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ABSTRACT The main and pivot part of electric companies is the load forecasting. Decision-makers and
think tank of power sectors should forecast the future need of electricity with large accuracy and small
error to give uninterrupted and free of load shedding power to consumers. The demand of electricity can be
forecasted amicably by many Machine Learning (ML), Deep Learning (DL) and Artificial Intelligence (AI)
techniques among which hybrid methods are most popular. The present technologies of load forecasting and
present work regarding combination of various ML, DL and AI algorithms are reviewed in this paper. The
comprehensive review of single and hybrid forecasting models with functions; advantages and disadvantages
are discussed in this paper. The comparison between the performance of the models in terms of Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE)
values are compared and discussed with literature of different models to support the researchers to select the
best model for load prediction. This comparison validates the fact that the hybrid forecasting models will
provide a more optimal solution.

INDEX TERMS Load forecasting, machine learning, load shedding, root mean squared error, mean absolute
percentage error.

I. INTRODUCTION
There is a need of uninterrupted provision of current to load
system in modern power house. This need a suitable predic-
tion about present and future load demands with very little
errors. To achieve this goal, scholars and scientist tried to
develop an optional and most efficient method called load
forecasting, in which demand of future consumption of elec-
tricity is predicted. Many decisions such as unit commitment,
off line network, dispatch and fuel allocation and several
operations are controlled by load forecasting [1]. This pro-
vides a concept to power companies about consumption of
electricity in future and time to reduce the difference between
demand of load and generation capacity. The prediction of
demand reduces the cost of power generation and helps to
develop an organized power utility system. Several tech-
niques based on machine Learning (ML) are used by energy
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and power utility companies to balance the demand and gen-
eration by predicting the need of energy and power. Load
forecasting is a technique to manage supply and demand.
However, the analysis of different affecting direct and indirect
factors is required in this very difficult task. Although, there
are a lot of benefits of using techniques of load forecasting,
but there are some challenges in the way of accuracy of the
methods. The convoluted and stochastic process is used in
load forecasting. In the completion of forecasting, the data is
influenced by weather related factors. So, the load of present
hour depends on previous hour load, previous day load,
demographic data, weather conditions, number of devices in
forecasting area, economic data, number of customer and
type of customer [2]. It is essential to maintain low load
forecasting error in such complex situation. The measures
such as Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), andMeanAbsolute Percentage Error (MAPE)
are determined in percentage and are the measures of predic-
tion accuracy. To evaluate the certain algorithm, the values
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are to be kept in range of few percentage points. The key
component of the model of load forecasting is the load data.
In order to train the model, it is needed to know the pattern
of consumption of load data. So, the load data should be
prepared for the purpose of training. The errors in data and
missing values are corrected.

After that, the data about other factors such as historical
event and historical weather is collaborated with electrical
data. The accuracy in load forecasting depends on such fac-
tors. All the collected data is analyzed and different models
are chosen for the process of load forecasting. The best accu-
rate model is selected among all the models. The accuracy of
the model also depends on other several factors. The variation
in most of the factors largely depends on equipment and loca-
tions. These are also should be considered during the develop-
ment of precise and accurate model. For the development of
model, these factors are taken as input variables. Sometimes,
all such factors are not considered due to their unavailability.
Respective sources are used to collect the data about factors
to develop a model in certain region. These respective sources
may be weather office for weather data, and calendar for
time factor. The accurate and precise load forecasting can
be proved a great profit for electric utility companies but un-
necessary errors can cause a loss of infrastructure and large
amount of finance.

Haida and Muto et al. [3] described that negative and
positive errors in forecasting may enhance the cost of elec-
tricity. Only decrease of 1% in mean absolute percentage
error leave a impact of 3-5 % on the production side by
minimizing generation cost from 0.1% to 0.3% [4]. Recently,
renewable energy sources are gaining attention of electric
companies and government. Some of the great challenges
can be influenced by enhancing the progress in renewable
energy sources. Time and location dependent nature of wind
and solar energy is a challenge for electric company to cre-
ate balance between load and variable production from new
infrequent sides. Research is going on to replace traditional
dispatch techniques with newly dispatch techniques which
can be processed with wind and solar like energy sources
[5]–[8]. The focus of this review paper is on Machine Learn-
ing based single and Hybrid methods.

Smart grid is a modern, accurate and fast electricity dis-
tribution and transmission network. The security, reliability,
efficiency and precision of the grid are developed by using
control, technologies, communication network and modern
information. The planning and operation of electric power
system strongly depends on important process of load fore-
casting. In terms of planning horizon’s time, the load forecast-
ing is divided into short term (up to 1 day/ week)medium term
(1 day/ week to year) and long term (more than 1 year) [9].

The single predictive models are designed by Artificial
Neural Network (ANN) and Support Vector Machine (SVM)
learning methods. Before the description of ANN and SVM
based hybrid algorithms, several known methods are pre-
sented in this paper. Such two algorithms have been used to
optimize these single methods. The accuracy in forecasting

FIGURE 1. Flow diagram of single and hybrid models for load forecasting.

improved by experimenting the three or more single methods
on being the success of models based on two methods. The
previous and present work on single models for short term
forecasting have been reviewed in this paper. The significance
and efficacy of the contingent factors based models have
been evaluated statistically. The flow of useful information
is shown in figure 1. The main contributions of this review
paper are described next.

A. NEED OF FORECASTING
Since years, researchers are in search to improve the revenues
and efficiency for the distribution and generating companies
by developing an accurate load forecasting model. So far, this
has invented many states of art methods. The cost effective
supply and transmission can be made accessible by forecast-
ing. Over and under consumption of production capacity can
be avoided by well forecasting strategies. Forecasting can
help to utilize the best possible capacity of electricity. The
installation of future plants can be related accurately with
future demand of consumption.

B. RESEARCH QUESTIONS
Recently, researchers had to face different challenges while
improving the accuracy and precision of such models. Few
of them had been described below:
1. To increase the forecast value by using single or inte-

grating single methods.
2. The sudden change in prices and corresponding price

based demand creates difficulty in getting accurate data.
3. To find best models for the investigation of static and

dynamic time series forecasting.
4. Electric load forecasting relies on weather condi-

tion. Sometimes, unpredictable and sudden changes in
weather condition may cause large error in load fore-
casting. This leaves a negative impact on the efficiency
and revenue.
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5. Further, it is difficult to get an accurate and precise
demand forecast which is influenced by variable tem-
perature and humidity.

6. Regular load forecasting models also affected by the
sudden disturbances in power system. Unexpected faults
result the development of unreliable and poor forecast-
ing system.

7. Electrical distribution companies may face a big loss if
they did not understand and take a decision about an
acceptable error in short term load forecasting.

