative load, in terms of simulation timings. The current
study improved the response time in 80% cases (4 out of
5 workflows) but remained the same in the remaining 20%
cases (1 out of 5 workflows).

VI. SPACE-TIME COMPLEXITY
Since, the proposed mechanism believes in keeping the
performance of each algorithm against all possible work-
load sizes of a workflow and do so for all the workflows.
The simple database developed to support the proposed
mechanism has five tables to represent algorithms, scien-
tific workflows, scientific workflow sizes, workflow sizes
applicable to various workflows, and the performance of
algorithms against every workload sizes of all participat-
ing workflows. To highlight the space requirements for the
current setup, we present here the number of rows in each
table. The table Algorithm has only descriptions of 8 algo-
rithms while ScientificWorkFlow has only five (5) entries.
There are a total of nine (9) different entries in Scientific-
WorkFlowSize table, which are 24/25/30, 46/50/60, 100, and
997/1000 nodes. Since, each workflow has currently four
different workload sizes, there are only twenty (20) entries for
five workflows, in the table named SciWFSciWFSize. The
SciWF-SciWFSize-Algorithm is the most populated table of
this database, where there are one hundred and sixty (160)
entries (8 algorithms × 5 workflows × 4 workload sizes) for
algorithmic performance. In case of a new algorithm, there
would be about twenty (20) entries in SciWF-SciWFSize-
Algorithm table. The overall, space requirements for the pro-
posed algorithm is, thus, negligible and could be implemented
with very simple database environments.

Time complexity of the proposed method is performed
using asymptotic analysis. Here, it is assumed that in most of
the cases, a new algorithm is added using Algorithm-3, which
assesses and stores the performance of the algorithm with the
help of Algorithm-2. Therefore, Algorithm-1 does not require
consulting Algorithm-2 for determining the simulation time
required to process a workload of a given size for a scientific
workflow by an algorithm. So, Algorithm-1, in this case,
of the proposed mechanism is linear in nature. It is important
to note that this time is just the time complexity of the pro-
posed mechanism and it does not include the timings required
by the scheduling algorithm itself. Algorithm-2, which is
used to determine simulation time required by an algorithm
to process a given workload size of a workflow is also linear
in nature.

In term of complexity, the most expensive algorithm
among the three used in this work is Algorithm-3, which
determines the simulation time for every workload size of
each workflow against an algorithm. The asymptotic anal-
ysis of this algorithm, individually, turns to be quadratic in
nature. Since, the simulation time which is calculated by
Algorithm-2, is an average value, determined, on the basis
of 10 times execution of the algorithm for the same pair of
workflow and workload size, it adds a third level of nesting
to the complexity of Algorithm-3. Thus, its complexity is rep-
resented by a polynomial of power 3. However, all the loops
involved in the nesting process are executed very limited
number of times (particularly, the first, second and third while
loop are executed 5, 4 and 10 times) and, thus, the overall

VOLUME 10, 2022 71243



A. Kamran et al.: Unified Mechanism for Cloud Scheduling of Scientific Workflows

effect of the algorithm is not much higher. Furthermore, this
investment of time is required once and the actual algorithmic
timings for the unified mechanism is linear in nature.

VII. CONCLUSION AND FUTURE WORK
Cloud computing has eliminated the need of huge invest-
ments as it offers powerful resources to customers based
on a simple pay as you go model. Scheduling is one of
the most challenging aspects in cloud, which is explored
by many researchers with the basic aim of efficient uti-
lization of resources. Scheduling algorithms play vital role
in achieving this goal. This paper investigated the capabil-
ities of existing scheduling algorithms used for scheduling
scientific workflows on clouds, which are employed in the
WorkFlowSim toolkit – the most widely studied and used
simulation environment for simulating workflows on clouds.
It, then, developed a unified scheduling mechanism to over-
come the limitations of these algorithms.

