
Received 9 May 2022, accepted 21 June 2022, date of publication 1 July 2022, date of current version 18 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3187731

Fine-Grained I/O Traffic Control Middleware
for I/O Fairness in Virtualized System
JAEHAK LEE 1, (Member, IEEE), HWAMIN LEE 2, AND HEONCHANG YU 1, (Member, IEEE)
1Department of Computer Science and Engineering, Korea University, Seoul 02841, South Korea
2Department of Medical Informatics, College of Medicine, Korea University, Seoul 02841, South Korea

Corresponding author: Heonchang Yu (yuhc@korea.ac.kr)

This work was supported in part by the Research and Development Program for Forest Science Technology provided by Korea Forest
Service (Korea Forestry Promotion Institute) under Project 2022427C10-2224-0801, in part by the National Research Foundation of
Korea (NRF) Grant funded by the Korea Government [Ministry of Science and ICT (MSIT)] under Grant 2021R1A2C1009290, and in part
by the Institute of Information & Communications Technology Planning & Evaluation (IITP) Grant funded by the Korea Government
(MSIT) (Development of an Edge Cloud-Based Vehicle Sharing Platform That Supports User-Specific Automotive Healthcare Services)
under Grant 2022-0-00983.

ABSTRACT The development of IT technology in the 21st century has created a new paradigm for real-time,
data-intensive user services, such as connected cars, smart factories, and remote health care services. The
considerable computational resources required by these services are rendering the cloud increasingly more
important. In the cloud server, user services are forced to share physical resources because of the emerging
resource competition, thus introducing various types of unpredictable workloads. The core technology of
the cloud is a virtualized system, which isolates and shares the powerful physical resources of the server
in the form of a virtual machine (VM) to increase resource efficiency. However, the scheduling policy
of a virtual CPU (vCPU), which is a logical CPU of a VM, generally schedules the vCPU based on the
degree of occupation of the physical CPU (pCPU) without regarding I/O strength; so it brings the unfair
I/O performance among VMs in the virtualized systems. The user services performing on the VM are
not aware of the user-contention architectures, which sharing of I/O devices, in the virtualized systems;
Furthermore, the current virtualized system simply adopts the Linux-based I/O processing process which
optimized for user-contention-free architectures. Therefore, the architecture that brings the unfair usage of
I/O devices among user services is hardly regarded and has low awareness in current virtualized systems.
To overcome this problem, in this study, I-Balancer is presented to provide fair I/O performance among
I/O-intensive user services by applying an asynchronous inter-communication control technique for the
virtualized system with a high VM density. The main design goal of I-Balancer is to increase the awareness
of user-contention architectures in the hypervisor. I-Balancer derives the fine-grained workload and I/O
strength for each vCPU during the scheduler and event channel areas. Subsequently, to strengthen fair I/O
performance, an I/O traffic control mechanism is implemented to control the inter-domain communication
traffic according to the I/O strength of the VMs. Experiments were performed on the fairness of I/O(disk
and network) performance on virtualized systems with Xen 4.12 hypervisor adopted based on various
performance metrics. The experimental results showed that the virtualization system to which I-Balancer
is applied reduces the network and disk I/O performance standard deviation among VMs by up to 71% and
61% respectively compared to the existing virtualization system; and, performance interference and overhead
are also confirmed to be negligible.

INDEX TERMS Cloud computing, virtualization, system communication, hypervisor, fairness, middleware,
network I/O, disk I/O, traffic control, resource management, Xen.

The associate editor coordinating the review of this manuscript and

approving it for publication was Hang Shen .

I. INTRODUCTION
With advances in virtualization technology, many organi-
zations and businesses are driving digital transformation

73122 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-5206-0257
https://orcid.org/0000-0002-6482-3511
https://orcid.org/0000-0003-2216-595X
https://orcid.org/0000-0002-8804-2787

J. Lee et al.: Fine-Grained I/O Traffic Control Middleware for I/O Fairness in Virtualized System

to the cloud [1]. In addition, the network latency between
users and servers is decreasing as a result of technological
developments in 5G-based network communication, hard-
ware supporting system virtualization, and core cloud server
configurations. With the development of IT technology, new
paradigms of user service types, such as connected cars,
smart factories, and remote healthcare, are generating large
amounts of data requiring real-time processing. Research
combining these technologies with cloud technology is also
being actively performed.

Edge clouds (also known as fog cloud) are emerging
rapidly to alleviate problems with existing central clouds
[2]–[4]. The central cloud, which processes the user workload
by centralizing virtualized servers using powerful resources
has limitations, such as network bottlenecks created by
increased user services and network latency due to geo-
graphic locations. Figure 1 shows the edge cloud architec-
ture. Edge clouds reduce network latency due to geographic
location by placing virtualized servers close to users thereby
avoiding network bottlenecks and by distributing the user
workload to virtualized servers.

In the central cloud area, as shown in Figure 1, user ser-
vices that require relatively high resources are performed,
and in the edge cloud, real-time processing or user services
that require relatively fewer resources are performed [5]–[7].
User service types that can maximize the advantages of the
edge cloud include connected car platforms, smart facto-
ries, and remote healthcare, which need to process massive
real-time data. However, the edge cloud has to process a
large amount of data generated from users through lim-
ited resources compared to that available with the central
cloud, and the resulting latency for user services that require
real-time processing is fatal. In addition, as the number of
user services increases, various types of workloads appear in
cloud servers [6]–[8]. Therefore, the complexity of resource
management for cloud servers increases and the range of
Quality of Service (QoS) satisfaction for user services is also
broadened [1], [3]–[5].

The hypervisor (also known as Virtual Machine Monitor,
VMM), is a software stack that enables the system virtualiza-
tion of the servers that make up the cloud infrastructure and is
closely related to the QoS guarantee of diverse user services.
The vCPU scheduler, which consists of a hypervisor, plays
a key role in system resource management. It schedules the
virtual CPU (vCPU), which is a logical CPU that consists of
a set of contexts generated by the virtual machine (VM) to
provide fair physical CPU (pCPU) occupancy between VMs.
This means that the performance of the VM is determined by
the extent of VM vCPU takeover of the pCPU. The hypervi-
sor’s vCPU scheduling policy, which schedules each vCPU
based on the degree of pCPU occupancy, provides highly fair
CPU performance to CPU-intensive VMs [9]–[11]. However,
a vCPU scheduler that does not consider the I/O strength of
data-intensive VMs results in the unfair I/O performance of
the virtualized system [9]–[13]. In addition, the current vir-
tualized system simply adopts Linux-based I/O procedures,

FIGURE 1. Edge cloud architecture.

FIGURE 2. The overall structure of I-Balancer.

which leads to a lack of awareness of user-contention archi-
tectures, resulting in internal unfair I/O resource usage in
virtualized systems [14], [15]. Unfair I/O performance among
I/O-intensive VMs can lead to QoS degradation for various
user services and result in unexpected SLAviolations because
the network or disk performance cannot be guaranteed
fairly.

In this study, I-Balancer is introduced to mitigate the
unfair I/O performance caused by scheduling dependency
problems and low awareness of the intensity of the I/O
degree among vCPUs of VMs for the same resource con-
figuration in a virtualized system with high VM density.
I-Balancer makes the hypervisor aware of the fine-grained
I/O strength of VMs and allows the fair sharing of I/O devices
among VMs based on the derived I/O strength through an I/O
traffic control mechanism on inter-domain communication in
the virtualized system.

Figure 2 shows the overall structure of the I-Balancer.
I-Balancer places an I/O tracking module (ITM) and a run-
time tracking module (RTM) on the hypervisor to derive
a fine-grained disk and network I/O strength for vCPUs.
And then, if the I-Balancer determines that the degree of
I/O between vCPUs is unfairly occurring, it takes the I/O

VOLUME 10, 2022 73123

J. Lee et al.: Fine-Grained I/O Traffic Control Middleware for I/O Fairness in Virtualized System

traffic control mechanism in the event channel based on the
derived I/O strength of vCPUs. By doing so, it provides a
high chance of I/O device access to VM with a low I/O
strength by restricting I/O device access to VM with high I/O
strength. This provides an opportunity for vCPUs with lower
I/O intensity to occupy more I/O devices and can alleviate
unbalanced network and disk I/O performance in virtualized
systems.

Through the development of I-Balancer, the contributions
of this study to solving the I/O performance unfairness prob-
lem in virtualized systems are as follows:

1) Unfair I/O performance between VMs was confirmed
through an experiment, and the causes were analyzed

2) I-Balancer can derive fine-grained I/O strength of VMs
without relying on external or in-VM performance metric
monitoring programs

3) I-Balancer does not need to modify the OS kernel of
the VM, does not require in-VM component, and is designed
to accommodate various vCPU schedulers, so it has a high
portability

4) I-Balancer provides fair I/O device access among
I/O-intensive VMs with dynamic I/O traffic controlling and
does not affect the performance of neighbor-VMs and incurs
negligible overhead to the virtualized system

5) Through various I/O performance-related experiments,
I-Blanacer showed that the degree of I/O fairness amongVMs
for network and disk performance was superior to that of the
existing virtualized system, and proved that the performance
interference to neighbor-VMs and the system overhead were
negligible.

The remainder of this paper is organized as follows: In
Section II, the concept of a virtualized system is explained
to provide the background for the I-Balancer. In Section III,
the causes of unfair I/O performance in the virtualized sys-
tem are analyzed with simple experiments. In Section IV,
the overall design and implementation of the I-Balancer are
described. In Section V, the I-Balancer’s performance is con-
firmed by performing a comparison experiment between the
I-Balancer and the existing virtualized system. In Section VI,
related work is discussed, and Section VII discourses the
I-Balancer’s limitation and future work. And last, VII con-
cludes the paper.

II. BACKGROUND
Xen [16] is a para-virtualization hypervisor based on the
split-driver model consisting of a DOM0 (also known as
a driver domain) with physical drivers to handle the I/O
requests of all guest VMs. DOM0’s involvement in the
guest VM’s I/O procedure simplifies the guest VM kernel
code and further enhances the data safety of the virtualized
systems. Currently, Xen occupies a high proportion of the
data center market along with other hypervisors such as
KVM [17], VM-ware [18], and Hyper-V [19]. In this section,
the I/O procedure of the virtualized system is briefly dis-
cussed with respect to I/O unfairness along with the proposed
method.

FIGURE 3. Xen architecture.

A. I/O PROCESSING PROCEDURE OF XEN
Virtualized systems based on Xen or kernel-based virtual
machines (KVM) handle asynchronous networks and disk
I/O of VMs that run user services by adopting the split-
driver architecture. Figure 3 represents the virtualized sys-
tem architecture of Xen. DOM0 has a physical network/disk
driver that handles all I/O requests from guest VMs that have
front-end drivers, which are logical networks and disk drivers.
Therefore, practically all I/O of guest VMs is performed
through DOM0, and the guest VM simply performs logical
I/O.

Xen with a split-driver architecture applies a shared ring
buffer and event channel to handle asynchronous I/O requests
from guest VMs [16]. The shared I/O ring buffer uses the
zero-copy mechanism [23], [24] to transfer I/O data through
sharedmemory communication based on the physical address
page frame mapping between DOM0 and the guest VM. The
transfer is managed by a grant table such that the VM can
only access the shared ring buffer memory space allocated
to it. The event channel implements a notification mecha-
nism for asynchronous I/O requests and VM responses in
Xen.

The overall I/O handling process [10], [11], [20]–[22] in
Xen is as follows: When an I/O request is raised on the guest
VM, the I/O request event is sent to the back-end driver
of DOM0 by the front-end driver of the guest VM. Then,
when the vCPU of DOM0 is occupying on the pCPU, DOM0
checks the event channel bound to the guest VM to see if there
is a pending I/O request event from the guest VM. If a pend-
ing event exists, DOM0 processes the corresponding data
of the I/O request using an interrupt handler. The physical
I/O device (e.g., NIC, SDD, or HDD) processes the routed
I/O request of the guest VM by DOM0 and returns the I/O
response for that I/O request to the physical I/O driver of
DOM0.

The back-end driver of DOM0 then sends the data of
the I/O response event to the front-end driver of the guest
VM, which raises the I/O response event through the event
channel. Subsequently, when the vCPU of the guest VM
occupies the pCPU, the front-end driver checks whether a
pending I/O response event exists in the event channel bound
to DOM0. If it exists, the guest VM performs an interrupt

73124 VOLUME 10, 2022

J. Lee et al.: Fine-Grained I/O Traffic Control Middleware for I/O Fairness in Virtualized System

service routine (ISR) based on the corresponding data of I/O
response.

B. ASYNCHRONOUS I/O NOTIFICATION EVENTS
In the virtualized systemwith the para-virtualization hypervi-
sor, the event channel, which is an asynchronous notification
mechanism for the I/O of VM, plays the role of an interrupt
in the native system [25], [26]. The main types of events in
the event channel inXen consist of the inter-domain and Inter-
Processor Interrupt(IPI) events. Inter-domain event is used for
asynchronous bidirectional I/O data exchange on shared ring
buffers between VMs and is generated by virtualized devices.
The IPI event is used for communication among the vCPUs of
the VM. In addition, there are interrupt request (IRQ) events
that DOM0 uses to communicate with hardware devices by
mapping real IRQs to event channels; VIRQ events are used
to communicate with virtual devices.