The other challenges for today researchers and utility com-
panies are as Capacity planning • production and transmis-
sion capital investment • Financial forecasting • Effective
Power Procurement Network Planning • Selling and saving
of Excess Power • Planning and strategy of fuel ordering
• Optimum Supply Schedule • Renewable Planning.
According to our best knowledge, there has been no review

published which covers all the possible single and hybrid
methods based on different load forecasting techniques. Also
there is no extensive literature on the applications at the level
of distribution grid for the comprehensive analysis including
technical and non-technical losses, monitoring and opera-
tion, forecasting, predictive maintenance, flexible planning
and interaction and relationship among them. Much of the
identified applications lead to outputs which can be used as
inputs for other applications. The important contributions of
this review are listed next.

C. CONTRIBUTIONS
A holistic analysis of factors affecting the load forecast-
ing along with benefits have been described in section II.
Section III consists of categories of load forecasting. The
classical load forecasting models such as economic and time
series model have been provided in section IV. The time
scale based types of forecasting techniques are detailed in
section V. Also the recent published literature on the time
scale based techniques is presented in the form of graph in
this section.

The evaluation and comparison of different output of the
techniques and models have been made by statistical formu-
las. Such formulas are detailed in section VI. Section VII
describes the data pre-processing techniques. The single
method for load forecasting including learning based meth-
ods; rule based methods have been detailed in section VIII.
Also, energy management and applications of deep learning
for wind forecasting is described in this section. Table 3 sum-
marizes the uses of deep learning (DL) schemes in electric
load forecasting. The comparison between the DL and other
methods for different grid systems has been made in table 3.
The comparison has been made in term of quantitative values.

The applications of deep learning methods in power load
forecasting are described in section IX. The detailed section
of statistical methods, probabilistic methods and probabilis-
tic deep learning are described in next three sections. The
section X consists of hybrid methods based on artificial
neural network and support vector machine with sub section

FIGURE 2. Flow chart of the development of load forecasting model.

which are described in detail. The structure of extreme learn-
ing machine for single cluster was already published. In this
review, structure of extreme learning machine for multiple
clusters has been described. Modern techniques with smart
grid and super smart grid are introduced and discussed in
the section XI and XII describes the conclusions with way
forward and future trends.

II. ASPECTS OF LOAD FORECASTING
A. FACTORS AFFECTING LOAD FORECASTING
The experimental process of load forecasting depends on dif-
ferent agents which in result influence its precision. To obtain
correct prediction, the dependent factors are needed to be
selected carefully. The minor and major factors influence
forecasting at each step but economic, time and weather are
more considerable factors. The development of forecasting
model is depicted in figure 2. A significant attention is needed
in the selection of model because different algorithms are
different variable parameters. The factors affect the selection
of model and collection of data are described as follows.

1) WEATHER FACTOR
In the domain of load forecasting, the independent variable
is the weather which influences the agricultural and domes-
tic consumer. The consumer’s behavior is affected by the
weather. For example, in cold and hot seasons, the consump-
tion of electricity increases due to turning ON and OFF of
cooling and heating devices. This increases the demand of
electricity in coolest and warmest seasons as compared to
average temperature days. Also, sudden decrease in tempera-
ture can lead less consumption of temperature and so there is
a probability of over-estimated load forecasting. The demand
of future load is predicted by the results of weather forecast in
different models. Temperature, dew factor and humidity are
the weather factors. Also, electric utility companies use wind
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chill index (WCI) and temperature humidity index (THI).
WCI and THI measure the winter’s cold stress and heat
discomfort in summer, respectively.

2) TIME FACTOR
The important and key factor in load forecasting is the time.
Ruzic et al. [10] observed the load curve of many grid stations
and concluded that load curve has ‘‘day time’’, ‘‘week day’’,
‘‘week of month’’, and also ‘‘month of season’’ properties.
This also mentions that the accuracy and precision of the
prediction relies on current data as well as previous day data.
Further, the detection of load by timeframe is very important
as it defines the quantity of data needed to run the process.

3) ECONOMIC FACTOR
Degree of industrialization, load management and price of
electricity are the economic factors which influence the max-
imum demand and average load system [11]. The perfection
of load forecasting is determined by influential level such as
description of devices, behavior of customer, local popula-
tion, compatibility of equipment and levels of employment.
Such factors should be calculated for the prediction of long
term forecasting in particular areas because the demand and
extra generation of load affect the selection of model as well
as acquisition of data [12].

B. BENEFITS
There are many advantages of load forecasting which make
it interesting field for researchers. Since, from the early time
of generation of electricity, there was a blazing question for
the electric companies, how to balance the ever-enhancing
demand of load and limited resources by determining the
demand of load for the next hour, day and years. Although,
the renewable energy resources have reduced the challenges
of management but the process of energy harvesting from
renewable resources is still cumbersome and expensive. The
beforehand estimate of the load demand can optimize the dis-
patch of electricity. Apart from above mentioned advantages,
there are many other load forecasting advantages as follows:

I. The emission of carbon and use of fossil fuels can be
reduced by eradicating the over generation and under
generation through the maximum utilization of power
plants.

II. The maintenance of plants can be decided and well
planned by understanding the load demand in load
forecasting.

III. Load forecasting can be helpful in building a future
generation plant. It can help in designing the size of
plant, type of future plant, capacity, plant size and
location. So, the cost of infrastructure for distribution
and transmission can be estimated clearly.

III. CATEGORIES OF LOAD FORECASTING
There are two main groups of electric load forecasting’s
methods. (1) Classified methods (2) Artificial Intelligence

based soft computing technologies. Different features such
as type of customers, population, economic, indicators, time
factors, new technologies, weather conditions and price of
electricity affect the load forecasting [13]. The future value of
single variable and statistical methods are the base of classical
approach [14]. Repeated re-weighted least squares technolo-
gies; exponential smoothing, linear and multiple regressions
are the classical load forecasting technologies [15]. Support
vector machines, wavelet network, neural networks (NNS),
genetic algorithms (GAS) and fuzzy logic (FL) are soft com-
puting techniques [16]. Dependency of forecasting model
on mathematical analysis, divide them into two categories:
(1) Quantitative and (2) Qualitative methods. In quantitative
techniques, the future forecasting is a function of past data,
so these are considerable when past data is available. But
the qualitative techniques depend on judgment and opinion of
expert and consumers and such techniques are considerable
when past data is not available [15].

IV. CLASSICAL LOAD FORECASTING MODELS
Econometric models and time series models are mostly used
classical load forecasting models. Such technologies are
deducted from the load relating observations of past, while
the econometric methods are the combination of statistical
techniques and economic theory [17].

A. ECONOMIC METHOD
In order to meet the demand of electric forecasting, the statis-
tical techniques and economic theory are combined in econo-
metric approach. So, the relationship between consumption’s
influencing factors and energy consumption can be estimated
through this approach. Further, time series and least square
method are used to estimate the relationships. The latest
historical data is used to assemble the estimates, when con-
sumption of electricity in industrial, residential, commercial
sectors is measured as a function of economic, weather, and
other factors [16], [18], [19]. The econometric is beneficial
because it furnishes comprehensive information about future
demands, also why future demand is increasing and how it
is affected by different factors [16], [18]. Despite of such
benefits, the modification in electricity, does not change in
the forecast duration as in the past [18]. Thus its unsuccessful
is to admit the interdependence between quantity and prices.