This work investigated and compared the responses of
8 algorithms against four different workloads of five sci-
entific workflows, in terms of simulation time. The algo-
rithms that were investigated include HEFT, DHEFT, Data
Aware, FCFS,MAXMIN,MCT,MINMIN and Round Robin.
The five workflows used in this work were Cybershake,
Epigenomics, Inspiral, Montage and SIPHT. This work
used small to medium to large sized workflows containing
24/25/30, 46/50/60, 100, and 997/1000 nodes. This investi-
gation revealed that no mechanism among those investigated
in this work was capable of providing optimal results against
all types and sizes of scientific workflows. MAXMIN had
a stable response but only against SIPHT. For the remain-
ing workflows, its response was similar to other algorithms.
These mixed results inspired us to develop a unified schedul-
ing mechanism, which uses an existing algorithm based on
its prior performance for solving a particular workload size
of a given workflow. The proposed unified mechanism uses
different algorithms for different sizes of the same scien-
tific workflow and does so by using their past history. This
is realized with the help of a component of the proposed
mechanism that determines the simulation timings of all
possible combinations of workflows and their sizes against
an algorithm. This makes the proposed mechanism flexible
and scalable. This work developed a prototype of the pro-
posed mechanism usingWorkFlowSim and evaluated it using
cumulative workloads of scientific workflows comprises of
their corresponding individual workloads of different sizes.
The suggested mechanism was compared with existing algo-
rithms, which showed that the proposed mechanism always
selects the best algorithm to run a given workload and, thus,
improves the overall simulation time as compared to the
results achieved by each algorithm in individual capacity.
Evaluation results revealed that the proposed mechanism
improved against the existing algorithms for all workflows
except SIPHT (4 out of 5). In case of SIPHT, it obtained the
same response as MAXMIN. It obtained up to a maximum of
71% improvement over the existing mechanisms.

This work after careful investigations of existing mecha-
nisms proposed a unifiedmechanism and it was evaluated and
compared with current techniques. The following are some of
the future insights about this work:

1. This work used a limited set of workflows and algo-
rithms, thus, it would be interesting to use it against
workflows of other domains and add more algorithms
into it. Similarly, it was evaluated four different sizes and
it could be interesting to extend it for using workloads
greater than 1000 nodes.

2. The majority of the algorithms investigated in this work
fall in the category of heuristic algorithms. In future,
the same platform can be used to investigate those algo-
rithms, which fall within the category of metaheuris-
tics such as particle swarm optimization and genetic
algorithms.

3. This work used a parameter called ‘simulation tim-
ings’ to compare the current and proposed techniques.
In future, it would be interesting to compare them based
on processing time. The impact of processing time on
total makespan, deadline and pricing would be an inter-
esting point to investigate.

4. The proposed mechanism was implemented using
WorkFlowSim toolkit. It would be interesting to extend
its implementation to CloudSim framework, so it can
accommodate simulating other domains than scientific
workflows.

REFERENCES
[1] S. Dhanasekaran and V. Vasudevan, ‘‘A dynamic multi-intelligent agent

system for enhancing the cloud service negotiation,’’ Int. J. Appl. Eng. Res.,
vol. 10, no. 43, pp. 30469–30473, 2015.

[2] N. Manikandan, S. Devayani, and M. Divya, ‘‘Domain-specific allocation
& load balancing in cloud computing using virtual machines,’’ in Proc. 4th
Int. Conf. Trends Electron. Informat. (ICOEI), Jun. 2020, pp. 467–472, doi:
10.1109/ICOEI48184.2020.9143006.

[3] M. S. Aksoy and D. Algawiaz, ‘‘Knowledge management in the cloud:
Benefits and risks,’’ Int. J. Comput. Appl. Technol. Res., vol. 3, no. 11,
pp. 718–720, Nov. 2014.

[4] S. Bhardwaj, L. Jain, and S. Jain, ‘‘Cloud computing: A study of infrastruc-
ture as a service (IAAS),’’ Int. J. Eng. Inf. Technol., vol. 2, no. 1, pp. 60–63,
2010.

[5] L. Wang, G. V. Laszewski, A. Younge, X. He, M. Kunze, J. Tao, and C. Fu,
‘‘Cloud computing: A perspective study,’’ New Generat. Comput., vol. 28,
no. 2, pp. 137–146, 2010.

[6] S. E. Shukri, R. Al-Sayyed, A. Hudaib, and S. Mirjalili, ‘‘Enhanced multi-
verse optimizer for task scheduling in cloud computing environments,’’
Expert Syst. Appl., vol. 168, Apr. 2021, Art. no. 114230.