C. XEN’s SCHEDULING INTERFACE
Xen provides an abstract scheduling interface (where in
xen/common/schedule.c) can accommodate multiple vCPU
schedulers [16], [27]–[29]. This abstract scheduling inter-
face can adopt all vCPU schedulers (Credit1, Credit2,
RTDS in Xen 4.12), and each vCPU scheduler must
include a pre-common pointer-based scheduling function
(e.g., do_schedule(), sleep(), wake(), yield(), etc.). If a new
vCPU scheduler is designed, information related to the sched-
uler must be added to the schedule.c file so that Xen can
recognize the vCPU scheduler. This abstract scheduling inter-
face of Xen provides scalability and flexibility for vCPU
scheduling policy selection of the virtualized system.

The Credit1 scheduler [30] adopts a priority-based round-
robin scheduling policy to schedule vCPUs according to
BOOST, UNDER, and OVER priorities. Credit, which refers
to the pCPU occupancy time of vCPU, is consumed every
10 ms. If the credit is less than or equal to 0, vCPU has
OVER priority, and if it is greater than 0, it has UNDER
priority. The BOOST priority is the highest priority for the
VM performing a fast I/O response. When the VM receives
an I/O event from the event channel, the vCPU in an idle
state of VM acquires BOOST priority. If the vCPU occupy-
ing the pCPU has OVER or UNDER priority, it preempts
the pCPU for 10 ms. The BOOST mechanism improves
I/O responsiveness to enhance the I/O performance of data-
intensive VMs; however, the same BOOST priority between
vCPUs causes an I/O performance imbalance [10], [31].
In addition, the round-robin scheduling policy defines the
limits on the I/O performance improvement of the Credit1
scheduler [13], [32].

After extensive study, the Credit2 scheduler [33] was
adopted as the default scheduler for Xen in 2019 to avoid
the problems of the Credit1 scheduler and improve the I/O
performance of the VM. The Credit2 scheduler was designed
with the goal of improving the performance of VMs with
mixed workloads in terms of lowering I/O latency. The
Credit2 scheduler removes the three priorities of the Credit1

scheduler and schedules first the vCPUwith the most remain-
ing credit. If the credit amount of the next vCPU to be
scheduled is less than or equal to 0, the Credit2 scheduler
invokes reset_credit() to reallocate the same amount of credit
to all vCPUs in the run-queue.With the Credit2 scheduler, the
I/O-intensive vCPUhas frequent idle states and consumes rel-
atively fewer credits than the CPU-intensive vCPU; therefore,
pCPU occupancy is guaranteed over CPU-intensive vCPU
because of the high scheduling priority, thereby reducing the
I/O latency in the scheduling delay of the run-queue.

III. MOTIVATION
As the need for cloud servers increases, the complexity of
system resource management also increases because of the
increased number of user services that generate data-intensive
workloads, such as video streaming, connected cars, IoT, and
healthcare. However, if fair I/O performance between VMs
is not guaranteed because of competition for I/O resources in
the central or edge cloud, which consists of a set of servers
virtualized system adopted, or dependency on the hypervi-
sor’s resource management policy, then user services not
only cannot guarantee Quality of Service (QoS), but can also
fail, which would be a very critical problem. In this section,
the unfair I/O performance between VMs is confirmed in
a virtualized system through a simple experiment, and the
causes are then analyzed.

A. SIMPLE EXPERIMENT FOR I/O PERFORMANCE
UNFAIRNESS IN INTER-COMMUNICATION
The unfairness of the I/O performance in the virtualized
system, was confirmed in an experimental environment
(see Table 3 of section V) with one target-system (acting
as a server) and host-system (six Client-VMs are running
and acting as a client). For the resource configuration of
VMs, six vCPUs and 8 GB of memory were allocated for
DOM0. For Client-VM, four vCPUs and 2 GB of mem-
ory were allocated. To avoid performance interference from
the sharing of pCPUs, all vCPUs of DOM0 were pinned
to pCPU0-1, Client-VMs to pCPU2-7. Thus, a total of
24 vCPUs on Client-VMs shared six pCPUs. To generate
a network I/O-intensive workload, the iperf tool was used
(see Table 3 of Section V), and the Client-VM sent TCP/IP
streaming data of size 1024 KB to all target-system for 60 s.
At the same time, to configure a mixed workload, the stress
tool (see Table 3 of Section V) was used to generate a
CPU workload with four threads in all Client-VMs, thereby
causing performance interference between I/O-intensive and
CPU-intensive processes.

Figure 4(a) represents the virtualized system in which the
Credit1 scheduler is adopted and Figure 4(b) represents the
virtualized system in which the Credit2 scheduler is adopted.
The x-axis represents each round for a total of 15 experi-
ments, and the y-axis represents the network bandwidth of
the Client-VM. For Figure 4(a) and (b), it can be seen that
each Client-VM displays unfair network performance and
that Credit2 scheduler provides a relatively fairer network

VOLUME 10, 2022 73125

J. Lee et al.: Fine-Grained I/O Traffic Control Middleware for I/O Fairness in Virtualized System

FIGURE 4. Results of simple experiments on network I/O performance for among VMs.

TABLE 1. Average-based numerical analysis for a number of 15 rounds in Figure 4.

performance for Client-VM than Credit1 scheduler, but still
has an unfair performance.

The bandwidth in Table 1 refers to Figure 4 and is the
average of the bandwidths determined by each vCPU sched-
uler. Max-Avg is the highest average bandwidth among
Client-VMs for the 15 rounds, and Min-Avg is the lowest
average bandwidth amongClient-VMs for 15 rounds. Finally,
the min-max gap is the average difference between Max-Avg
and Min-Avg. From the experimental results, it can be seen
that Max-Avg and Min-Avg are significantly different for
the two schedulers. In particular, for Min-Max gap, the per-
formance of the Credit1 scheduler and the Credit2 sched-
uler were 94.77 MB/s and 91.81 MB/s, respectively, which
shows that the network performance is not fair among the
Client-VMs. The reasons for unfair I/O performance among
VMs in virtualized systems is explained in the following
sub-section.

B. SCHEDULING DEPENDENCY PROBLEM
In the virtualized system, vCPUs are scheduled based on
pCPU occupancy to provide fair runtime for VMs. The
vCPU schedulers directly track the accumulated runtime of
vCPUs to recognize and return overrunning vCPUs to sched-
ule the next vCPU, providing relatively fair CPU perfor-
mance among CPU-intensive VMs. However, because the
I/O-intensive vCPUs also need to occupy the pCPU to handle
I/O-intensive workloads and the number of pCPUs is limited,
there is a restriction to the ability to ensure fair I/O perfor-
mance among the I/O-intensive VMs. For example, if the
scheduling policy of the vCPU scheduler makes it more likely
that the vCPU of a particular VM will occupy the pCPU,

then the vCPU of another VM is less likely to occupy the
pCPU because pCPU is a limited resource. If this continues,
I/O performance becomes unfair in virtualized systems that
can handle I/O workloads, as there is less opportunity for I/O
intensive VMs to occupy the pCPU.

1) LACK OF I/O WORKLOAD INTENSITY AWARENESS
The Credit1 and Credit2 schedulers increase the I/O respon-
siveness of the VM by providing an opportunity to pre-
empt the pCPU when I/O occurs on the VM. The Credit1
scheduler increases the I/O performance of the VM by prior-
itizing I/O-intensive VMs to BOOST priority, thereby ensur-
ing pCPU preemption to handle immediate I/O workloads.
KVM’s completely Fair Scheduler (CFS) and Xen’s Credit2
scheduler first schedule vCPUs that consume less time slices
(more remained time slices in CFS, more remaining credits
in credit2 scheduler). At this time, the I/O-intensive vCPU
consumes relatively fewer time slices (credits) because it has
more frequent sleep states than the CPU-intensive vCPU,
such that the I/O performance of the VM can be increased
by guaranteeing the pCPU occupancy. The BOOST mecha-
nism improves the I/O performance of VMs on the Credit1
scheduler, but when I/O resource contention occurs between
VMs, multiple vCPUs in the run-queue may frequently have
BOOST priority. This situation raises the multi-boost prob-
lem for the virtualized system, resulting in unfair I/O perfor-
mance of VMs by causing competition for pCPU preemption
as the role of the BOOST priority is lost [9]–[11], [35].

In addition, in the case of the aforementioned vCPU sched-
ulers, a vCPU with a mixed workload, which simultaneously
processes CPU- and I/O-intensive workload, consumes a
relatively large number of time slices because of handling

73126 VOLUME 10, 2022

J. Lee et al.: Fine-Grained I/O Traffic Control Middleware for I/O Fairness in Virtualized System

CPU-intensive workload needs the more time slice (credit)
consuming. In this case, I/O-intensive workloads of vCPUs
with mixed workloads will not guarantee pCPU occupation
because of the increasingly smaller difference in the remain-
ing time slice from neighboring vCPUs of the run-queue,
resulting in scheduling latency that causes I/O delays [9],
[11], [13], [14].

Furthermore, as vCPUs of VMs with various workloads
are deployed in the run-queue, vCPUs with I/O-intensive
workloads have inconsistent scheduling latencies and degrees
of pCPU occupancy.When I/O-intensive vCPUs are placed in
the run-queue, the I/O performance is inconsistent because
the degree of pCPU occupancy varies with the workload
trends of the neighboring vCPUs. The placement state of
vCPUs with different workloads affects the workload tenden-
cies of the run-queue itself; hence, the I/O guarantee degree
varies depending on which run-queue the I/O-intensive
vCPUs are placed. This leads to unfair I/O performance
between VMs when there is I/O resource contention [12],
[14], [20], [26]. Such situations cause a scheduling depen-
dency problem leading to unpredictable and inconsistent I/O
performance of VMs depending on the workload tendency of
neighboring vCPUs in the virtualized system with a high VM
density.

As a result, the aforementioned vCPU schedulers focus
only on increasing the I/O performance of the VM by increas-
ing I/O responsiveness, and do not consider the fair uti-
lization of I/O devices among I/O-intensive vCPUs. More
specifically, the current hypervisor does not consider the
I/O intensity for I/O-intensive vCPUs and does not perform
corresponding I/O controls; therefore, I/O devices are allo-
cated unevenly between I/O-intensive VMs in virtualized
systems. In the 21st century IT infrastructure, cloud users are
increasing as user services with various workloads are per-
formed on cloud servers, and virtualized systems encounter
unpredictable workload types and intensities. This implies
the need to perform fine-grained resource management by
strictly tracking the types of user services running on the VM.

2) LACK OF AWARENESS OF THE I/O PROCEDURE OF THE
VIRTUALIZED SYSTEM
Tasks generated by the user service are perceived by the
guest VM as being processed by their OS scheduler; however,
in reality, they are abstracted into the vCPU logical unit
of tasks and processed through the vCPU scheduler of the
hypervisor. In a native system, a specific user program has
a system environment that can be prioritized based on user
preferences. However, in virtualized systems where multi-
ple users’ programs with no clear priorities share physical
resources, total network and disk I/O bandwidth are limited;
Furthermore, DOM0, which performs the actual I/O of guest
VMs through a split-driver architecture, is simply applied
with the I/O procedure of the existing Linux kernel-based
optimized for the native system.

As a result, all I/O requests from guest VMs are handled
on a first-in-first-out (FIFO) basis, similar to existing native

systems [15], [34]–[39]. In a virtualized system, I/O-intensive
workloads of the VM can be processed only when the vCPU
occupies the pCPU, similar to CPU-intensive workloads.
Therefore, a vCPU with a high degree of pCPU occupancy
has a higher probability of handling I/O-intensive workloads.
Naturally, vCPUs with a high degree of pCPU occupancy
raise more I/O request events to the backend driver of DOM0.
Subsequently, all I/O requests are processed based on FIFO
in DOM0, thereby occupying I/O devices more frequently
than VMs with less pCPU occupancy. If this situation per-
sists, guest VMs accounting for a relatively large portion of
the total I/O bandwidth of a virtualized system with limited
resources will appear, resulting in unfair disk or network I/O
performance.

In the native system, the OS scheduler first schedules the
I/O intensive process of a program that the user wants to
handle and then simply returns the I/O result to that program.
However, in virtualized systems, the I/O-intensive workloads
of guest VMs are not handled based on user priorities as
in native systems, but are treated as dependent on vCPU
scheduling policies based on the degree of pCPU occupancy.
If I/O resource contention in the virtualized system intensi-
fies, more I/O requests from vCPUs with high pCPU occu-
pancy guarantees to the DOM0 will emerge. If this situation
persists, FIFO-based I/O request processing in DOM0 will
make it difficult to ensure fair occupation of network and disk
devices among VMs.

IV. DESIGN AND IMPLEMENTATION
A. I-BALANCER: CHALLENGES AND GOALS
The native system has a user-contention-free architecture
that can immediately process I/O requests from users’ pre-
ferred programs without contention for I/O resources. The
threads that make up the user process have a relatively high
scheduling priority because of real-time interaction with the
user and can handle I/O-intensive workloads immediately.
This user-contention-free architecture only needs to process
I/O-intensive workloads from a single user, and the I/O work-
load generated by a program is the workload that the user
wants to process first. When I/O requests generated from user
programs are handled in the kernel thread through interrupts,
the set of I/O requests is loaded into the queue of I/O devices
based on FIFO. Therefore, in the native system, the user can
handle a set of I/O requests that reflect the user’s I/O priorities
among programs.