B. TIME SERIES MODELS
The load evolution is analyzed by time series methodolo-
gies in order to discover the dynamic attribute of load and
to deduce them for future through mathematical tools. So,
it is advantageous to break the load into constituent and
separately treated them [17]. The prediction of time series
can be considered as an issue of model formation that give
rise to mapping between input and output values. After the
model formation, the future values can be forecasted which
depends on past and recent values [9]. So, the structural
simplicity is the benefit of time series models. Further, under
study variable’s observations are absolute sufficient. Instead
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of such advantages, the cause and effect relationship is not
described by them [20]. So, the changes occur in variable are
not provided by the argument of the time series model.

V. TIME HORIZON’S BASED TYPES OF LOAD
FORECASTING
On the basis of time horizon, there are four classes of load
forecasting. The implementation of different machine learn-
ing algorithms based on four classes: VSTLF, STLF, MTLF
and VSTLF. The popular class of load forecasting is VSTLF.
The future load is forecasted by past load in VSTLF [21]. So,
many factors including information of used land, economics,
and temperature can be optional. Time scale or time horizon
is the time period required to generate the forecasts. It is the
important parameter to classify the forecasting techniques in
smart grid systems [22]. Energy forecasting is divided into
following four types according to time scale.

A. VERY SHORT TERM FORECASTING (VSTLF)
This type of forecasting consists of time scale fromminutes to
hour (0-3h) [23]. It can help to deal with random variations in
renewable energy production which can be predicted before
very short duration of time. It has many uses relating renew-
able energy sources (RES) including solar and wind produc-
tion forecasting [24], [25]. A hybrid approach consisting of
fuzzy logic and artificial neural network (ANN) was used
by potter et al. [26] to forecast the Tasmanian wind system
before 2.5min.

B. SHORT TERM FORECASTING (STF)
It is the technique to forecast the energy forecasting ahead
of few minutes to few days. It has a key role in different
grid operations involving reliability analysis and dispatch
analysis [27]. Further, it helps to avoid over estimation and
under estimation of the energy demand and thus contribute
substantially in the reliability of grid [28].

C. MEDIUM TERM FORECASTING (MTF)
It is used for time scale expands from few days to months
ahead during a year [29]. It helps maintenance, adequacy
assessment and fuel supply in smart grid systems. Further,
it plays an important role to evaluate the financial attributes
of energy system by contributing to risk management [30].

D. LONG TERM FORECASTING (LTF)
This type of forecasting involves time scale ranging from
months to even years. LTF is very important for every produc-
tion and load growth planning operations for long duration
of time [31], [32]. The big advantage of LTF is that it can
remove the effects of random fluctuations occur in short term
and make the prediction of long term trends. Azad et al. [33]
used neural network to predict the Malaysian meteorological
station’s winds speed swing for a year in order to control
the challenges caused by irregular nature of wind production.
The figure 3 shows the number of publications about energy
forecasting systems with respect to time scale with the time

FIGURE 3. Number of publications with respect to time scale.

interval of five-year duration since last two decades. During
this period, STF stands first, while second most numbers of
publications are made for LTF. The previous research made
STF the most widely used forecasting technique for grid
operations and planning in recent times. The suitable choice
of the forecasting time scale is important to time the hyper
parameter of the forecasting method. Relating this content,
the author [34], [35] focused on selection of relevant time
scale to build the machine learning model.

The modeling relationships among time, weather
conditions and load are not used but the estimate of recent
discovered load to nearly future is used. There are very few
methods for VSTLF including genetic algorithm, autoregres-
sive moving average models and artificial neural network.
STLF is utilized for time hardly fromminutes to hours. STLF
is the important source of information for daily operations
and it is important for system operations [36]. Researchers
are taking more interest to design predictive models because
STLF can be used to approximate the long time load.

It is essential to have accurate predict knowledge of affect-
ing factors to improve short termmodel. The relation between
demand of load and factors is the basic purpose to look
for because instantaneous demand may be different. For
duration of days to months, usually MTLF is used for load
forecasting [37]. It becomes popular in peak summer or
winter. For load duration from few weeks to many years,
LTLF is considered [38]. The factors including weather data,
characteristics of install devices at areas of interest, history
of load and numbers of customers are accounted in it. The
factors of economic are taken into account for long period
methods of load forecasting. Load based companies among
the factors, time period and applications has been described in
table 1.

The most popular method among all four methods is STLF.
It plays a crucial role in making power system’s operating
strategies due to its intrinsic connection with other class of
forecasts. The addition of economic factor in STLF changed
it into MTLF and LTLF. Also, STLF can be converted into
VSTLF by the addition of previous hours loads as input factor
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FIGURE 4. Conversion flow process between STLF and LTLF, MTLF, VSTLF.

in STLFmodel. STLF can capture the auto correlation of load
of present hour and loads of previous hour. By taking STLF as
a base, new series can be prepared and the residuals of previ-
ous loads can be obtained. By the addition of future residuals,
into STLF, the VSTLF can be obtained. Figure 4 shows the
conversion process flow between STLF and LTLF, MTLF
and VSTLF. As it is shown in figure 5, load and weather
history are taken as input in the processing of STLF method
to model the extrapolating process with the summation of
weather forecast data. The minute to hours’ load prediction
can be performed by the forecasting data. A lot of STLF
techniques are designed for model. Few of them are regres-
sion analysis, fuzzy logic (FL), hybrid methods, time series,
artificial neural network (ANN), genetic algorithms (GA’s)
and support vector machine (SVN) as shown in figure 6.

In current research, the methods of Computation Intelli-
gence (CI) are mostly used. CI is considered as most potential
computer algorithms to intuitively learn a specific task from
past data. The unique property of CI methods is their ability
for independent operation with no need of quantitative corre-
lations or difficult mathematical formulations between inputs
and output. The hybridized type of CI models has become
more efficient as compare to their counterpart’s single model.

VI. EVALUATION CRITERIA
To check the correctness of the methods used for the predic-
tion of real values of load, different criteria are utilized to
evaluate the techniques of load forecasting. The research of
many researchers based on statistical metrics to optimize the
precision of their model, newly developed statistical metrics
such as probabilistic load forecasting metrics. Due to wide
adaptation and extraordinary academic values in industry,
literature on probabilistic forecasting is still in developing
phase. The most important static metrics used by researchers
are shown in table 2.

FIGURE 5. Flow chart of STLF method.

FIGURE 6. Mostly used single methods for STLF.