[7] H. AlHakami, H. Aldabbas, and T. Alwada’n, ‘‘Comparison between
cloud and grid computing: Review paper,’’ Int. J. Cloud Comput., Services
Archit., vol. 2, no. 4, pp. 1–21, Aug. 2012.

[8] L. K. Arya and A. Verma, ‘‘Workflow scheduling algorithms in cloud
environment—A survey,’’ in Proc. Recent Adv. Eng. Comput. Sci.
(RAECS), Mar. 2014, pp. 1–4.

[9] M. Adebiyi, E. Adeka, F. Oladeji, R. O. Ogundokun, M. O. Arowolo, and
A. A. Adebiyi, ‘‘Evaluation of load balancing algorithms on overlappiing
wireless accesspoints,’’ Indonesian J. Electr. Eng. Comput. Sci., vol. 21,
no. 2, pp. 892–902, 2021.

[10] T. Kajiyama,M. Jennex, and T. Addo, ‘‘To cloud or not to cloud: How risks
and threats are affecting cloud adoption decisions,’’ Inf. Comput. Secur.,
vol. 25, no. 5, pp. 634–659, Nov. 2017.

[11] S. Krishnan, Programming Windows Azure: Programming the Microsoft
Cloud. Sebastopol, CA, USA: O’Reilly Media, 2010.

71244 VOLUME 10, 2022

http://dx.doi.org/10.1109/ICOEI48184.2020.9143006


A. Kamran et al.: Unified Mechanism for Cloud Scheduling of Scientific Workflows

[12] S. Abrahao and E. Insfran, ‘‘Models@runtime for monitoring cloud ser-
vices in Google app engine,’’ in Proc. IEEE World Congr. Services (SER-
VICES), Jun. 2017, pp. 30–35.

[13] R. Khan and A. Mehmood, ‘‘Realization of interoperability & portability
among open clouds by using agents mobility & intelligence,’’ Int. J.
Multidisciplinary Sci. Eng., vol. 3, no. 7, pp. 7–11, 2021.

[14] J. Deng, S. C.-H. Huang, Y. S. Han, and J. H. Deng, ‘‘Fault-tolerant
and reliable computation in cloud computing,’’ in Proc. IEEE Globecom
Workshops, Dec. 2010, pp. 1601–1605.

[15] M. Adhikari, T. Amgoth, and S. N. Srirama, ‘‘A survey on scheduling
strategies for workflows in cloud environment and emerging trends,’’ ACM
Comput. Surv., vol. 52, no. 4, pp. 1–36, Jul. 2020.

[16] R. F. D. Silva. (2022). Deprecated Workflow Generator. Accessed:
Feb. 2022. [Online]. Available: https://confluence.pegasus.isi.edu/display/
pegasus/Deprecated+Workflow+Generator

[17] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. F. da Silva, M. Livny, and K. Wenger,
‘‘Pegasus, a workflow management system for science automation,’’
Future Gener. Comput. Syst., vol. 46, pp. 17–35, May 2014, doi:
10.1016/j.future.2014.10.008.

[18] C. Chen, J. Liu, Y. Wen, and J. Chen, ‘‘Research on workflow scheduling
algorithms in the cloud,’’ in Proc. Int. Workshop Process-Aware Syst.
Berlin, Germany: Springer, 2014, pp. 35–48.

[19] W. Chen and E. Deelman, ‘‘WorkflowSim: A toolkit for simulating scien-
tific workflows in distributed environments,’’ in Proc. IEEE 8th Int. Conf.
E-Sci., Oct. 2012, pp. 1–8.

[20] R. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya,
‘‘CloudSim: A toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,’’ Softw.,
Pract. Exp., vol. 41, no. 1, pp. 23–50, Aug. 2011.

[21] A. V. Boukhanovsky and S. V. Ivanov, ‘‘Urgent computing for operational
storm surge forecasting in saint-petersburg,’’ Proc. Comput. Sci., vol. 9,
pp. 1704–1712, Jan. 2012.

[22] T. Rogers. (2013). Should You Host on the Amazon Cloud? Accessed:
May 2022. [Online]. Available: http://www.hypergridbusiness.com/
2013/11/should-you-host-on-the-amazon-cloud/

[23] Z. Ahmad, A. I. Jehangiri, M. A. Alaanzy, M. Othman, R. Latip,
S. K. U. Zaman, and A. I. Umar, ‘‘Scientific workflows management and
scheduling in cloud computing: Taxonomy, prospects, and challenges,’’
IEEE Access, vol. 9, pp. 53491–53508, 2021.