However, a virtualized system has a user-contention archi-
tecture in which multiple VMs compete to obtain I/O
devices by handling I/O-intensive workloads. As explained
in Section III, in a virtualized system, unfair I/O performance
between VMs is caused by the scheduling dependency prob-
lem and lack of awareness of I/O strength. As the OS of the
guest VM applies the I/O philosophy of the existing Linux
kernel, it is assumed that the pCPU will be preempted within
a short scheduling latency to handle the I/O-related interrupt
execution procedure. This is because the VM’s OS perceives
the vCPUs, which are logical cores consisting of the VM’s

VOLUME 10, 2022 73127

J. Lee et al.: Fine-Grained I/O Traffic Control Middleware for I/O Fairness in Virtualized System

task set, as physical CPUs, so it has strong confidence that
the vCPUs will always remain in an active state. However,
all I/O-related workload generated by the VM is also mapped
to the vCPU, which is the logical core, and scheduled by the
vCPU scheduler, thus competing for pCPU alongwith vCPUs
of other VMs handling different workloads.

As a result, I/O-intensive vCPUs face scheduling depen-
dency problems caused by the inconsistent scheduling latency
of neighboring vCPUs handling various workloads. Thus,
the asynchronous I/O requests generated by guest VMs are
loaded unfairly into the event channel mechanism. The I/O
request event from the guest VM, which is the signal to call
the ISR to DOM0, is loaded into the event queue of the back-
end driver (network or disk) on DOM0, based on FIFO. Thus,
the actual ISR is executed when the vCPU of DOM0 occupies
the pCPU, according to the order of the I/O request events
loaded into the event queue of the backend driver in DOM0.
Due to the scheduling dependency problem, if the vCPU of
a particular guest VM that generates I/O requests has higher
pCPU usage than other guest VMs, the rate of I/O request
events to DOM0 increases because it has a relatively high
probability of processing the I/O workload. As a result, the
I/O request event of a specific VM is loaded into the backend
driver at a relatively high rate; therefore, DOM0 performs an
ISR for a relatively large number of that VM’s I/O requests.
As a result, the probability of occupying physical I/O devices
(SSD, HDD, or NIC) increases, and guest VMs with low
pCPU occupation have a lower chance of occupying the I/O
device because fewer I/O request events are loaded, resulting
in low I/O performance.

The I/O procedure of the existing virtualized system,
in which the hypervisor does not recognize the I/O degree
of each guest VM, causes unfair I/O performance in the vir-
tualized system with split-driver architecture design. To mit-
igate unfair I/O performance in the virtualized system, the
hypervisor must raise awareness of user-contention archi-
tectures by controlling the I/O degree between VMs. Thus,
I-Balancer was designed to mask the scheduler depen-
dency problem and provide the hypervisor with a strong
awareness of the user-contention architecture for I/O pro-
cedure. The I-Balancer adopts a fine-grained I/O strength-
tracking technique and I/O traffic control mechanism based
on inter-domain communication for fair I/O resource shar-
ing among guest VMs with different types of work and
intensity.

B. I-BALANCER: OVERVIEW
Credit1 and Credit2 schedulers, which are general-purpose
schedulers applied to Xen-based virtualized systems, each
have different vCPU scheduling policies; hence, the I/O per-
formance guarantee mechanism is also different. The Credit1
scheduler guarantees pCPU preemption by giving BOOST
priority to the network I/O-intensive vCPUs to ensure I/O
performance [9], [10], [26], [30]. By contrast, the Credit2
scheduler ensures I/O performance by enabling pCPU pre-
emption by leveraging the fact that I/O-intensive vCPUs have

FIGURE 5. The overall procedure of I-Balancer.

less credit consumption because of frequent sleep states, and
the amount of remaining credit is normally more than that of
CPU-intensive vCPUs [33], [40], [41]. Each of these vCPU
schedulers manages the I/O performance of the VMs by rec-
ognizing the coarse-grained degree of I/O for vCPUs through
the I/O guarantee policy. However, these I/O management
mechanisms based on the vCPU scheduling policy focus only
on improving inbound-based I/O performance and do not
ensure fair I/O device usage in virtualized systems.

I-Balancer was introduced to mitigate the unfair I/O per-
formance of virtualized systems caused by scheduling depen-
dency problems and low awareness of the intensity of the
I/O degree among vCPUs. In Figure 5, which represents the
overall procedure of I-Balancer based on Figure 2, the ITM
tracks the inter-domain communication flow between vCPUs
in the event channel area (a), and RTM tracks the pCPU
occupancy time of each vCPU in the scheduling area (b).
They transmit the tracked vCPU metric information based
on I-Balancer’s specific structure which is to take the I/O
metric through shared memory communication (c), allowing
I-Balancer to build its own traffic control table to derive the
relative I/O intensity for the vCPU. And I-Balancer derives
control parameters from the traffic control table where the
received vCPU metric information is stored and managed by
itself and derives the relative I/O strength between vCPUs (d).
Finally, when the I/O strength gap between the I/O-intensive
vCPUs exceeds the specific threshold related to I/O unfair-
ness, I-Balancer enforces an I/O traffic control mechanism on
the event channel to control the I/O device usage of vCPUs
with high I/O strength (e). This provides an opportunity for
vCPUs with lower I/O intensity to occupy more I/O devices
and can alleviate unbalanced network and disk I/O perfor-
mance in virtualized systems.

73128 VOLUME 10, 2022

J. Lee et al.: Fine-Grained I/O Traffic Control Middleware for I/O Fairness in Virtualized System

Algorithm 1 I-Balancer: ITM Procedure
tCPU : Represents a structure that contains I/O metric information on the
vCPU that generated I/O events and it is managed by ITM and RTM of the
I-Balancer
NOW : Current system time based on nanoseconds returned from function
NOW ()

1: Some I/O event is exposed on Event Channel
2: if the type of I/O event is inter-domain communication then
3: j← lchn->notify_vcpu_id
4: k← ld->domain_id
5: if rd->domain_id == 0 and tCPUk

j .state == NON-MASKING then

6: if tCPUk
j /∈ TRACK-POOL then

7: Insert tCPUk
j in TRACK-POOL

8: end if
9: tCPUk

j .eventCount++

10: tCPUk
j .eventInterval← NOW - tCPUk

j .lastSendTime

11: tCPUk
j .lastSendTime← NOW

12: tCPUk
j .eventFrequency←WEMA(tCPUk

j)
13: end if
14: end if

C. I-BALANCER: vCPU I/O TRACKING module(ITM)
I-Balancer tracks inter-domain communication information
generated by guest VMs by placing the ITM in the event chan-
nel area to monitor the asynchronous notification mechanism
in para-virtualization hypervisors such as Xen or KVM based
on a split-driver architecture. To provide the hypervisor with
fine-grained awareness of the I/O degree for guest VM, it is
important that the ITM design allows the detailed derivation
of I/O metrics from the event channel status information
collected per I/O-intensive vCPU, not per VM. Here, the
I/O metrics tracked by the ITM include the channel port
number, VM ID, and vCPU ID for each sender and receiver
that performs inter-domain communication, I/O event time
generation, etc.

In Xen’s split-driver architecture, the guest VM sends I/O
data to DOM0, which handles the actual I/O requests of all
guest VMs.At this point, the guest VM takes an asynchronous
notificationmechanism toDOM0 by sending an inter-domain
event for handling its I/O, so, the destination VM for the
inter-domain event to requesting network or disk I/O is also
DOM0 (Hereafter, the inter-domain event sent to DOM0
is referred to as an I/O event). ITM uses this to form a
TRACK-POOL for vCPUs with DOM0 as the destination
VM of the I/O event (in Xen, the VM ID of DOM0 is
assigned as ‘0’), to extract the I/O metric information. The
key behavior of ITM is to derive the I/O event frequency
metric of vCPUs included in TRACK-POOL and deliver it
to the I-Balancer through shared memory communication.
The I/O event frequency, determined by leveraging a simple
weighted exponential moving average (WEMA) formula per
vCPU, reflects recent variability in I/O strength.

Algorithm 1 shows the ITM process in the event-channel
area. The ‘ld’ and ‘rd’ are structures of the domain that
contain information on VM and are managed by Xen. For
‘ld’, it represents the VM to generate the I/O event to handle
the I/O request. The ‘rd’ represents the VM that forms an

event channel with ‘ld’ to receive the I/O event. The ‘lchn’
represents the structure to take the event channel mechanism
and is also managed by Xen. The ITM tracks the event
channel status of vCPUs with a destination VM ID of ‘0’
for vCPUs performing inter-domain communication. If the
vCPU does not belong to the TRACK-POOL, I-Balancer
simply adds that vCPU to the TRACK-POOL. In this case,
the ITM tracks only the vCPU with a nonmasking state and
does not track the vCPU with a masking state. The reason for
this is explained in next Section D of IV, where the operation
of RTM is described. The ITM then applies a WEMA equa-
tion to the frequency of an I/O event for the corresponding
vCPU, thereby reflecting the recent trend in the degree of I/O
generation in each vCPU of the TRACK-POOL.

D. I-BALANCER: vCPU I/O RUNTIME TRACKING MODULE
(RTM)
As the I/O-intensive vCPU has a greater chance of taking
up more pCPU, the opportunity to perform I/O through
DOM0 increases, thereby increasing the opportunity for
I/O device occupancy. However, I/O-intensive vCPUs are
affected by the neighboring frequency of vCPUs and the time
of pCPU occupancy. Regarding the run-queue placement for
I/O-intensive vCPUs, the degree of pCPU contention for I/O
handling is relatively higher for run-queues with a higher
density of I/O-intensive vCPUs. In addition, vCPUswith both
I/O-intensive and CPU-intensive workloads have a higher
credit burnout rate than vCPUs with only I/O workloads,
which can lower I/O performance by reducing the chance of
pCPU preoccupation. The scheduling dependency problem
leads to unfair I/O performance between vCPUs with similar
I/O levels in virtualized systems.

I-Balancer adopts RTM to eliminate scheduling depen-
dency problems as much as possible and to follow the vCPU
I/O in more detail. RTM is performed in an abstract schedul-
ing interface area that can adopt multiple vCPU schedulers
provided by Xen to enable the tracking of the pure and
virtual runtime of each vCPU included in the TRACK-POOL
of ITM, independently. The reason for tracking the virtual
runtime of vCPUs is to determine the extent of the I/O activity
that occurs until the vCPU runs out of the default time slice
(30ms for Credit1 scheduler and 10ms for Credit2 sched-
uler). Thus, I-Balancer derives an approximate percentage
of I/O activity during the default time slice of the vCPU
scheduler. The reason I-Balancer updates the I/O information
for only vCPUs that occupied the pCPU as much as the
default time slice of vCPU scheduler is that each vCPU in
the TRACK-POOL has a various credit burnout rate. It is
difficult to determine the degree of I/O request occurrence of
vCPUs belonging to the TRACK-POOL because of changes
in workload and timing differences in time slice reallocation.

The recently reallocated vCPUs have a relatively high
amount of credit with respect to neighboring vCPUs, pCPU
preemption is guaranteed, which naturally leads to higher
levels of I/O requests in DOM0; vCPUs with mixed work-
loads burn their time slices faster and therefore have less

VOLUME 10, 2022 73129

J. Lee et al.: Fine-Grained I/O Traffic Control Middleware for I/O Fairness in Virtualized System

Algorithm 2 I-Balancer: RTM Procedure
prev: Represents vCPUs before context switch by doschedule(). it’s structure
is managed by Xen
tCPU :Same on Algorithm 1

1: j← prev->domain->domain_id
2: k← prev->vcpu_id
3: entryTime← prev->run_state_entry_time
4: if tCPUk

j .State == NON-MASKING and tCPU ∈ TRACK-POOL then

5: tCPUk
j .pure-runTime← tCPUk

j .pure-runTime+ (NOW - entryTime)

6: if tCPUk
j .lastEventCount ≤ tCPU

k
j .eventCount then

7: tCPUk
j .Virtual-RunTime← tCPUk

j .Virtual-RunTime + (NOW -
entryTime)

8: tCPUk
j .eventCount ← tCPUk

j .lastEventCount
9: end if
10: end if
11: if tCPUk

j .pure-runTime ≥ DEFAULT TIME SLICE then

12: tCPUk
j .state←MASKING

13: end if
14: Do do_schedule()
15: Do context_switch() or continue_running()

chance of occupying pCPUs than vCPUs that handle only
I/O workloads. With vCPUs guaranteed different levels of
pCPU occupancy as a result of the scheduling dependency
problem, it is not appropriate to update the traffic control
table based on the synchronization time of all vCPUs in the
TRACK-POOL. Therefore, considering the each vCPUs in
the TRACK-POOL, I-Balancer updates I/O information only
for vCPUs with ran as much as deault time slice through
ITM and RTM. The traffic control table is referred to by
the I-Balancer to derive the control parameters for I/O traffic
control mechanisms of I/O-intensive vCPUs.