Here, n corresponds the number of samples, yi′ and yi are
the predicted and actual values of the model. Every metrics
have disadvantages as well as advantages. Two-degree loss
function is provided by RMSE but it gives an extra weight to
large errors as compare to small ones. Naturally, the average
error can be calculated byMAE.MAPE can be applied to low
and high volumes products and it does not depend on scale.
It may lead to biased forecasting due to differential penalty.
Difficulty in controlling zero and small denominators are the
weak points of MAPE. Such weak points are not related
to problems of traditional load forecasting because of zero
or very low level load at aggregated level [39], [40]. Also,
the values of such metrics vary for different parameters and
datasets. So, the comparison among the outcomes of different
techniques is absolute difficult. For comparison, there is no
such task to experiment the methods in a dataset.

VII. DATA PRE -PROCESSING TECHNIQUES FOR ENERGY
FORECASTING
The early important phases in data investigation are the
pre -processing and data representation. The incorrect and
misleading forecasting outcomes can be produced by the
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TABLE 1. Different types of load forecasting methods.

processing of data with redundant and irrelevant information.
The pre- processing of raw data can be carried out by using
different methods including cleaning feature engineering,
normalization, transformation and dimensionality reduction.
These, methods reshaped the data into usable training data set
that can be used as an input for processing techniques [41].
Many authors have used various pre- processing techniques to
increase the accuracy of forecasting for energy systems. Such
pre- processing techniques are described in the following
subsection.

A. SINGULAR VALUE DECOMPOSITION (SVD)
Feature engineering and dimensionality reduction are the
important considered pre -processing techniques. The authors
in [42] obtained the lower dimension’s data by decomposing
the high dimensional data. They used SVD prior to energy
prediction. The authors obtained dimensionality reduction by
using SVDdecompositionmatrix and tensors. Authors in [43]
proposed compression and data decomposition method and
k-means SVD based lead profiles. Initially, the sparsity of
load profiles was exploited by compressing the data through
coding technique. Then partial usage patterns (PUPS) were
decomposed and extracted by using decomposed k-SVD
method. The results of the proposed technique were better as
compared to k-means clustering and discrete wavelet trans-
form (DWT).

B. PRINCIPLE COMPONENT ANALYSIS (PCA)
PCA is traditional reduction technique applied to transform
the high dimensionality data into lower dimension orthogo-
nal matrix’s form called principal components. The features
present in PV generation data can be eliminated by using
the proposed method which has no importance in forecasting
output [44]. The predictions can be made more precise and

TABLE 2. Formulas for evaluation criteria.

accurate by proposed method. The results were compared
with particle swarm optimization and differential evolution
and found least RMSE values in their results.

C. AUTO ENCODERS (AE)
AEs are the category of neural network, which use encod-
ing layer to encode dimensional data. The reconstruction
ratio in monitored and decoding layer is used to analyze the
efficiency of AEs. Further, there are many versions of AEs
including sparse auto-encoders (SAE). Chen et al. [45] used
the unique type of SAE to classify the errors by recognizing
the extra voltage and determined the disturbances in power
quality. For changing weather conditions, the accuracy of
PV estimation was improved by the combination of AEs and
LSTM [46]. For multiple sites, authors used encode-decoder
to reduce the influence of seasonal uncertainty for day ahead
prediction.

D. CONVOLUTIONAL AUTO-ENCODERS (CAE)
Auto-encoders integrated with different layers of CNN are
called CAEs. Ryu et al. [47] highlighted the role of data
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dimensionality reduction and data compression using CAES.
They suggested a CAES based extraction technique to capture
the seasonal and variations by showing many dimensional
space into few dimensional vector. The authors used their
technique and claimed 19-40% reduction in reconstruction
error. They also claimed that compression ratio increased by
130% as compared to other standardmethods. Shao et al. [48]
combined CAE and LSTM to execute STLF involving time
and energy. The authors claimed that they obtained a 10%
improvement in prediction efficiency.

E. VARIATIONAL AUTO-ENCODERS (VAE)
VAE is a new type of AEs which performs encoding decod-
ing process by using the idea of Bayesian optimization and
variational inference [49], [50]. VAE combined with neural
layers and its versions were explained for the uses of anomaly
detection. Also, the process of forecasting became more
efficient [51]–[54].

VIII. SINGLE METHODS FOR LOAD FORECASTING
By using single methods which based on artificial intel-
ligence, nonparametric and parametric, load forecasting is
executed for short duration. Local fuzzy reconstruction and
ANN method, statistical models and specific regression are
employed in order to forecast from seconds to minutes [55].
Figure 6 shows the methods for STLF such as SVM, Time
series analysis, FL augments, expert systems, similar day
look up approach. Such single methods are also reliable for
MTLF. Methods being used for MTLF with the addition of
Adaptive Neuro Fuzzy Interference System (ANFIS), Grey
model and wavelet transform are used for LTSM [56]. A clear
picture of practical terminologies is crucial for the use of
above mentioned methods, which are compared and provided
in the following subsections.

A. LEARNING BASED METHODS
1) DEEP LEARNING
Dechter introduced the term of deep learning in 1986 [57].
After small modification in contents and algorithm, it was
called Deep Neural Network (DNN). It is a shallow structure
with hidden layer, input and output layer. However, the archi-
tecture of deep learning comprises more layers in compare
to three-layer multilayer perception (MLP). Deep learning
is a type of machine learning with non-linear aggregation
of multi-layer and sophisticated algorithm. DL provides
the solution of non-linear problems such as classification,
recognition and detection. The working of deep neural net-
work (DNN) is slow due to some technical restriction such
as training methods and computing resources, tough training,
unavailability of enough data, local minima and problems
optimization [58], [59]. The codes and difficult mathematical
algorithms made it to take much time to train. The scal-
able uses with large computing capacity can be developed
by using graphical processing unit (GPU). Geoff et al. [60]
and Yann et al. [61] used a newly algorithm called greedy

FIGURE 7. Aspects of DL.

layer-wise to create a breakthrough. According to these
advancements, DL can be used in field of genomics [62],
computer vision [63], robotics [64] and automatic vehi-
cles [65]. The top companies with excellent technologies such
as IBM, Facebook, Google, and Microsoft invested much
in research and development of project including Watson
platforms, Big sur, and Tensor flow. The problem categories,
performance indices, model parameters, used methods, case
of general use and performance indices are the important
aspect of DL. Such classifications are shown in figure 7.
Different fields such as social media, genomics computer,
finance and automotive have used DL. Further, time series,
any video, speech signal can be used by DL to detect, classify
or predict the data set [66]. Training algorithm based archi-
tectures of DL can be divided into different groups.

Deep learning’s network structure reflects the simulation of
cerebral cortex system of human where it copies the function
of human brain [67]. Deep learning has many applications in
different forecasting due to its property of nonlinearity mod-
eling [68]. It can exhibit hyper variable and high dimensional
functions, which make worse the computational problem in
forecasting modeling. In order to get precise output, many
layers are needed which cause over fitting problem. The com-
plex algorithms of deep learning need extra runtime. There
are many deep learning methods such as deep belief net-
works (DBN), Convolution neural network (CNN) and deep
auto encoder. Two distinct DNN models was proposed by
(Ryu et al. [68]) in order to learn the difficult relations in cur-
rent and past consumptions, weather changes for customers.