[24] G. K. Toussi and M. Naghibzadeh, ‘‘A divide and conquer approach
to deadline constrained cost-optimization workflow scheduling for the
cloud,’’ Cluster Comput., vol. 24, no. 3, pp. 1711–1733, Sep. 2021.

[25] A. Ramathilagam and K. Vijayalakshmi, ‘‘Workflow scheduling in cloud
environment using a novel Metaheuristic optimization algorithm,’’ Int. J.
Commun. Syst., vol. 34, no. 5, Mar. 2021, Art. no. e4746.

[26] P. Rajasekar and Y. Palanichamy, ‘‘A flexible deadline-driven resource pro-
visioning and scheduling algorithm for multiple workflows with VM shar-
ing protocol on WaaS-cloud,’’ J. Supercomput., vol. 78, pp. 8025–8055,
Jan. 2022.

[27] H. Li, J. Huang, B. Wang, and Y. Fan, ‘‘Weighted double deep Q-network
based reinforcement learning for bi-objective multi-workflow scheduling
in the cloud,’’ Cluster Comput., vol. 25, no. 2, pp. 751–768, Apr. 2022.

[28] H. Li, G. Xu, D. Wang, M. Zhou, Y. Yuan, and A. Alabdulwahab,
‘‘Chaotic-nondominated-sorting owl search algorithm for energy-aware
multi-workflow scheduling in hybrid clouds,’’ IEEE Trans. Sustain. Com-
put., early access, Jan. 21, 2022, doi: 10.1109/TSUSC.2022.3144357.

[29] E. Ilavarasan and P. Thambidura, ‘‘Low complexity performance effective
task scheduling algorithm for heterogeneous computing environments,’’
J. Comput. Sci., vol. 3, no. 2, pp. 94–103, Feb. 2007.

[30] V. Vignesh, K. S. S. Kumar, and N. Jaisankar, ‘‘Resource management and
scheduling in cloud environment,’’ Int. J. Sci. Res. Publications, vol. 3,
no. 1, pp. 1–6, 2013.

[31] M. Lavanya, B. Shanthi, and S. Saravanan, ‘‘Multi objective task schedul-
ing algorithm based on SLA and processing time suitable for cloud envi-
ronment,’’ Comput. Commun., vol. 151, pp. 183–195, Feb. 2020.

[32] S. K. Panda and P. K. Jana, ‘‘Load balanced task scheduling for cloud
computing: A probabilistic approach,’’ Knowl. Inf. Syst., vol. 61, no. 3,
pp. 1607–1631, Dec. 2019.

[33] X. Li, Y. Mao, X. Xiao, and Y. Zhuang, ‘‘An improved max-min task-
scheduling algorithm for elastic cloud,’’ in Proc. Int. Symp. Comput.,
Consum. Control (IS3C), Jun. 2014, pp. 340–343.

[34] F. Mohammadi, S. Jamali, and M. Bekravi, ‘‘Survey on job scheduling
algorithms in cloud computing,’’ Int. J. Emerg. Trends Technol. Comput.
Sci., vol. 3, no. 2, pp. 151–154, 2014.

[35] S. S. Brar and S. Rao, ‘‘Optimizing workflow scheduling using max-min
algorithm in cloud environment,’’ Int. J. Comput. Appl., vol. 124, no. 4,
pp. 44–49, Aug. 2015.

[36] H. Topcuoglu, S. Hariri, and M.-Y. Wu, ‘‘Performance-effective and low-
complexity task scheduling for heterogeneous computing,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, Mar. 2002.

[37] H. Yazdanpanah, A. Shouraki, and N. Jamali, ‘‘Evaluation performance
of task scheduling algorithms in heterogeneous environments,’’ Int. J.
Comput. Appl., vol. 138, no. 8, pp. 1–9, Mar. 2016.

[38] H. Mahmoud, M. Thabet, M. H. Khafagy, and F. A. Omara, ‘‘An efficient
load balancing technique for task scheduling in heterogeneous cloud envi-
ronment,’’ Cluster Comput., vol. 24, no. 4, pp. 3405–3419, Dec. 2021.