Algorithm 2 shows the operation of RTM. The ‘prev’
is the vCPU structure of Xen’s abstract scheduling inter-
face and refers to the vCPU which is occupying the pCPU
before scheduling occurs. This vCPU structure map the
vCPU runtime information managed by the Credit1 sched-
uler or Credit2 scheduler. RTM derives the runtime of prev
based on the current system time (by leveraging a function
NOW() provided by Xen) by using the member(s_time_t
run_state_entry_time in xen/include/sched.h) of the ‘prev’
structure, which stores the time the vCPU enters the running
state. RTM tracks pure runtime and virtual runtime if that
vCPU belongs to TRACK-POOL. In this case, if the runtime
of the vCPU is meet the default time slice, the RTM changes
the vCPU to a MASKING STATE. The reason for I-Balancer
taking the MASKING STATE is to extract the I/O degree
of each vCPU independently based only on the default time
slice of the vCPU scheduler by excluding the scheduling
dependency problem as much as possible. So, vCPU with
masking states are excluded from tracking vCPU information
in RTM and ITM until I-Balancer updates the information in
the traffic control table of that vCPU.

E. I-BALANCER: I/O TRAFFIC CONTROL MECHANISM
I-Balancer derives the control parameters from the traffic
control table that manages the network and disk-intensive

TABLE 2. Control parameters.

vCPU of I/O information obtained from ITM and RTM.
Table 2 represents the control parameters using in I/O Traffic
Control Mechanism. I-Balancer measures the I/O strength of
each vCPU in TRACK-POOL, based on the control parame-
ters of the vCPUs in the TRACK-POOL. If the I/O strength is
unfair among the vCPUs in the TRACK-POOL, the I/O traffic
control mechanism is activated to provide fair I/O strength to
the I/O-intensive vCPUs. The detailed procedure for the I/O
traffic control mechanism of the I-Balancer is introduced as
follows.

1) FIRST STAGE: TRIGGERING
In a virtualized system based on the Xen architecture, the
vCPU scheduler and event channel operate in areas inde-
pendent of each other. In the I-Balancer, the I/O traffic con-
trol mechanism is triggered when unfair I/O performance is
detected based on the control parameters derived from the
traffic control table reflecting the shared memory commu-
nication from ITM and RTM. I-Balance applies Equation
1 to each vCPU in the TRACK-POOL to determine if it is
practically I/O intensive.

vCPUtype =

{
CPU , if VRsumPRsum

× 100 < α,

I/O, if VRsumPRsum
× 100 ≥ α

(1)

In Equation 1, about vCPU in the TRACK-POOL, VRsum
represents the total virtual runtime, and PRsum represents
the pure runtime of vCPU . Therefore, Equation 1 derives
the I/O degree of vCPU based on the virtual runtime over
pure runtime ratio of vCPU ; α is a constant for determining
the workload type of the vCPU. If the VRsum/PRsum ratio
is less than α, the I-Balancer concludes that the vCPU is
CPU-intensive, and if the ratio is greater than α, the vCPU is
determined to be I/O-intensive. In this study, the value of the
constant α in Equation 1 was set to 30, which is the optimal
value derived through our empirical experiments.

Figure 6 shows the procedure for determining the vCPU
workload type for the I-Balancer. In Figure 6, the RTM
gathers the segmented virtual runtime for the vCPUs in the
vCPU scheduler based on the I/O event generation time
(black box) tracked by ITM. The vCPU’s pure runtime until
meets the amount of default time slice is divided into a
CPU-intensive workload handling time (gray box) and an
I/O-intensive workload handling time (scratch box). The (1),
(2), and (3) in Figure 6 represent cases in which the type of
vCPU workload is determined through Equation 1. The (3)
represents the type of vCPU workload based on the virtual
runtime when processing a mixed workload. The state on the

73130 VOLUME 10, 2022

J. Lee et al.: Fine-Grained I/O Traffic Control Middleware for I/O Fairness in Virtualized System

FIGURE 6. vCPU workload type determination state based on Equation 1.

left of (3) is recognized as vCPU processing of I/O-intensive
workload because the virtual runtime ratio satisfies the con-
dition that the result of Equation 1 is I/O, and the right
shows the opposite situation. As a result, the I-Balancer can
quickly determine the vCPU workload type corresponding
to the change in the workload characteristics through virtual
runtime tracking.

In the event channel area, the I/O event traffic of each
vCPU can be sufficiently classified for I/O-intensive vCPUs.
However, because I/O events can be generated only by the
pCPU occupancy of a vCPU, so defining workload type
of vCPU only in event channel area has no awareness of
the scheduling dependency problem, such as the workload
impact between neighbor-vCPUs and the timing difference
in credit reallocation of each vCPU. Based on the virtual
runtime to pure runtime ratio of vCPUs, the I-Balancer can
derive the actual degree of I/O workload handling of vCPUs,
reflecting the scheduling dependency problem. After deter-
mining the I/O-intensive vCPUs through Equation 1, the
I-Balancer forms a CONTROL-POOL for the I/O-intensive
vCPUs.

Triggering() =

1, if
∑n

i=1 |V
EN
i −V

EN |

VEN
× 100 > β,

0, if
∑n

i=1 |V
EN
i −V

EN |

VEN
× 100 ≤ β

(2)

• n is number of vCPUs in TRACK-POOL

I-Balancer then checks whether there is unfair I/O per-
formance in the virtualized system by adopting Equation
2 for each vCPU in the CONTROL-POOL. Subsequently, the
I-Balancer calculates the deviation percentage for the number
of I/O events of all vCPUs in the CONTROL-POOL, and
if the deviation percentage is greater than β, the I/O traffic
control mechanism is performed.

Period(ms) = DEAFAULT TIMESLICE × n (3)

• n is number of vCPUs in TRACK-POOL

FIGURE 7. I-Balancer operation procedure up to second stage.

The I-balancer triggering operation cycle is given by Equa-
tion 3. The default time slice of the vCPU scheduler (Credit1
is 30 ms, Credit2 is 10 ms) is multiplied by the number
of I/O-intensive vCPUs that make up the TRACK-POOL.
This is because both Credit1 and Credit2 schedulers have
a scheduling policy that prefers to give a more pCPU
occupancy to the I/O-intensive vCPUs than CPU-intensive
vCPUs. Therefore, it is sufficient to understand the overall
degree of I/O traffic of the virtualized system. If Equation
2 is satisfied in the triggering module of the I-Balancer, the
vCPU sorting and pairing stage follows next.

2) SECOND STAGE: SORTING AND PAIRING
In this step, a more detailed I/O control mechanism is applied
by considering the relative I/O strength between the vCPUs
as much as possible. In split-driver architectures, vCPUs with
lower I/O strength generally have a relatively longer I/O
event occurrence period and fewer I/O events than vCPUs
with higher I/O strength. Based on this, the I-Balancer per-
forms vCPU pairing for the vCPUs in the CONTROL-POOL
by considering the relative difference in I/O strength. Fig-
ure 7 shows the procedure of an I/O traffic control mechanism
from the first to the third stage of I-Balancer. As shown in
Figure 7, I-Balancer lists the vCPUs in the order of high
WEMA-based I/O event frequency and maps them starting
with the vCPUs with the lowest WEMA-based I/O event
frequency. The reason for performing vCPU mapping is to
apply a detailed I/O delay time by differentiating the various
I/O strengths of vCPUs formed by vCPU scheduling latency,
which is one of the vCPU scheduling dependency problems.
After performing the vCPU pair configuration, I-Balancer
initiates the next step, the I/O delay time calculation.

3) THIRD STAGE: CALCULATING I/O DELAY TIME
Before describing this step, an experiment was performed to
derive the optimal I/O event delay processing time that affects

VOLUME 10, 2022 73131

J. Lee et al.: Fine-Grained I/O Traffic Control Middleware for I/O Fairness in Virtualized System

FIGURE 8. Experimental results for adopting delay time.

the I/O degree of the vCPU such that the I/O requests of the
VM could be processed evenly. In the experimental environ-
ment, a delay processing time of 50µs to 800µs was applied
whenever an I/O event for an I/O request occurred in each of
the six VMs bymodifying the event channel area source code.
All VMs, including DOM0, were allocated a total of four
vCPUs; DOM0 was pinned to pCPU0, and the server-VM
acting as a server was pinned to pCPU7; All vCPUs of VM1-6
were pinned in order from pCPU1 to pCPU6 to avoid the
vCPU scheduling dependency problem. Experiments were
conducted in the virtualized system to which Credit1 and
Credit2 schedulers were applied, and the VM1-6 environment
generated I/O events through iperf for server-VM. The exper-
imental results are shown in Figure 8, and it is confirmed that
a delay time of 400µs for the inter-domain communication
for each vCPU scheduler affects the VM I/O traffic of Xen’s
split driver architecture. Thus, a fixed constant of 200µs was
used in Equation 5, which calculates the I/O event delay time
of each vCPU, to limit the period difference range of each
vCPUs for the I/O events. This constant 200µs can prevent
VM with high I/O strength from dramatically degrading as a
result of the I/O traffic control mechanism that provide more
I/O device access for VMs with low I/O strength.

Based on the order of vCPU pairing in the second stage,
the I-Balancer designates a vCPU with high I/O strength as
the target vCPU and a vCPU with low I/O strength as a non-
target vCPU. The target vCPU is a vCPU subject to I/O delay
processing in controlling the I/O traffic, and the non-target
vCPU is referenced in deriving a relative delay processing
time for target vCPUs and is excluded from delay processing.
Equations 4 and 5 represent the procedure of I-Balancer,
determining the I/O delay processing time through the target
and nontarget groups.

DRV (µs) =

∑n/2
i=1 V

EI
i

n/2
×

∑n
i=n/2+1 V

EI
i

n/2
(4)

• n is number of vCPUs in CONTROL-POOL

For Equation 4, first, the I-Balancer forms target and
non-target vCPU groups to obtain the delay reference value

Algorithm 3 I-Balancer: I/O Control Mechanism
tCPU : Same as tCPU in Algorithm 1, 2
mCPU : A I-Balancer’s vCPU structure used to derive control parameters
n: Number of vCPUs in the CONTROL-POOL

1: set j with the value of lchn->notify_vcpu_id
2: set k with the value of ld->domain_id
3: if Equation (3) is satisfied then
4: for tCPUi ∈ TRACK-POOL do
5: if tCPUi.state == MASKING then
6: Copy mCPUi with tCPUi
7: Initializes the tCPUi’s value of all members of the structure to

the value of ‘0’.
8: tCPUi.state← NON-MASKING
9: end if
10: mCPUi.type← Equation 1
11: if mCPUi.type == IO then
12: Insert mCPUi into CONTROL-POOL
13: end if
14: end for
15: if the value of Equation 2 is FALSE then
16: for mCPUi ∈ CONTROL-POOL do
17: mCPUi.isTarget ← FALSE
18: end for
19: goto OUT
20: end if
21: end if
22: Perform the sorting and pairing on the vCPUs in the CONTROL-POOL

23: DRV← Equation 4
24: while i 5 n/2 do
25: mCPUi.delayTime← Equation 5 based on value of DRV
26: i++
27: end while
28: OUT:
29: if rd->domian_id == 0 and mCPUk

j .isTarget == TRUE then

30: Adopt the delay time with the value of mCPUk
j .delayTime

31: end if
32: Send network or disk I/O event to destination VM

(DRV), which is the average I/O event period difference for
the two groups. This reflects the relative difference for the
WEMA-based event period on the general I/O strength of the
nontarget and target vCPU groups. Through the sorting and
paring of the second stage, target vCPUs can be represented
as V1 to Vn/2 and nontarget vCPUs as Vn/2+1 to Vn. After
deriving the DRV, I-Balancer applies Equation 5 to derive
the I/O delay time relative to the I/O strength for each vCPU
of the target group, whereby the relative I/O delay time is
derived by multiplying the DRV by the decrease rate for the
relative I/O event period of the vCPU of the non-target group.

vCPUDealyTime(µs) = 200µs×
V EI
n−i+1 − V

EI
i

DRV
(5)

• n is number of vCPUs in CONTROL-POOL

4) LAST STAGE: ADOPTION, AND TERMINATION
In the last stage, I-Balancer applies I/O delay processing
based on the time value of Equation 5 whenever the vCPU
of the target group (Black boxes in Figure 7) generates an
I/O event to DOM0 during inter-domain communication.
When I-Balancer confirms that the triggering condition is not

73132 VOLUME 10, 2022

J. Lee et al.: Fine-Grained I/O Traffic Control Middleware for I/O Fairness in Virtualized System

TABLE 3. Experiment environment.

satisfied through Equation 2, the I-Balancer recognizes that
there is only aweak difference in I/O strength between vCPUs
performing inter-domain communication and stops the I/O
traffic control mechanism. Here, the I/O delay processing
time of all vCPUs of the target group is initialized to ‘0’
so that delay processing is no longer performed. Algorithm
3 shows the overall procedure of the I/O traffic control mech-
anism of the I-Balancer.