The load profile of 24 hours from the observations of past
data can be produced by this DNN model. The model for
forecasting of hourly load was suggested by He et al. [69].
The co-movement observation of Capula model is com-
bined with deep belief network which based on layer wise
pertaining. The comparison between classical DBN, Neural
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Network, Extreme Learning Machine (ELM) and Support
Vector Regression (SVR) in day week ahead forecasting
represents excellent results in proposed data driven method.
The important problem of over fitting in DL is described by
Shi et al. [70] by enhancing the volume and diversity of data.
The pooling based deep recurrent neural network (PDRNN)
was proposed to batch the profiles of customer’s load into
the pool of inputs. There are two stages of proposed model:
1) Load profiles pooling, 2) STLF with deep Recurrent Neu-
ral Network (D-RNN).

The uncertainties in pertaining factors and weather con-
ditions can be learned by this method. In Ireland, 920 smart
meters were tested by this proposedmethod and found outper-
forms SVR (13.1%), classical D-RNN (6.5%) and ARIMA
(19.5%) in terms of RMSE. Resident behavior based frame-
workwas designedwith DL based on long short termmemory
(LSTM) [71]. The high volatility and variability is the steady
nature of power system. The Capula Model is combined
with DBN to reduce this challenge and errors of forecast-
ing [72]. DP is a type of machine learning which depends
on deep architectures. Many processing layers are used to
arrange architectures in neural network to adjust the non-
linear relationships between response and independent vari-
able. Although DL has attained much attention of forecasting
community but its major disadvantage is that it suffers from
the issue of over fitting due to many layers. Shi et al. [70]
addressed the over fitting issue of DL and tried to enhance the
volume fed and data diversity into pool based deep recurrent
neural networks. According to this proposed methodology,
the addition of neighbor’s historical load data can increase
the input volume. In Ireland, 920 smart meters were tested
by this method and the results were satisfactory. The DL
architectures have been divided into five structures including
auto-encoders (AEs), convolutional neural network (CNN),
restricted Boltzmann machine (RBM), RNN and other inte-
grated approaches.

2) CONVOLUTIONAL NEURAL NETWORK (CNN)
CNN is deliberated to train high level attributes through
convolution [73]. CNN is widely used in sound processing,
image, speech and video [74]. Such networks have become
very popular due to their better attributes in object recognition
via competition and image [75]. CNN has many applications
in different fields such as individual recognition and traffic
signal recognition [76]. CNN has billions of interconnected
neurons and millions of weight values. The structure of CNN
via image classification is shown in figure 8A. The structure
consists of pooling layer, completely connected layer, input
image and convolutional layer [63].

3) AUTOENCODERS AND VARIANTS
An AE is the individually learning algorithm based on back
propagation (BP) to bring out a feature by using input data the
three layered structure consists of input, hidden and output
segment [61]. The encoder function F∅ consists of exhibition
of inputs and decoder function (r) rebuilds the input into

old representation. The encoder function, decoder function
and small dimensional space are combined to minimize the
reconstruction error to build the fundamental structure of
AE. The function of F∅ is to transform the input ‘x’ into
hidden representation h(t) through effective calculation, while
‘r’ performs the function of transformation of mapping from
hidden layer to output layer. Both functions are described
mathematically by equation (1) and (2). There are some
restrictions on the AE due to the hidden units so AE is used
in low dimensional representation of data.

h(t) = Fϕ
(
x(t)
)
→ h = s (W ∗ x + b) (1)

r = g∅′ (h)→ r = s
(
W ′ ∗ h+ b′

)
(2)

The set parameter for a model is Q = {W, b, W ′, b′}. The
parameters of data are variable such as bias vectors (b) and
(b′) with encoder and decoder weight function (W) and (W ′),
respectively. The model variables are optimized by minimiz-
ing the mean reconstruction function as indicated in equa-
tion (3). The error value of this auto encoder minimizes the
reconstruction error of L (x; r) [77].

JDAE (∅) =
∑
t

L(x(t), g∅(Fϕ(x(t)))) (3)

The use of AEs is preferred in case of high dimensional and
unlabeled data. The basic structure of AE provides base to
derive various learning algorithms such as denoising auto
encoders (DAEs) and stacked auto encoders. There are many
AEs in the structure of learning algorithm (SAE) as shown in
figure 8B [78]. While, the artificially reconstructed corrupted
data (x̃) taken from clean data (x) is used in DAE algorithm.
Then it is mapped to (h) by AE and is (x) is reconstructed.
Resultantly, the output is brought up by the uncorrupted data
and useful features are extracted.

4) RESTRICTED BOLTZMANN MACHINE (RBM)
RBM is a kind of ANN which consists of decision making
units and uniformly connected neurons. It is a non-linear
graphical developed model which represents probabilistic
distribution made of observational, hidden or visible vectors
[79], [80]. RBM can model the binary numbers into two
layers. Here, features are detected by binary pixels through
weighted links. The ‘‘visible’’ unit of RBM is represented
by the pixels while feature detectors are related to ‘‘hidden’’
units. The equation (4) represents the values of energy for the
common structures consists of visible and hidden units (h, v).

E (v, h) = vTWh− vT bv − hT bh (4)

Here, W represents the weight matrix between the visible
(v) layers and hidden (h) layers, bh and bv corresponds to
the biases hidden and visible variables, respectively. The
structures of designed Boltzmann machines are shown in
figure 8C. The same layer’s neurons are independent but
dependent on next layer. Such properties of RBM make it
faster as compared to classical Boltzmannmachines [81]. The
stack of RBMs forms the deep Boltzmannmachine [82], [83].
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FIGURE 8. Structures of DL algorithms (A) CNN, (B) AEs, (C) RBM, (D) RNN [87].

5) RECURRENT NEURAL NETWORK (RNN)
RNN is a class of artificial neural network (ANN) which
develop a directed graph and sequence unit by using network
of units. This grants the representation of dynamic temporal
conduct. Entire inputs are interconnected to each other in
RNN and foregoing hidden value is given as input to the
current state. So, the sequential data with changing length
can be handled by RNN which makes it useful for DL [84],
[85]. Usually, it is utilized in circumstances such as language
processing, market machine translation and text to speech.
The intrinsic structure of RNN is very deep since unfolded
time of RNN is described by the combination of many non-
linear layers. Different deep RNN structures with several
approaches have been suggested to perform better as com-
pared to classical RNN [81]. Among them long short term
memory (LSTM) is widely used solution [86]. The structure
of RNN and LSTM is shown in figure 8D.