[39] M. H. Shirvani and R. N. Talouki, ‘‘A novel hybrid heuristic-based
list scheduling algorithm in heterogeneous cloud computing environment
for makespan optimization,’’ Parallel Comput., vol. 108, Dec. 2021,
Art. no. 102828.

[40] P. Singh, M. Dutta, and N. Aggarwal, ‘‘A review of task scheduling
based on meta-heuristics approach in cloud computing,’’ Knowl. Inf. Syst.,
vol. 52, no. 1, pp. 1–51, Apr. 2017.

ALI KAMRAN received the M.S. degree
in computer science from the Qurtuba Uni-
versity of Science and Information Technol-
ogy, Dera Ismail Khan, Khyber Pakhtunkhwa,
Pakistan. He is currently working as a Lecturer at
the Government Associate College of Commerce,
Bhakkar Higher Education Department, Govern-
ment of the Punjab Pakistan. His research interest
includes cloud computing with an emphasis on
scheduling.

UMAR FAROOQ received the Ph.D. degree
in computer science from the University of
East Anglia, Norwich, U.K., in 2012. He is
currently working as an Assistant Professor of
computer science at the University of Science and
Technology Bannu, Pakistan. His research inter-
ests include parallel and distributed simulations,
virtual worlds, wireless and mobile computing,
and grid, cloud, and ubiquitous computing with an
emphasis on scalable infrastructures.

IHSAN RABBI received the master’s degree in
computer science from theUniversity of Peshawar,
Pakistan, in 2008, and the Ph.D. degree in com-
puter science from the University of Malakand,
Chakdara, Pakistan. He is currently working as
an Associate Professor with the Department of
Computer Science, University of Science and
Technology Bannu, Pakistan. His research inter-
ests include augmented reality and virtual reality.

KASHIF ZIA received the master’s degree in com-
puter science and the Ph.D. degree in informatics
from the University of Linz, Austria, in 2013. He is
currently working at Sohar University, Oman,
as an Associate Professor. He has active collabo-
ration with the Institute of Pervasive Computing,
University of Linz. He is an Engineering Graduate
of the University of Engineering and Technol-
ogy, Lahore, Pakistan, followed by the Master of
Computer Science. His research interests include

complex adaptive systems, socio-technical systems, agent-based modeling,
and complexity science.

VOLUME 10, 2022 71245

http://dx.doi.org/10.1016/j.future.2014.10.008
http://dx.doi.org/10.1109/TSUSC.2022.3144357


A. Kamran et al.: Unified Mechanism for Cloud Scheduling of Scientific Workflows

MUHAMMAD ASSAM received the B.Sc. degree
in software engineering from the University of
Engineering and Technology Peshawar, in 2011,
and theM.Sc. degree in software engineering from
the University of Engineering and Technology
Taxila, Pakistan, in 2018. He is currently pursuing
the Ph.D. degree in computer science and technol-
ogy with Zhejiang University, China. He is work-
ing as a Lecturer at the Department of Software
Engineering, University of Science and Technol-

ogy Bannu, Pakistan. His research interests include brain–machine interface,
medical image processing, machine/deep learning, the Internet of Things
(IoT), and computer vision.

HADEEL ALSOLAI is currently an Academic Teacher at the College of
Computer and Information Sciences, Princess Nourah Bint Abdulrahman
University. She has expertise in conducting empirical studies of software
engineering techniques (particularly software maintainability, software qual-
ity, and open-source systems), along with machine learning techniques
(particularly ensemble techniques, data pre-processing, and parameter tun-
ing). Her research and teaching interests include the general area of artificial
intelligence and software engineering.

FAHD N. AL-WESABI received the Ph.D. degree
in computer science from SRTMUniversity, India,
in 2015. He was an Assistant Professor with the
Faculty of Computer and Information Technology,
Sana’a University, Yemen. Since October 2018,
he has been an Assistant Professor with the Com-
puter Science Department, King Khalid Univer-
sity, Saudi Arabia. He is the author of ten books,
more than 80 articles, and many funded research
projects. His research interests include AI, the IoT,

smart cities, machine learning, biomedical, software engineering, applied
soft computing, information security, and enterprise systems.

71246 VOLUME 10, 2022