V. EXPERIMENT
In this section, the extent to which I-Balancer alleviates the
fairness of I/O performance by controlling the inter-domain
communication of virtualized systems through I/O traffic
control mechanism the among VMs is demonstrated through
comparative experiments on an existing virtualized sys-
tem (existing system) as well as a virtualized system with
I-Balancer (I-Balancer). In addition, the degree of overhead
caused by the I/O traffic control mechanism of I-Balancer is
compared with that of the existing system. To confirm that
I-Balancer is not dependent on a specific scheduler, an exper-
iment was conducted by dividing the virtualized system to
apply Xen’s two general-purpose schedulers, Credit1 and
Credit2. In all test scenarios, existing systems are classified
into Credit1 scheduler-based virtualized system (Credit1) and
Credit2 scheduler-based virtualized system (Credit2). Vir-
tualized systems with I-Balancer are classified as Credit1
scheduler-based virtualized system (Credit1-IB) and Credit2
scheduler-based virtualized system (Credit2-IB).

A prototype I-Balancer was designed and developed
based on the Xen 4.12 based para-virtualized system, and
Table 3 outlines the overall experimental environment and
configuration. For the resource configuration of the VM,
vCPUs were pinned to a total of two pCPUs with pCPU0-1
for the six vCPUs allocated to DOM0 to avoid performance
interference caused by the pCPU preemption contention and
four vCPUs allocated to all guest VMs, and the remaining
vCPUs were pinned to pCPU2-7 [5], [15], [40], [47], [48].
All vCPUs can perform vCPU migration for load-balancing
against a pinned pCPU pool.

Before confirming and analyzing the experimental results,
the definitions used in the experiment are explained. First,

TABLE 4. Benchmark tools.

the workload types are classified into three categories: I/O,
CPU, andmixed. The vCPU or VM that handles I/O-intensive
workloads is represented as a network or disk-intensive
vCPU and VM. A vCPU and VM that handle CPU-intensive
workloads are referred to as CPU-intensive vCPU and VM.
Mixed-intensive vCPU or VM means that vCPU and VM
concurrently handle I/O -and CPU-intensive workloads. The
experimental environment was configured as two experimen-
tal environments according to the characteristics of the VM’s
workload: the first is defined as an environment in which one
type of workload occurs (union environment) and the second
is the environment in which two types of workloads occur
(mixed environment).

The overall experimental test scenario is as follows. The
first experiment confirmed the effect of node-to-node com-
munication on the actual network latency in the virtual-
ized system. The second experiment compared the degree of
fairness guarantees for I/O performance by generating the
network- and disk-intensive workloads. In the third exper-
iment, the degree to which Equation 2 in Section IV was
satisfied was checked in detail to find out if I-Balancer’s
I/O traffic control was well applied. Finally, in the fourth
experiment, the degree of overhead and performance inter-
ference that can occur when applying I/O traffic control
mechanisms of the I-Balancer to virtualized systems was
explored. Table 4 describes the benchmark tools used to gen-
erate I/O- and CPU-intensive workloads in the experimental
evaluation.

A. I-BALANCER EFFECTS ON NETWORK LATENCY
In this experiment, the extent to which I-Balancer affects
the network latency of the virtualized system is confirmed
through the network latency distribution of VMs for the
existing system and I-Balancer. The experimental method
measures the RTT of each VM from the host system to the
target system using the Linux benchmark tool ‘hping3’ with
all VMs in the host system sending one packet every 100µs
to the target system through TCP/IP communication for a
total of 25000 pings during the experiment. To construct a
mixed environment in which performance interference occurs
in network I/O, each VM was set to generate CPU-intensive
workloads using a ‘‘stress’’ benchmark tool. All vCPUs of
DOM0 were pinned to pCPU0 and pCPU1, and all vCPUs
of eight guest VMs were pinned to pCPU2-7, so a total of
32 vCPUs shared six pCPUs. The experimental results are
shown in Figure 9.

VOLUME 10, 2022 73133

J. Lee et al.: Fine-Grained I/O Traffic Control Middleware for I/O Fairness in Virtualized System

FIGURE 9. Experimental results for network latency measurement.

TABLE 5. Numerical analysis table based on Figure 9.

In Figures 9(a) and 9(b), the RTT distribution for 20000 out
of 25,000 pings is shown, excluding 10% of pings after the
start of the experiment and 10% of pings before the end
of the experiment. Also, in 9(b), only the RTT distribution
between 0 ms and 30 ms is expressed since in general, the
ping RTT of the Credit2 scheduler is compared to the Credit1
scheduler only within this time interval. This is because,
in the case of the Credit2 scheduler in the existing system
and the I-balancer, the network latency exceeds 30ms only
for approximately 0.5% of 20000 pings, and is therefore
negligible. In both figures, the black line in the RTT graph
represents the average RTT. Table 5 shows themean, standard
deviation (SD), mean absolute deviation (MAD), and median
for Figure 9.

In Figure 9(a), it is observed that the degree of RTT dis-
tribution of the Credit1 scheduler is sporadic compared to
that of the Credit2 scheduler. In Credit1, the overall RTT
is distributed in the specific range of 0 ms and 1500 ms.
This can be attributed to the loss of BOOST priority related

to the multi-boost problem, which is a chronic problem of
the Credit1 scheduler because of the relatively long time
slice allocation of vCPU. As a result, certain VMs monop-
olize BOOST priority through frequent pCPU occupation to
ensure pCPU preemption, thus generating more network I/O
requests to DOM0 than other VMs. A VM that monopolizes
the BOOST priority has a high chance of occupying the NIC
because the loading ratio of network I/O request events to
the network backend driver of DOM0 is high. A VM with a
relatively low boost is not guaranteed to occupy the pCPU,
resulting in low network I/O request event generation and
lower NIC usage. Regarding the limited network bandwidth
of the virtualized system, a situation in which more network
bandwidth is allocated to a specific VM repeatedly occurs;
therefore, a deviation occurs in the RTT value between
VMs.

The results for Credit1-IB confirm that RTT is more evenly
distributed than Credit1. The average RTT of Credit1 is
387 ms, which is approximately 140 ms longer than that

73134 VOLUME 10, 2022

J. Lee et al.: Fine-Grained I/O Traffic Control Middleware for I/O Fairness in Virtualized System

of Credit1-IB, and the SD of Credit1-IB is decreased by
23.5% compared to Credit1. For MAD, it is observed that
Credit1 is 268 ms, Credit1-IB is 142 ms, and Credit1-IB
is reduced by about 47%. In addition, it is observed that
Credit1-IB decreased by approximately 44% compared to
Credit1 when the RTT ratio was 500 ms or over. In Fig-
ure 9(b), Credit2-IB has a lower overall RTT than Credit2,
and Credit2-IB decreased by 20.29% and 20.58% in terms of
SD and MAD, respectively, compared with Credit2. In addi-
tion, it can be seen that Credit2-IB results are approximately
56% lower than those of Credit2 for an RTT ratio of 30 ms or
over.

The experimental results confirm that the overall network
latency distribution of the I-Balancer is closer to the average
than that of the existing system. In Figure 9(a), Credit1-IB
is relatively fair in RTT compared to Credit1 as delay pro-
cessing is applied through the I/O traffic control mechanism
to vCPUs that generate network I/O requests for VMs with
high pCPU occupancy opportunities because of the multi-
boost issue. Furthermore, I-Balancer increases the opportu-
nity network I/O device occupancy for non-target vCPUs
by effectively controlling the occurrence of network I/O
events based on the optimal time of delay processing using
Equations 4 and 5. In addition, Table 5 shows that there is
no significant difference in the overall average RTT for the
existing system and I-Balancer, not resulting in considerable
overhead in the network performance of virtualized systems.
The I-Balancer updates andmaintains I/O information related
to the inter-communication of network-intensive vCPU in
the traffic control table whenever the vCPU’s time slice
is reallocated. Therefore, based on the latest traffic control
table for network-intensive vCPUs, I-Balancer monitors I/O
traffic control only on vCPUs with high network resource
occupancy, not all network-intensive vCPUs, so unnecessary
I/O delay processing can be prevented. Moreover, if the
I-Balancer determines that the network intensity of all VMs
is similar through the triggering module, it quickly stops
performing traffic control mechanisms to avoid unnecessary
I/O delay processing. Through this experiment, it is con-
firmed that I-Balancer can reduce the deviation of network
latency from network-intensive VMs compared to existing
systems.

B. I-BALANCER IMPACT ON I/O PERFORMANCE
FAIRNESS
This experiment confirms whether I-Balancer mitigates
the unfair network performance in virtualized systems for
network-intensive VMs. In this experiment, a VM server
with the same resource configuration as that of the guest
VM was set up to act as a server (See Table 3). All vCPUs
of the server-VM were pinned to pCPU7. Therefore, all
vCPUs of client VMs acting as clients shared pCPU2-6.
The reason this experiment is configured differently from
that of Section III is that I-Balancer performs traffic control
over the outbound-based network I/O to prevent unfair I/O
devices occupation. In addition, the target system is not used

to measure the fairness of network performance because the
network delay resulting from communication with the target
system can be eliminated by removing the external network
communication; thus, making it possible tomore clearly iden-
tify changes in the network performance of each client-VM.
In addition, the purpose of the I-Balancer is to mitigate the
unfair network or disk performance of the virtualized system
through in-system I/O traffic control for inter-communication
between guest VMs. Thus, measuring internal network com-
munication is sufficient for evaluating the I-Balancer.

The iperf benchmark tool was leveraged to create net-
work workloads in union and mixed experiments with all
client-VMs performing TCP/IP-based streaming commu-
nication with server-VMs for 120 s using packet sizes
of 512 KB. The number of VMs was gradually increased
in each round of the experiment. Therefore, in the last step,
12 client VMs were performed, and 48 vCPUs occupied five
pCPUs. The experimental results are shown in Figure 10,
which is a virtualized system based on the Credit1 scheduler,
and in Figure 11, the virtualized system is based on the
Credit2 scheduler. In Figures 10 and 11, (a) to (f) show
the results of the union experiment, and (g) to (l) show the
experimental results obtained in the mixed experiment.

1) I-BALANCER IMPACT ON NETWORK PERFORMANCE
FAIRNESS
Figures 10(c), (d), and (e) display the experimental results of
the union experiment environment. It can be confirmed that
the average network throughput of the I-Balancer is similar
to that of the existing system, and there is less variance in
the network throughput between Client-VMs. In Table 6, the
average network throughput of the I-Balancer is 19.75 GB,
and that of the existing system is 19.34 GB. The SD is
0.21 for the I-Balancer and 0.67 for the existing system,
showing that Credit1-IB is reduced by approximately 68%
compared to Credit1. The MAD value is 0.34 for Credit1-
IB, which decreased by approximately 65% for Credit1,
which means that the network throughput of Client-VMs
in I-Balancer is more centrally distributed compared with
the existing system. In Figure 10(e), the average network
throughput of Credit1-IB is 17.28 GB and that of the existing
system is 17.04 GB; SD and MAD, are 0.12 and 0.17 for
Credit1-IB, and 0.41 and 0.6 for Credit1, respectively. The
SD and MAD of Credit1-IB, decreased by approximately
70% and 71%, respectively, compared to those of Credit1.
In Figures 10(h) to 10(k) and Table 6, which represent
the mixed environment, it is observed that I-Balancer has
a lower value for SD and MAD than the existing system.
The SD and MAD values of Figure 10(j), where eight
Client-VMs are running, are 6.34 and 5.43 for Credit1,
and 4.51 and 3.52 for Credit1-IB, respectively, displaying
a decrease of 40% and 54%, respectively, compared to
Credit1.

Figure 11 shows the experimental results of the network
throughput for the Credit2 scheduler adopted by the exist-
ing system and I-Balancer. As for the overall experimental

VOLUME 10, 2022 73135

J. Lee et al.: Fine-Grained I/O Traffic Control Middleware for I/O Fairness in Virtualized System

TABLE 6. Numerical analysis table based on Figure 10.

TABLE 7. Numerical analysis table based on Firgure 11.

FIGURE 10. Experimental results for network I/O fairness on the virtualized environment with credit1 scheduler, (a) to
(f) for union experiment and (g) to (i) for mixed environment.

73136 VOLUME 10, 2022

J. Lee et al.: Fine-Grained I/O Traffic Control Middleware for I/O Fairness in Virtualized System

FIGURE 11. Experimental results for network I/O fairness on the virtualized environment with credit2 scheduler, (a) to
(f) for union experiment and (g) to (i) for mixed environment.

results, it can be confirmed that the distribution of network
throughput in I-Balancer is more concentrated around the
average value than that in the existing system. For the union
environment, in Figures 11(b), 11(c), 11(d) and Table 7, it can
be seen that the average network throughput of the I-Balancer
is more centrally concentrated than in the existing system.
In Figure 10(d), the I-Balancer SD and MAD are 0.36 and
0.27, which are approximately 53% and 44% lower than those
of the existing system, respectively. In themixed environment
of 10(k), although the difference of the results in values
is insignificant, I-Balancer has 0.19 for SD and 0.15 for
MAD indicating a decrease by 53% and 50%, respectively.
From the experimental results of Figure 11, it is confirmed
that the network performance of the I-Balancer is fairer
among guest VMs on the Credit2 scheduler-based virtualized
system.