IX. LOAD FORECASTING IN POWER AND WIND SYSTEMS
The adaptation and energy generation planning in power
systems played an important role to increase the impor-
tance of energy demand forecasting. The power system
should have the ability to handle changes in energy demand
and respond dynamically in distribution of energy opti-
mally and efficiently. Further, the optimum use of renewable
sources for smart grids should be taken. For maximum effi-
ciency, the smart power grids use adaptable and intelligent

elements imperatively. Such elements need modern tech-
niques for precise and accurate future energy generation and
energy demands estimates. The use of different models in
energy load forecasting depends on category of load fore-
casting. Energy consumption is a problem of time series
forecasting various linear methods of forecasting including
auto-regressive integrated moving average (ARMA), linear
regression (LR), auto-regressive integrated moving aver-
age (ARIMA) and non-linear methods including artificial
neural network (ANN), General regression neural network
(GRNN). Multi-layer perception (MLP) and support vector
machine (SVM) have been described in literature [88], [89].
Table (3) presents a comprehensive review of the applica-
tions of different DL methods in electrical load forecast-
ing. The comparative methods also have been presented in
table (3). As, it is clear from the table (3), that the contents
of table are mostly about short term load forecasting. The
most commonly used algorithms are of LSTM-RNN [90]
followed by RBM based [91] and DBN deep architectures
in this frame work of this topic. Different features of past
energy consumption data set have been derived by using
parallel components of CNN by [90] unlike relevant studies
of Bouktif et al. [92] and Jian et al. [93]. Bouktif et al. [59]
used the same data for MTLF and STLF studies to get maxi-
mum time lags and quantity of layers to predict performance
by making a comparison with other studies through LSTM
methods.
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TABLE 3. Summary of uses of deep learning schemes in electric load forecasting.

A. ENERGY MANAGEMENT BY DEEP LEARNING
Energy management by deep learning is the process in which
energy generation and consumption is observed, planned and
controlled. The cost of electric bills of consumers can be
reduced by better energy management [116], [117]. Energy
management integrates the renewable energy source (RES)
and energy storage system (ESS) in power systems [116].
The use of RES can be made optimal through proper man-
agement strategy. For example, cost can be reduced by shift-
ing all the ESS and loads to solar energy in day instead
of purchasing from utility companies. The life of ESS
can be enhanced by proper management strategy. Proper

charging and discharging of ESS up to safe specific limit can
increase the life of batteries. For optimum life of batteries,
the minimum and maximum storage levels are 10% and 90%
respectively [118]–[120]. The efficient energy management
can be attained by improving the energy production due to
sporadic power generation from renewable energy sources.
Various RESs and forecasting methods have been developed
by the researchers which have important properties including
temperature, solar irradiance and wind speed. There are three
primary steps in load forecast of wind and solar energy fol-
lowing deep learning as shown in fig 9. Firstly, the input data
is cleaned and normalized by data pre-processing step. Also,
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FIGURE 9. Flow chart of DL based wind energy forecasting.

the input data is cleaved into training, validation and testing
data sets. Secondly, the valid and appropriate model is created
by performing model training [103], [121]–[123]. Finally, the
trained model is used to perform forecasting process. Wind
energy forecasting based on deep learning techniques is given
in the following section.

B. APPLICATIONS OF DEEP LEARNING IN WIND POWER
SYSTEM
The concept of smart grid came out with the evolution of
presently developed power systems that can combine produc-
tion, demand of energy and storage areas. Flexibility is the
requirement of these grids to generate and distribute energy
at high level to reduce energy consumption and to minimize
its usage. Further, the planning and operation of power system
along with control evolution has become necessary due to lat-
est improvements in super and smart grid systems including
insistent requirement in quality and efficiency of power grids,
deregulation of electric markets, divergence of distributed
generation and exchange of power between utilities. In this
study, the scope of DL methods in load forecasting has been
discussed.

C. WIND ENERGY FORECASTING
Recently, wind energy has attained much attention due to
pollution free energy source, wind turbines emit the lowest
carbon [124]. The severe issues of fluctuations and uncer-
tainty in the generation of wind energy obstruct the economic
operations of power system. So, accuracy is necessary inwind
energy management system for residential sections. Without,
effective management, no optimal benefits from wind system
can be obtained. Most of the data sets about wind speed
were picked up from Asia with span up to three years and
consists of wind direction, humidity wind speed, temperature
and pressure. (Lin et al., 2019 andMosavi et al., 2019) [125],
[126] suggested a method for the forecasting of wind speed

for effective energy management, where they used genetic
algorithm (GA) along with deep learning. The parameters
of deep belief network (DBN) were determined by using
GA. The data of weather of different cities of Taiwan was
used [104], [127], [128]. The wind speed was forecasted
by exploiting the datasets of time series and multivariate
regression. GA and DBN based model was validated by
performing simulations [124]. The results showed the pro-
ductiveness of design model over opposite. Cheng et al.,
2018 suggested a model consisted of RNN, wavelet threshold
denoising (WTD) and an adaptive neuro-fuzzy interference
system (ANFIS) was developed by [129]. The model was
developed for wind energy forecast in residential sectors.
Wind speed was made smooth by WTD to capture the fluc-
tuation trends and data sets were used to train RNN. The
final prediction of wind speed was performed by upper layer
of ensemble model which was used further to predict the
wind power production. The outcome of the model ensures
its superiority over other models.

Large quantity of simulated scenarios based technique
known as probabilistic wind energy ramp forecasting
(P-WPRF) was proposed by [130]. The efficiency of the
model was verified by exploiting the public place data set
for area of Dallas, Texas, USA. The results were verified
by performing the simulations studies which confirmed the
effectiveness of their research work with higher stability and
accuracy. A model for the prediction of wind speed was
proposed by [131] under the cost based loss function. Various
effective forecasting for the wind speed was formulated by
developing a cost-oriented boosted regression tree (BRT).
The productivity of this model was verified by different
case studies with different data sets. Also the comparison
between the conventional unbiased and proposed method
was made. A hybrid approach called EWT-LSTML-Elman
was proposed for the prediction of wind speed [132], [133].
This approach is the integration of two RNNs and empirical
wavelet transformation (EWT). The data about wind speed
was decomposed by EWT into many sub-layers, and the low
frequency of sub layers was forecasted by LSTM network.
Finally, high frequency of sub-layer was predicted by Elman
neural network (ENN). Eleven forecasting algorithms were
benchmarked to verify the performance of this proposed
model. The experimental results showed the high precision.
The summary of different approaches for wind speed and
energy prediction is given in table 4.

Here, RMSEp means RMSE of proposed model and
RMSEc means RMSE of compared model and similarly
others.

The applications of DL methods in different fields have
been summarized in table 5.

D. EXTREME LEARNING MACHINE (ELM)
ELM is a kind of learning scheme which is utilized for single
hidden layer networks. ELM is considered as a quick learning
algorithm due to its remarkable capability of generalization
[197]. Ertugrul et al. [198] incorporated ELM into recurrent
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TABLE 4. Summary of approaches for wind speed and energy prediction.