2) IMPACT OF I-BALANCER ON DISK PERFORMANCE
FAIRNESS
This experiment measures the degree to which I-Balancer
guarantees fairness of disk performance between disk-
intensive VMs. The ‘dd’ tool is leveraged to generate a
disk-intensive workload by performing READ/WRITE on
/dev/zero, a special file system of Linux, to create a file
with a total size of 10 GB. Each credit scheduler divides
the union and mixed environments, and the experiment is
performed 10 times according to various disk block sizes
ranging from 4 KB to 1024 KB. Figure 12 shows the aver-
age disk bandwidth for the experimental results. From the

experimental results, in Figures 12(a) to 12(d), it is observed
that the average bandwidth distribution of the I-Balancer
is more centrally concentrated than in the existing system.
In particular, SD and MAD in 11(a), are 8.21 and 6.2 for
Credit1, whereas 7.32 and 5.58 for Credit2, respectively.
In contrast, they are 3.35 and 2.66 for Credit1-IB (reduced
by 59% and 57%, respectively, compared to Credit1), and
4.51and 3.51 for Credit2-IB (reduced by 38% and 33%,
respectively, compared to Credit2). The SD and MAD in
11(b) for Credit1-IB are 4.79 and 3.7, which are lower by
51% and 61% compared to those of Credit; for Credit2-IB
they are 4.34 and 3.5, which are lower by approximately
36% and 32% compared to Credit2, respectively. However,
in 11(e) to 11(h), it is observed that the average bandwidth is
distributed similarly to that of the existing system. Regarding
the block layer, as the disk block size increases, IOPS (I/O
per second) decreases; there is a delay in disk I/O delay
time, so the ISR processing time increases; and the DISK
I/O, requests multiple VMs from DOM0 to accommodate
the increase in I/O requests, whereby the DOM0 disk access
gets a bottleneck, causing I/O latency and I/O bus congestion
[49]–[51], and [52]. As a result, I/O events for disk I/O
requests are not that frequent, limiting the I/O fairness guar-
antee of the I-Balancer as a result of not having the sufficient
I/O information required by the I/O traffic control mecha-
nism. However, in 11(a) to 11(d), where the block size is
relatively small and I/O events for DISK I/O requests are
frequently broadcast, it can be confirmed that I-Balancer pro-
vides a fairer disk I/O performance than the existing system.

VOLUME 10, 2022 73137

J. Lee et al.: Fine-Grained I/O Traffic Control Middleware for I/O Fairness in Virtualized System

FIGURE 12. Experimental results for disk I/O fairness on the virtualized environment.

3) DISCUSSION FOR THE I-BALANCER’s IMPACT ON I/O
PERFORMANCE
In the existing virtualized system, in Section A-B of V,
it is confirmed through experiments that unfair I/O perfor-
mance emerges as the density of VMs increases because of
the scheduler dependency problem and weak awareness of
the user-contention architecture. The existing system focuses
only on improving the I/O performance of one VM by
increasing the I/O responsiveness degree through the vCPU
schedulers and does not consider the fairness degree of
I/O performance between VMs. As the density of VMs
increases, vCPUs with various workload characteristics as
well as the number of vCPUs sharing a pCPU increase,
thereby increasing workload unpredictability and resource
competition in the virtualized system. Consequently, unfair
I/O performance between VMs emerges by adopting only the
Linux kernel-based native I/O philosophy for the virtualized
system and focusing only on improving I/O performance
for VMs and fair pCPU sharing. In the Credit1 scheduler,
it was confirmed that unfair I/O performance can occur in
the virtualized system because of the multiboost problem
caused by I/O-intensive vCPUs. In addition, it was confirmed
that the Credit2 scheduler also causes unfair I/O performance
because of frequent credit reallocation, as the number of
vCPUs sharing the pCPU increases with increasing density
of VMs in a mixed environment. In the case of frequent
credit reallocation, I/O-intensive vCPUs take the remaining
credits making neighboring vCPUs more similar; thus, pCPU
preemption cannot always be guaranteed. In addition, the dif-
ferent workload characteristics of the vCPUs placed on each
run-queue can result in different pCPU preemption cycles

between I/O-intensive vCPUs, resulting in unpredictable I/O
performance for virtualized systems.

Through Figures 10, 11, and 12, in a virtualized sys-
tem with high VM density, I-Balancer can confirm that the
network and disk throughput are similar to those of the
existing system, and the experimental performance results
are generally concentrated around the median. I-Balancer
enables the hypervisor to recognize the fine-grained I/O
traffic flow of each client-VM by tracking the I/O strength
of vCPUs through RTM performing in the scheduler area
and ITM performing in the event channel area. Through
the I-Balancer’s I/O traffic control mechanism, the unfair
network performance is mitigated compared to the existing
system by controlling the internal network and disk traffic
through the I/O traffic control mechanism for I/O requests
generated on each client VM. I-Balancer can provide a fairly
shared network and disk resources by leveraging the I/O traf-
fic controlmechanism for the inter-domain communication of
the split-driver architecture in a virtualized system with high
VM density.

C. I/O TRAFFC CONTROL MECHANISM APPLICABILITY
An experiment was conducted to confirm the internal proce-
dure of I-Balancer’s I/O traffic control mechanism in detail
to determine whether the internal I/O traffic control is well
performed. Regarding the configuration of the experimental
environment, we define the TAV system, which is an existing
system to which only the triggering stage of I-Balancer is
applied, and conduct comparative experiments on I-Balancer
and TAV-system. In the test scenario, a small portion of the
triggering stage of the I-Balancer was modified for analysis.

73138 VOLUME 10, 2022

J. Lee et al.: Fine-Grained I/O Traffic Control Middleware for I/O Fairness in Virtualized System

FIGURE 13. Experiment Results for I/O traffic control mechanism applicability.

Based on Equation 2, the modified triggering stage prints
‘triggering()’ if high I/O strength deviation is detected for
each VM, and ‘notriggering()’ is output if I/O strength devi-
ation is determined to be low. In this case, if ‘triggering()’ is
printed, the I-Balancer performs the I/O traffic control mech-
anism, which is a procedure adopted based on Equation 2,
and the TAV-System only outputs ‘triggering()’ and does
not perform the I/O traffic control mechanism. For the TAV-
System, only RTM, ITM, and the modified triggering stage
among the modules constituting the I-Balancer were adopted,
and only theminimum functions necessary for the experiment
were applied to generate minimum overhead.

For the TAV-system and I-Balancer, numerous
‘triggering()’ outputs indicate that the VM is unfairly sharing
network resources, and printing ‘no_triggering()’ can be
recognized as vice versa. The purpose of this experiment
was to determine whether the I-Balancer was beneficial for
the virtualized system. Because the comparative experiment
is conducted by building a TAV-system in which there is
no I/O traffic control mechanism, the configuration of this
experimental environment is appropriate. To highlight the
scheduling dependency problem and the lack of awareness
of the I/O degree, an experiment was also conducted for the
mixed environment by generating a network-intensive work-
load. A total of eight guest VMs of the host system performed
TCP/IP-based streaming communication for 1024 KB
size packets sent to the target system using ‘iperf’ for
5 minutes along with ‘stress’ to handle the CPU-intensive
workload.

Figures 13(a) and (b) show the number of ‘triggering()’
and ‘no_triggering()’ outputs from the TAV system and
I-Balancer for Credit1 and Credit2 schedulers. In Figures
13(a) and (b), the x-axis represents the total number of occur-
rences ‘triggering()’ prints in 5 min The y-axis represents
the number of triggering module operations accumulated
at intervals of 25 s, for a total of 12 times over 5 min.
The reason the number of prints in (b) is higher than in
(a) is that the default time slice of the Credit1 scheduler is

30 ms and that of Credit2 10 ms, so the triggering module
in 11(b) executes frequently. Experimental results show that
I-Balancer has a higher number of ‘no_triggering()’ than
the TAV-system in each scheduler and that the number of
‘triggering()’ is less than that of the TAV-system. For the
number of ‘triggering()’ prints in 11(a) and (b), within 25 sec-
onds (1st monitoring), in (a), the TAV-system prints 18 times
and I-Balancer prints 12 times. In the 12th monitoring (within
300 s), the TAV-system prints 243 times and I-Balancer
prints 192 times. In 11(b), it is observed that the number
of ‘triggering()’ prints of the I-Balancer is less than that of
the TAV system by approximately 15%. As time passes, it is
observed that the number of ‘triggering()’ prints of the TAV
system gradually increases compared to I-Balancer. From the
number of ‘no_triggering()’ prints, it is confirmed that the
I-Balancer prints are relatively high compared to the TAV sys-
tem. In addition, if the I-Balancer determines that the degree
of intensity for network I/O in each VM is fair, the I-Balancer
does not perform the I/O traffic control mechanism on the
inter-communication for all VMs; thus, it is guaranteed that
the total network bandwidth is equal to that of the existing
system. From the results in Figure 13, it can be concluded that
the I/O traffic control mechanism performs well in providing
fair network performance between each module and the VMs
constituting the I-Balancer.

D. I-BALANCER IMPACT ON CPU PERFORMANCE IN THE
VIRTUALIZED ENVIRONMENT
This experiment confirms whether CPU performance inter-
ference occurs by ensuring fairness of network performance
through I-Balancer’s I/O traffic control mechanisms in virtu-
alized systems. In the test scenario, a total of 12 guest VMs
were evaluated based on the processing completion time for
CPU-intensive workloads. Regarding the workload configu-
ration of guest VMs, the union environment ran one CPU-
intensive VM, and the remaining 11 were network-intensive
VMs. In a mixed environment, 12 mixed-intensive VMs were
run. The vCPUs of all guest VMs were pinned to pCPU2-7;

VOLUME 10, 2022 73139

J. Lee et al.: Fine-Grained I/O Traffic Control Middleware for I/O Fairness in Virtualized System

FIGURE 14. Experimental results on the effect on CPU performance.

therefore, a total of 48 vCPUs shared six pCPUs; ‘iperf’ was
used to set the packet size to 512 KB and TCP/IP streaming
was performed for communication with the target system.
CPU-intensive workloads were generated by leveraging ‘sys-
bench’ and four threads were used to find the prime numbers
between 2 and 10,000,000. Figures 14(a) and 14(b) show the
average job completion time for 10 experiments on a virtual-
ized system to which the Credit1 and Credit2 schedulers were
applied. The average job completion time in 13(a) was 18.87 s
for Credit1, 18.96 s for Credit1-IB, 19.11 s for Credit2, and
19.23 s for Credit2-IB. The average job completion time
in 14(b), was 78.01 s for Credit1, 78.75 s for Credit1-IB,
82.57 s for Credit2, and 83.25 s for Credit2-IB. From the
experimental results, it can be confirmed that the average job
completion time for the I-Balancer and the existing system
are not significantly different.

In the experiment, the reason that I-Balancer does not sig-
nificantly degrade the CPU performance of the VM is that the
actual network I/O control is performed in the event channel
area independent of the scheduling area; therefore, I-Balancer
does not affect the scheduling policy of the vCPU scheduler.
In addition, I-Balancer applies an I/O traffic control mech-
anism only to network-intensive vCPUs with fine-grained
I/O strength based on the traffic control table obtained from
ITM and RTM; thus, CPU performance of neighbor-vCPUs
or itself does not dramatically degrade. This means that
I-Balancer does not degrade CPU performance in a space
separated from the scheduling area and performs I/O traffic
control effectively by providing the hypervisor with high
awareness of the network I/O strength of the vCPUs.

E. IMPACT OF I-BALANCER ON DISK PERFORMANCE IN
THE VIRTUALIZED ENVIRONMENT
In this experiment, to determine the degree of performance
interference between network and disk-intensive VMs, the
virtualized system was divided into a union environment and
a mixed environment by applying the I-Balancer. A total
of 10 VMs were run to configure a high VM density virtu-
alized system such that in the union environment, if one VM

was disk-intensive, the other nine were network-intensive
or when three VMs were disk-intensive, seven VMs were
network-intensive. All vCPUs of the VMs were pinned to
pCPU2-7 such that 40 vCPUs shared six pCPUs, and all
vCPUs of DOM0 were pinned to pCPU0-1. In addition,
disk bandwidth was selected as an evaluation metric of per-
formance interference. In the union environment, the disk
bandwidth was checked for one to three disk-intensive VMs.
In the mixed environment, all VMs simultaneously han-
dled network- and disk I/O-intensive workloads. To generate
network-intensive workloads, the ‘iperf’ tool was used to per-
form 512KBTCP/IP streaming to the target system. To create
disk-intensive workloads, the ‘dd’ tool was used to operate
read/write to /dev/zero with a block size of 1024 bytes.

In this experiment, both the network and disk generated I/O
events on the event channel; however, because the I/O han-
dling procedure for each I/O device is different, the pattern
of I/O events exposed on the event channel is also different.
Because the network I/O performs streaming-based data pro-
cessing, it has relatively low latency for NIC access through
memory page flipping. The NIC that receives the packet from
the Net-Backend driver of DOM0 performs short-term I/O
processing by simply forwarding the packet to the exterior,
which makes ISR completion time very short. Therefore, I/O
events of the network are frequently exposed in the event
channel. However, disk I/O involves long-term I/O handling
procedures that include disk seek times for fixed-size blocks,
data communication latency, relatively deep I/O stacks, and
long I/O paths. The block-based data I/O of the disk device is
generated in units of I/O event sets in the event channel. The
occurrence of such a set unit spreads out the event frequency
between sets of I/O events and creates an intermittent I/O
event pattern in the event channel. In this case, I-Balancer’s
I/O traffic control mechanism naturally focuses on network
I/O traffic control rather than disk I/O traffic control because
I/O events of naturally network-intensive VMs are frequently
broadcast on event channels.