TABLE 5. Summary of different deep learning based methods in electric load forecasting system.

neural networks (RNN) and named it as recurrent extreme
learning machine (RELM). This proposed RELM was used
to get high accuracy and small error rate. It was noticed
that RNN provide satisfactory results dynamic forecasting
system. So, the incorporation of ELM into RNN can be
very effective solution for forecasting model in actual time
dynamical systems.

Huang et al. [197] described the following reasons behind
the slow learning speed of neural network as compared to the
required speed: (1) use of learning algorithms based on slow
gradient to train the neural network, (2) the repeated tuning
of parameters of networks. A newly algorithm known as
extreme learningmachinewas proposed by the author to over-
come the above mentioned problem. The proposed algorithm
for single hidden layer feed forward neural networks (SLFNs)

which determine the output weight of SLFNs analytically.
ELM are feed forward neural network and consists of single
to multiple layers of hidden nodes. Such nodes are never
updated and are randomly assigned. There is no need to tune
the hidden layers due to interesting property of this model.
The structure of ELM formultiple structure is shown in figure
10, where m denotes the inputs as x1, x2, x3,. . . ..xm. The n
hidden layers are traversed by these inputs. From input to
these hidden layers, different weight (w1, w2,. . . . . .wn) are
assigned to each values of input neurons. The linear weights
β1, β2,β3. . . . . .βn are obtained from hidden layer to get pre-
dicted output Oj. It is thousand times faster than learning
algorithms of traditional feed-forward neural network [197].

The previous machine learning methods for load forecast-
ing were reviewed by Ma et al. [199]. It was emphasized
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FIGURE 10. Structure of ELM for multiple cluster.

by authors that ML methods are appropriate for STLF in
scalability and accuracy compared to conventional load fore-
casting methods. In [200], the photovoltaic generation was
forecasted through support vector machine by the authors.
They used the weather related data such as cloudy, rainy, clear
and foggy. Support vector regression was used for STLF in
energy system by [201]. The results of the proposed scheme
were compared with other techniques such as ANN and
ARMA.

Also, without facing the problems like over fitting,
improper rate of training and local minima, ELM approaches
solutions. A newly ensemble methodology was proposed for
STLF by Li et al. [202], where least squares regression,
wavelet transform and ELM are integrated.

Individual forecasters can be derived from the several com-
binations of decompositions levels and mother wavelet. Next
day hourly load can be predicted by 24 ELMS consisted
parallel model. Partial least squares regression methodology
is used to compose ensemble forecast by combining the
individual forecasts. The data obtained from two electric
companies for one hour and one day ahead load forecasting
was used to test the proposed method and improved accuracy
was found in outcome as compared to other models. Recur-
rent extreme learning machine (RELM) was proposed by
Ertugrul et al. [203] by integrating RNN with ELM. In fore-
casting dynamic system, the outcome of RNN is better as
compared to feed forward AAANN model. RELM model
is better due to low training time and its use in real-time
dynamical system

Zhang et al. [204] dealt with STLF which came out
from ELM under the management on Improved Gravitational
Search Algorithm (IGSA), which is the collection of Gravi-
tational Search Algorithm and partial Swarm optimization.

Improved extreme learning based STLF method was
proposed by Li et al. [205] which can choose automatically
the number of hidden neurons according to number of input
samples, which reduces the training error up to zero and as
possible the test error. ELM and Empirical mode decomposi-
tion (EMD) based STLF was proposed by Chen et al. [206].
Data of instantaneous frequency can be obtained from EMD
empirical approach through non-linear and non-stationary
data sets. Load series is decomposed by EMD to capture
the difficult features of electric load [207]. This method was
tested for half hour electric load in Queens land and Victoria
in Australia and the outcome was too much improved.

E. MULTILAYER PERCEPTION (MLP)
Park et al. [208] developed the architecture of MLP to predict
the 24 h and one h ahead load. The outcomes were totally
consistent with the real load with error value of 2.06% and
1.40 % for daily and hourly prediction data, respectively.
However, the temperature was the only weather data taken
in this study. According to the value of error, the holidays
had various pattern as compared to the initial week days
like Mondays. In that work, it was recommended to add
sophisticated topology in neural networks to capture these
data features. Alireza et al. [209] developed anMLPmodel by
classifying the interaction between temperature and load into
three kinds of weekly, days and hours trend. By clustering
these three modules and adaptive weight new strategy, one
to k-days ahead hourly load might be predicted dynamically.
For daily and hourly forecasts, the MAPE value of 2.34% and
1.67 % was recorded, respectively.

Perception is that algorithm which uses straight line to
divide the input. Further, it is a linear divider. The equation (5)
describes the single outcome ywhich is generated by percep-
tion by using linear combination based on different actual real
value input.

Y = ∅(
n∑

i=1

wixi+b)

Y = ∅
(
wTx+ b

)
(5)

where x and w corresponds to vectors of input and weights
respectively. ∅ is function of non-linear activation and b being
bias.

Basically, MLP is artificial neural network (ANN). Three
layered-structure of MLP is shown in figure 11. The signal
is received by input layer and prediction about input is made
by output layer. Two hidden layer in between of input and
output layer corresponds to the computation core machine of
MLP. It can manipulate input by continuously modifying the
weight metrics until the error between predicted and target
value becomes minimum. The issues of input selection and
NN structure were solved by developing a two nonparametric
method by Ferreira and Da Silva [210]. The outcome of
RBFs and MLP can be improved by this proposed model.
Ding et al. [211] made a comparison between NN and Naïve
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FIGURE 11. Structure of an ideal MLP.

model by using MLP. The analysis revealed that MLP model
is more accurate than Naïve model by 4.7%.

F. SELF ORGANIZING MAP (SOM)
SOM neural network is a method of unsupervised clus-
ter with unique property of producing local representation
of the input data [212]. Lamedica et al. [213] used the
Kohonen et al. [215] model to develop double stage load
forecasting for networking the load data into different load
profiles by deducing many features. In a second stage, the
forecasting was performed through the arrangement of super-
vised MLP. The proposed method decreased the error rate
as compared to outcome of MLP method. Lopez et al. [214]
proposed the algorithm of SOM for STLF. The historical load
and meteorological data was used to train the map. Further,
the influence of data frame and various input selection on
training the map was studied.

Xu et al. [31] developed the self-organizing map. It is
also called kohonen network. The visualization and analysis
of large dimensional data can be performed by this com-
putational method. Unsupervised learning train this ANN
type to produce discretized and small dimensional exhibition
of training samples known a map. Competitive learning is
applied in SOM and topological properties of input space
are preserved by using neighborhood function. Suppose data
items of n-dimensional Euclidean Vector Space

x (t) = [ξ1 (t) , ξ2 (t) , ξ3 (t) , . . . . . . ξn (t)] (6)

where, t represents the index of data observations of the
sequence in equation (6).