Figure 15 shows the average DISK bandwidth for ten
rounds of the experiment. In Figure 15(a), when one disk I/O

73140 VOLUME 10, 2022

J. Lee et al.: Fine-Grained I/O Traffic Control Middleware for I/O Fairness in Virtualized System

FIGURE 15. Experimental results on the effect on DISK performance.

intensive VM is running, the disk bandwidth is 1150.7 MB/s
for Credit1 and 1112.8 MB/s for Credit-IB. In Figure 15(a),
when one disk I/O intensive VM is running, the disk band-
width is 1150.7 MB/s for Credit1, 1112.8 MB/s for Credit-
IN, 948.9 MB/s for Credit2, and 928.9 MB/s for Credit2-IB.
Overall, the I-Balancer has low disk bandwidth due to perfor-
mance interference. This is because there is no competition
for disk device resources, and I-Balancer’s I/O traffic control
for the network causes overhead in the event channel. How-
ever, when two disk-intensive VMs are running, the average
bandwidth is approximately 423 MB/s for Credit1, 426 MB/s
for Credit1-IB, 415 MB/s for Credit2, and 414 MB/s for
Credit2-IB. In addition, it can be confirmed that the average
disk bandwidths of Credit1-IB and Credit2-IB are similar to
those of the existing system, including the case of the three
VMs running. In Figure 15(b), the average disk bandwidths of
Credit1 and Credit1-IB are 82.6 MB/s and 82 MB/s, respec-
tively, and Credit2 and Credit2-IB have average disk band-
widths of 82.6 MB/s and 82.7 MB/s, respectively. Regarding
the overall experimental results, the I/O traffic control mech-
anism of I-Balancer is judged to have negligible interference
between the network and disk I/O, and low I/O overhead in
the virtualized system.

VI. RELATED WORK
Various studies have been conducted to alleviate unfair I/O
performance in virtualized systems. Asyabi [5] proposed the
vCPU scheduler ppXen, which can differentiate user ser-
vice complexity through processor time (PT) and I/O qual-
ity (IOQ) for I/O- and CPU-intensive workloads to provide
fair I/O performance. The ppXen derives complementary
vCPUs based on the demand side of PT and IOQ and orga-
nizes a set of vCPUs so that they can be scheduled to share the
same pCPU as much as possible. This allows vCPUs with a
similar workload tendency to share the same pCPUs, thereby
minimizing performance interference and ensuring fair I/O
resource access.

Jang [[9]] presented a vCPU scheduler that applies a
loan and redeem mechanism for credits based on the Credit1
scheduler so that BOOST priority is set fairly for each

vCPU. By controlling the occurrence of BOOST priority,
this loan and redeem mechanism provides a similar degree
of I/O responsiveness to I/O-intensive vCPUs to ensure fair
I/O performance in the virtualized system. I-Balancer only
modifies Xen’s abstract scheduling interface, which allows
various vCPU schedulers to be applied to virtualized sys-
tems, to flexibly combine vCPU schedulers. In addition,
the modified vCPU schedulers provide inbound I/O fair-
ness considering I/O responsiveness, and when combined
with the I-Balancer, provide outbound I/O fairness, so that a
more delicate I/O fairness can be provided to the virtualized
system.

Software defined network (SDN)-based external network
control techniques [53]–[56] have also been studied exten-
sively. These techniques aim to improve the network per-
formance of VMs that are unfair as a result of traditional
static network bandwidth allocation which controls the data
center network from the exterior of the host system. The
overall method of the external network control technique is
to dynamically allocate the optimal network bandwidth by
configuring SDN controller policies that are adaptive to user
traffic to meet the QoE demand of user services. However,
it cannot provide a solution for the network I/O unfairness of
the virtualized system, and there is a limit to the I/O control
of the disk area. If this SDN-based external network control
technique is combined with I-Balancer, it can provide very
high I/O fairness among user services. If external network
I/O fairness and internal network I/O fairness for virtualized
systems are satisfied, it is expected that a more elastic QoE
can be derived for the user service.

Research is also being actively conducted on disk and net-
work bandwidth allocation technology-based software units
to alleviate the unfair I/O performance of existing virtualized
systems. Li [57] proposed V-Scheduler, a disk I/O scheduler
that allocates a fair disk bandwidth between the VMs. This
technology analyzes the disk I/O request information of the
backend driver based on the Shadow-Proc mechanism by
recognizing the I/O context of the user service in the VM.
Based on the derived disk I/O information, the existing disk
I/O scheduler, which considers only the number of disk I/O

VOLUME 10, 2022 73141

J. Lee et al.: Fine-Grained I/O Traffic Control Middleware for I/O Fairness in Virtualized System

requests, is extended to present a disk I/O scheduling tech-
nique that also considers the data size of the disk I/O requests.
Tan [58] proposed VMCD, a virtual multichannel-based disk
I/O scheduler. The VMCD isolates disk I/O streams by allo-
cating virtual channels to the I/O device for all guest VMs in
DOM0. Then, the CFQ scheduler is advanced by applying
a lottery algorithm and credit-based bandwidth adjustment
technique to provide fair disk I/O performance.

In a similar technique, Songe [59] proposed I-Share, which
assigns a weight to each VM and allocates a proportional
time slice based on the weight. Then, I-Share dynamically
adjusts the time slice according to the disk status for each
VM to fairly allocate bandwidth. The dynamic network band-
width allocation technique [60], [61] provides fair network
performance through the allocation of the virtual interface
function (VIF), which is a network virtualization unit of the
virtualized system. These technologies configure network
performance metrics for network-intensive VMs and monitor
the related real-time network I/O information. The network
performance parameters defined by the user and actual net-
work performance metrics are analyzed to differentiate the
required network bandwidth of the VM. It then provides
fair network performance by allocating VIF credits (a credit
mechanism for network bandwidth adjustment, not a vCPU
scheduler credit policy) to each network-intensive VM, based
on the differentiated required network bandwidth. Most of
these technologies operate on the I/O driver network or disk
driver of DOM0’s Linux kernel layer, but I-Balancer operates
on the virtualization layer, which is higher than the kernel
layer, and is more portable.

VII. I-BALANCER’s LIMITATION AND FUTURE WORK
Figure 15 shows I-balancer performing biased I/O traffic
control for specific workload types that preferentially handle
network I/O requests rather than disk I/O; and in a high
VM density virtualized system when the I-Balancer handles
the massive set of disk I/O, it may be seen that the effi-
ciency of controlling disk I/O traffic decreases as the block
size increases(As Figure 12, when the block size is more
than 128KB). Also, I-Balancer provides static I/O fairness
to all VMs without considering the I/O resource information
required by each user, so it is not adaptive to each user’s SLAs
related to I/O performance.

Our future work to solve these drawbacks of I-Balancer is
as follows. The first is expanding the I/O performancemetrics
collection area of I-Balancer. I/Ometrics obtained fromGrant
tables, Xenbus, or header dumping of memory I/O, etc.,
without being limited to event channels and scheduling areas,
can provide I-Balancer with a more accurate and clear I/O
traffic control mechanism. In addition, we plan to study the
I/O request event type expansion and classification (network
I/O request event or disk I/O request event) technique in the
event channel. This can ensure more granular asynchronous
event notificationmechanismswhen I/O handling by building
network- and disk-specific isolated I/O event communica-
tion paths. Finally, we will develop a dynamic I/O traffic

control mechanism that takes into account SLAs related to
per-user I/O performance. This mechanism is expected to
provide differentiated I/O performance fairness for each VM
based on the required I/O resources by allowing I-Balancer to
recognize and distinguish various user-specific SLA levels.

VIII. CONCLUSION
In this study, I-Balancer was proposed to mitigate the unfair
I/O performance caused by the scheduling dependency prob-
lem and the low perception of the I/O procedure of the
virtualized system with high VM density. The key aspects
of I-Balancer are to increase the awareness degree of the
hypervisor’s user-contention architecture in virtualized sys-
tems and provide fair access to the I/O devices of the guest
VM based on the degree of I/O occupancy of the vCPU.
To this end, the proposed I-Balancer controls the internal I/O
traffic for each VM through an I/O traffic control mechanism
for inter-domain communication in a split-driver architec-
ture. Through ITM, the I/O degree is derived in detail in
units of vCPUs, not VMs, using an asynchronous notifica-
tion mechanism in the event channel for network or disk
I/O requests generated by each guest VM. At this time, the
independent I/O strength of only vCPU is derived bymasking
the scheduling dependency problem and control parameters
are derived through runtime tracking (virtual and pure run-
time based on each vCPU scheduler’s default time slice)
to vCPU using the abstract scheduling interface of RTM.
Subsequently, I-Balancer converts the I/O degree of vCPU
into the I/O strength of vCPU based on the control parameters
and optimal delay time derived from empirical experiments.
Finally, an I/O traffic control mechanism provides fair access
to I/O devices according to the I/O strength of each vCPU.
A prototype of the I-Balancer was built based on the Xen
4.12 hypervisor, and various experiments were conducted.
The experimental results show that I-Balancer provides fair
I/O performance than existing virtualized systems with neg-
ligible overhead.

REFERENCES
[1] M. Al-Ruithe, E. Benkhelifa, and K. Hameed, ‘‘Key issues for embracing

the cloud computing to adopt a digital transformation: A study of Saudi
public sector,’’ Proc. Comput. Sci., vol. 130, pp. 1037–1043, Jan. 2018.

[2] A. A. Alli and M. M. Alam, ‘‘The fog cloud of things: A survey on
concepts, architecture, standards, tools, and applications,’’ Internet Things,
vol. 9, Mar. 2020, Art. no. 100177.

[3] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
‘‘On multi-access edge computing: A survey of the emerging 5G network
edge cloud architecture and orchestration,’’ IEEE Commun. Surveys Tuts.,
vol. 19, no. 3, pp. 1657–1681, 3rd Quart., 2017.

[4] P. Mach and Z. Becvar, ‘‘Mobile edge computing: A survey on architecture
and computation offloading,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 3,
pp. 1628–1656, 3rd Quart., 2017.

[5] S. Yi, C. Li, and Q. Li, ‘‘A survey of fog computing: Concepts, applications
and issues,’’ in Proc. Workshop Mobile Big Data, Jun. 2015, pp. 37–42.

[6] R.Mahmud, R. Kotagiri, and R. Buyya, ‘‘Fog computing: A taxonomy, sur-
vey and future directions,’’ in Internet of Everything. Singapore: Springer,
2018, pp. 103–130.

[7] P. M. Grulich and F. Nawab, ‘‘Collaborative edge and cloud neural net-
works for real-time video processing,’’ Very Large Data Base (VLDB)
Endowment, vol. 11, no. 12, pp. 2046–2049, 2018.

73142 VOLUME 10, 2022

J. Lee et al.: Fine-Grained I/O Traffic Control Middleware for I/O Fairness in Virtualized System

[8] S. Zhang, Y. Li, X. Liu, S. Guo, W. Wang, J. Wang, B. Ding, and D. Wu,
‘‘Towards real-time cooperative deep inference over the cloud and edge
end devices,’’ Proc. ACM Interact., Mobile, Wearable Ubiquitous Technol.,
vol. 4, no. 2, pp. 1–24, Jun. 2020.

[9] J. Jang, J. Jung, and J. Hong, ‘‘An efficient virtual CPU scheduling in cloud
computing,’’ Soft Comput., vol. 24, no. 8, pp. 5987–5997, Apr. 2020.

[10] D. Ongaro, A. L. Cox, and S. Rixner, ‘‘Scheduling I/O in virtual machine
monitors,’’ in Proc. 4th ACM SIGPLAN/SIGOPS Int. Conf. Virtual Execu-
tion Environments (VEE), 2008, pp. 1–10.

[11] E. Asyabi, S. SanaeeKohroudi, M. Sharifi, and A. Bestavros, ‘‘TerrierTail:
Mitigating tail latency of cloud virtual machines,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 29, no. 10, pp. 2346–2359, Oct. 2018.

[12] S. Kim, D. Kang, and J. Choi, ‘‘Fine-grained I/O fairness analysis in vir-
tualized environments,’’ in Proc. ACM Res. Appl. Comput. Symp. (RACS),
2012, pp. 403–408.

[13] D. Kim, H. Kim, M. Jeon, E. Seo, and J. Lee, ‘‘Guest-aware priority-
based virtual machine scheduling for highly consolidated server,’’ in
Proc. Eur. Conf. Parallel Process. Berlin, Germany: Springer, Aug. 2008,
pp. 285–294.

[14] W. Jia, C. Wang, X. Chen, J. Shan, X. Shang, H. Cui, and Y.Wang, ‘‘Effec-
tively mitigating I/O inactivity in vCPU scheduling,’’ in Proc. USENIX
Annu. Tech. Conf., 2018, pp. 267–280.

[15] C. Li, S. Xi, C. Lu, R. Guérin, and C. D. Gill, ‘‘Virtualization-aware traffic
control for soft real-time network traffic onXen,’’ IEEE/ACMTrans. Netw.,
vol. 30, no. 1, pp. 257–270, Feb. 2022.

[16] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, ‘‘Xen and the art of virtual-
ization,’’ ACM SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 164–177,
Dec. 2003.

[17] A. K. Qumranet, Y. K. Qumranet, D. L. Qumranet, U. L. Qumranet, and
A. Liguori, ‘‘KVM: The Linux virtual machine monitor,’’ in Proc. Linux
Symp., vol. 1, 2007, pp. 225–230.

[18] C. A. Waldspurger, ‘‘Memory resource management in VMware ESX
server,’’ ACM SIGOPS Oper. Syst. Rev., vol. 36, pp. 181–194, Dec. 2002.

[19] Microsoft. Hyper-V. Accessed: Apr. 2022. [Online]. Available:
http://en.wikipedia.org/wiki/Hyper-V

[20] H. Kim, H. Lim, J. Jeong, H. Jo, and J. Lee, ‘‘Task-aware virtual machine
scheduling for I/O performance,’’ in Proc. ACM SIGPLAN/SIGOPS Int.
Conf. Virtual Execution Environments (VEE), 2009, pp. 101–110.

[21] Y. Hu, X. Long, J. Zhang, J. He, and L. Xia, ‘‘I/O scheduling model
of virtual machine based on multi-core dynamic partitioning,’’ in Proc.
19th ACM Int. Symp. High Perform. Distrib. Comput. (HPDC), 2010,
pp. 142–154.

[22] Y. Gao, Y. Zhang, and Y. Zhou, ‘‘Building a virtual machine-based network
storage system for transparent computing,’’ inProc. Int. Conf. Comput. Sci.
Service Syst., Aug. 2012, pp. 2341–2344.

[23] S. Govindan, A. R. Nath, A. Das, B. Urgaonkar, and A. Sivasubramaniam,
‘‘Xen and Co.: Communication-aware CPU scheduling for consolidated
Xen-based hosting platforms,’’ in Proc. 3rd Int. Conf. Virtual Execution
Environ. (VEE), 2007, pp. 126–136.

[24] H. R. Mohebbi, O. Kashefi, and M. Sharifi, ‘‘ZIVM: A zero-copy inter-
VM communication mechanism for cloud computing,’’ Comput. Inf. Sci.,
vol. 4, no. 6, pp. 1–10, Oct. 2011.

[25] Q. Shen,M.Wan, Z. Zhang, Z. Zhang, S. Qing, and Z.Wu, ‘‘A covert chan-
nel using event channel state on Xen hypervisor,’’ in Proc. Int. Conf. Inf.
Commun. Secur. Cham, Switzerland: Springer, Dec. 2013, pp. 125–134.

[26] L. Cheng and F. C. M. Lau, ‘‘Offloading interrupt load balancing from
SMP virtual machines to the hypervisor,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 27, no. 11, pp. 3298–3310, Nov. 2016.

[27] Common/Schedule.c. Accessed: Apr. 2022. [Online]. Available:
https://github.com/mirage/xen/blob/master/xen/common/schedule.c

[28] S. Xi, J. Wilson, C. Lu, and C. Gill, ‘‘RT-Xen: Towards real-time hyper-
visor scheduling in Xen,’’ in Proc. 9th ACM Int. Conf. Embedded Softw.
(EMSOFT), Oct. 2011, pp. 39–48.

[29] J. Lee, S. Xi, S. Chen, L. T. X. Phan, C. Gill, I. Lee, C. Lu, and
O. Sokolsky, ‘‘Realizing compositional scheduling through virtualiza-
tion,’’ in Proc. IEEE 18th Real Time Embedded Technol. Appl. Symp.,
Apr. 2012, pp. 13–22.

[30] Credit Scheduler. Accessed: Apr. 2022. [Online]. Available: https://wiki.
xenproject.org/wiki/Credit_Scheduler

[31] L. Zeng, Y. Wang, D. Feng, and K. B. Kent, ‘‘XCollOpts: A novel
improvement of network virtualizations in Xen for I/O-latency sensitive
applications on multicores,’’ IEEE Trans. Netw. Service Manage., vol. 12,
no. 2, pp. 163–175, Jun. 2015.

[32] S. Xi, C. Li, C. Lu, and C. Gill, ‘‘Prioritizing local inter-domain com-
munication in Xen,’’ in Proc. IEEE/ACM 21st Int. Symp. Quality Service
(IWQoS), Jun. 2013, pp. 1–10.

[33] Credit2 Scheduler. Accessed: Apr. 2022. [Online]. Available: https://wiki.
xenproject.org/wiki/Credit2_Scheduler

[34] G. Lettieri, V. Maffione, and L. Rizzo, ‘‘A study of I/O performance of
virtual machines,’’ Comput. J., vol. 61, no. 6, pp. 808–831, Jun. 2018.

[35] C. Li, S. Xi, C. Lu, C. D. Gill, and R. Guerin, ‘‘Prioritizing soft real-time
network traffic in virtualized hosts based onXen,’’ inProc. 21st IEEEReal-
Time Embedded Technol. Appl. Symp., Apr. 2015, pp. 145–156.

[36] Y. Liang and H. Dai, ‘‘Application virtualization: An agent encapsulation
of software in virtual machines to archive the execution performance in
hosts,’’ in Proc. IEEE Int. Conf. Parallel Distrib. Process. Appl., Big
Data Cloud Comput., Sustain. Comput. Commun., Social Comput. Netw.
(ISPA/BDCloud/SocialCom/SustainCom), Sep. 2021, pp. 618–625.

[37] T. Zhang, L. Linguaglossa, M. Gallo, P. Giaccone, L. Iannone, and
J. Roberts, ‘‘Comparing the performance of state-of-the-art software
switches for NFV,’’ in Proc. 15th Int. Conf. Emerg. Netw. Exp. Technol.,
Dec. 2019, pp. 68–81.

[38] X. Ling, H. Jin, S. Ibrahim, W. Cao, and S. Wu, ‘‘Efficient disk I/O
scheduling with QoS guarantee for Xen-based hosting platforms,’’ in Proc.
12th IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput., May 2012,
pp. 81–89.

[39] X. Wang, X. Xie, H. Jin, X. Shi, W. Cao, and X. Ke, ‘‘A disk bandwidth
allocation mechanism with priority,’’ J. Supercomput., vol. 66, no. 2,
pp. 686–699, Nov. 2013.

[40] J. Lee and H. Yu, ‘‘I/O strength-aware credit scheduler for virtualized
environments,’’ Electronics, vol. 9, no. 12, p. 2107, Dec. 2020.

[41] V. Venkatesh and A. Nayak, ‘‘Optimizing I/O intensive domain han-
dling in Xen hypervisor for consolidated server environments,’’ in Green,
Pervasive, and Cloud Computing. Cham, Switzerland: Springer, 2016,
pp. 180–195.

[42] Ubuntu Manuals ‘Stress.1’. Accessed: Apr. 2022. [Online]. Available:
http://manpages.ubuntu.com/manpages/bionic/en/man1/stress.1.html

[43] Ubuntu Manuals ‘iPerf.1’. Accessed: Apr. 2022. [Online]. Available:
http://manpages.ubuntu.com/manpages/bionic/en/man1/iperf.1.html

[44] Ubuntu Manuals ‘dd.1posix’. Accessed: Apr. 2022. [Online]. Available:
http://manpages.ubuntu.com/manpages/bionic/en/man1/dd.1posix.html

[45] Ubuntu Manuals ‘SysBench.1’. Accessed: Apr. 2022. [Online]. Available:
http://manpages.ubuntu.com/manpages/bionic/en/man1/sysbench.1.html

[46] Kali ‘hping3’. Accessed: Apr. 2022. [Online]. Available: https://www.
kali.org/tools/hping3/

[47] R. Chi, Z. Qian, and S. Lu, ‘‘Be a good neighbour: Characterizing per-
formance interference of virtual machines under Xen virtualization envi-
ronments,’’ in Proc. 20th IEEE Int. Conf. Parallel Distrib. Syst. (ICPADS),
Dec. 2014, pp. 257–264.

[48] L. Liu, H. Wang, A. Wang, M. Xiao, Y. Cheng, and S. Chen, ‘‘VCPU as
a container: Towards accurate CPU allocation for VMs,’’ in Proc. 15th
ACMSIGPLAN/SIGOPS Int. Conf. Virtual Execution Environments (VEE),
2019, pp. 193–206.

[49] G. Joshi, S. T. Shingade, and M. R. Shirole, ‘‘Empirical study of virtual
disks performance with KVM on DAS,’’ in Proc. Int. Conf. Adv. Eng.
Technol. Res. (ICAETR), Aug. 2014, pp. 1–8.

[50] B. Mao, S. Wu, and L. Duan, ‘‘Improving the SSD performance by
exploiting request characteristics and internal parallelism,’’ IEEE Trans.
Comput.-Aided Design Integr., vol. 37, no. 2, pp. 472–484, Feb. 2018.

[51] W. Cheng, C. Li, L. Zeng, Y. Qian, X. Li, and A. Brinkmann, ‘‘NVMM-
oriented hierarchical persistent client caching for Lustre,’’ ACM Trans.
Storage, vol. 17, no. 1, pp. 1–22, Feb. 2021.

[52] T. I. Papon and M. Athanassoulis, ‘‘A parametric I/O model for modern
storage devices,’’ in Proc. 17th Int. Workshop Data Manage. New Hardw.
(DaMoN), Jun. 2021, pp. 1–11.

[53] F. Xu, W. Ye, Y. Liu, and W. Zhang, ‘‘UFalloc: Towards utility max-min
fairness of bandwidth allocation for applications in datacenter networks,’’
Mobile Netw. Appl., vol. 22, no. 2, pp. 161–173, Apr. 2017.

[54] J. Tian, Z. Qian, M. Dong, and S. Lu, ‘‘FairShare: Dynamic max-
min fairness bandwidth allocation in datacenters,’’ in Proc. IEEE Trust-
com/BigDataSE/ISPA, Aug. 2016, pp. 1463–1470.

[55] Y. Yoo, G. Yang, M. Kang, and C. Yoo, ‘‘Adaptive control channel traffic
shaping for virtualized SDN in clouds,’’ in Proc. IEEE 13th Int. Conf.
Cloud Comput. (CLOUD), Oct. 2020, pp. 22–24.

[56] G. Yang, Y. Yoo, M. Kang, H. Jin, and C. Yoo, ‘‘Bandwidth isolation guar-
antee for SDN virtual networks,’’ in Proc. IEEE Conf. Comput. Commun.,
May 2021, pp. 1–10.

VOLUME 10, 2022 73143

J. Lee et al.: Fine-Grained I/O Traffic Control Middleware for I/O Fairness in Virtualized System

[57] D. Li, M. Dong, Y. Tang, and K. Ota, ‘‘A novel disk I/O scheduling frame-
work of virtualized storage system,’’ Cluster Comput., vol. 22, no. S1,
pp. 2395–2405, Jan. 2019.

[58] H. Tan, C. Li, Z. He, K. Li, and K. Hwang, ‘‘VMCD: A virtual multi-
channel disk I/O scheduling method for virtual machines,’’ IEEE Trans.
Services Comput., vol. 9, no. 6, pp. 982–995, Nov. 2016.

[59] S. Wu, S. Tao, X. Ling, H. Fan, H. Jin, and S. Ibrahim, ‘‘IShare: Balancing
I/O performance isolation and disk I/O efficiency in virtualized environ-
ments,’’ Concurrency Comput., Pract. Exper., vol. 28, no. 2, pp. 386–399,
Feb. 2016.

[60] Z. Shao, K. Zhang, and H. Jin, ‘‘Improving fairness of network bandwidth
allocation for virtual machines in cloud environment,’’ in Proc. IEEE Int.
Black Sea Conf. Commun. Netw. (BlackSeaCom), Jun. 2016, pp. 1–5.

[61] L.Mei andX. Lv, ‘‘Optimization of network bandwidth allocation in Xen,’’
in Proc. 17th Int. Conf. High Perform. Comput. Commun., IEEE 7th Int.
Symp. Cyberspace Saf. Secur., IEEE 12th Int. Conf. Embedded Softw. Syst.,
Aug. 2015, pp. 1558–1566.

JAEHAK LEE (Member, IEEE) received the B.S.
degree in computer science and engineering from
the Tech University of Korea, Gyeonggi-do, South
Korea, in 2017. He is currently pursuing the Ph.D.
degree with Korea University, Seoul. His cur-
rent research interests include virtualization, dis-
tributed systems, and resource management.

HWAMIN LEE received the B.S., M.S., and Ph.D.
degrees in computer science education fromKorea
University, Seoul, South Korea, in 2000, 2002, and
2006, respectively. She is currently a Professor
with the Department of Medical Informatics, Col-
lege of Medicine, Korea University. Her research
interests include cloud computing, time series data
prediction, medical data analysis, deep learning,
machine learning, and SW convergence.

HEONCHANG YU (Member, IEEE) received the
B.S., M.S., and Ph.D. degrees in computer science
and engineering from Korea University, Seoul,
South Korea, in 1989, 1991, and 1994, respec-
tively. Since 1998, he has been a Professor of
computer science and engineeringwith Korea Uni-
versity. From January 2015 to December 2020,
he was the Vice President of the Korea Information
Processing Society, South Korea. From September
2019 to August 2020, he was a Visiting Professor

of electrical and computer engineering with the UTSA. His research interests
include cloud computing, virtualization, distributed computing, and fault-
tolerant systems. He was awarded the Okawa Foundation Research Grant of
Japan in 2008.

73144 VOLUME 10, 2022