Suppose the equation (7) represents the ith model

mi (t)= [µi1 (t) , µi2 (t) , µi3 (t) , µi4 (t) , . . . . . . . . . µin (t)]

(7)

where t represents the index of generation of models in
sequence.

By using new item x(t) of data and previous value
mi (t), the new value mi (t + 1) can be calculated iteratively

as equation (8):

mi (t + 1) = mi (t)+ α (t) hci (t) [x (t)− mi (t)] (8)

where the correction size is defined by scalar factor α (t)
whose value reduces by increasing step index (t). The under
process model is described by index I and c corresponds to
the model with lowest distance from x(t) in Euclidean space.
The smoothing Kernel type factor hci (t) have value 1 when
i =c and its value reduces with the increase in grid distance
between the modelsmc andmi. Also, increase in step index t
decreases the spatial width of kernel. Such convergence deter-
mined step index functions must be selected very delightfully.

Fan et al. [216] improved the prediction accuracy and
learned time series load data by using conventional SOM
and parameters of weather information. The data of weather
and daily peak consumption of electricity of long Island and
New York was used in this study. The time duration of taking
values was from July1, 2001 to September 31, 2004. The
extension of algorithm of SOM was used, which was based
on error correction rule. The average of outcome of entire
neurons was taken to generate the peak load. The smallest
number of MAPE (1.93%) value was obtained by this model
using (15∗15) neurons. The model was validated by using
data of Spain energy consumption since 2001 to 2010. The
model forecasts daily market load with 2.32% MAPE value.

For the prediction of load, Aprillia et al. [217] made a sys-
tem as follows; An optimization algorithm to find and select
the suitable level of the wavelet breakdown, the transform of
discretewavelet to decompose data. They usedmultiple linear
regression to predict the outcome of the load. The proposed
system was tested for holidays and weekdays of all season
and builds a small forecasting error in compare to different
models. For load forecast, the multiple linear regression was
designed by Amral et al. [218]. The data of rainy and dry
seasons were taken in experiments. For dry days, the MAPE
error between forecasted and actual values was 3.52% and
for rainy days, it was 4.34% [178]. The relation between the
demand and weather condition was found through multiple
linear regression by Saber and Razaul [219]. The large data
was processed by multi core parallel processing. The MAPE
error value was about 3.99%.

G. RULE BASED METHODS
1) FUZZY C-MEANS (FCM)
Dunn et al. [220] developed the Fuzzy C-means method and
later Bezdek et al. [221] developed it. FCM is a clustering
method which connects one sample of data with two or more
clusters. Clustering is a widely used and popular numerical
tool that can discover certain patterns or structures in dataset
and there exist a certain similarity between the objects of
each cluster. Fuzzy set theory and one of the popular Fuzzy
clustering algorithm was proposed by Zedeh et al. [222].
He described the idea of uncertainty through the membership
function. Minimization of objective function is the base of
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FIGURE 12. Algorithm structure of FRBS.

FCM algorithm, which is described as equation (9):

Im =
N∑
i=1

C∑
j=1

µm
ijm > 1 (9)

where m is real and µij corresponds to the degree of mem-
bership function of xi, xi corresponds to ith of d-dimensional
calculated data and Cj is the center of d-dimension in cluster.
The approaching ability for nonlinear function and conver-
gence speed of Radial Basis function (RBF) made it higher
than BP network [223]. Zhu and He [224] introduced the use
of RBF model based on FCM to overcome the BP network’
issues such as local minima and low convergence speed.
The load data of actual power was used to test the proposed
model and the outcome revealed better mean percentage error
(4.04%).

2) FUZZY RULE BASE SYSTEM (FRBS)
The important application of fuzzy logic or fuzzy set is the
fuzzy rule base system. Fuzzy logic methods defined the
fuzzy sets and fuzzy numbers that can be described in linguis-
tic parameters. The inaccuracy of input and output variables
can be addressed by fuzzy logic methods. The verbally pre-
pared rules based fuzzy approach is overlapped in entire space
of parameter. The difficult non-linear relation is controlled
by using numerical interpolation. The general form of the
fuzzy rules is ‘‘IF A Then B’’, where A and B are linguistic
variables containing propositions.

A andB are known as the premise and consequence (result)
of rule, respectively. The tolerance for uncertainty and inac-
curacy is exploited by using the fuzzy rules of IF Then and
linguistic variables. Human brain’s ability to aggregate the
data and decision making information is copied by fuzzy
logic. The fuzzy input is generated by a ‘‘Fuzzyfier’’ to
‘‘Fuzzify’’ process by inserting crisp output or raw output
in it as shown in figure 12. The user determined the fuzzy
rule base to meet the need of forecasting system. The fuzzy
output is generated by the inference engine by following
the conditions given by Fuzzy input. For real applications,
‘‘Defuzzifier’’ convert the Fuzzy output into crisp input.
Knowledge and reasoning are combined for the FRBS. Rea-
soning is well known fuzzy set with more value logic sys-
tem that was developed by Lukasiwicz in 1930 and later on

changed by Zadeh in 1960 [222]. Ranaweera et al. [225]
comprehensively investigated the use of fuzzy logic system
for the problem of STLF. MAPE value (<2.3%) was shown
by this proposed model. The finding of maximum fuzzy rule
base was the important issue that was faced during the design-
ing of fuzzy model. Kang et al. [226] proposed an approach
for controlling and modeling the evolutionary design where
parameter and structure for fuzzy rule are simultaneously
evolved by using evolutionary programming. Khosravi et al.
[227] discussed the ability ofmethod to handle qualitative and
quantitative information and uncertainties’. Also, the use of
IT2FLS for the STLF was proposed by them. Subsequently,
they utilized the Takagi Sugeno Kang Fuzzy Inference sys-
tem for the development of IT2-TSK_FLS hybrid algorithm.
Hassan et al. [228] suggested a fuzzy logic model of type-2
(IT2FLS) where ELM was applied to tune the variables of
IT2FLS. Ali et al. [229] proposed historical and weather
parameters based fuzzy logic system for LTLF. The efficiency
of the model was 93.1% with MAPE value of 6.9%. Advan-
tages and limitations of single methods are stated in table 6.

X. STATISTICAL METHODS
These methods are traditional in nature and mostly used
in time series forecasting such as STF by employing the
historical data of smart grid [230]. To fit a regression model
on classical data this is the base of these methods. Then
model is validated by measuring the difference between the
predicted and actual values. The existing statistical methods
are described in this subsection.

A. AUTOREGRESSIVE MOVING AVERAGE MODEL (ARMA)
ARMA is the basic method which is commonly used in time
series investigation. It is made by combining auto regres-
sive (AR) and moving average (MA) methods. If (P) repre-
sents the order of AR model, then AR part can forecast the
value at time stamp (t) as a function of its foregoing value
(t-p). The observed data is formed by combining the previous
values with error term by using theMA part. Sansa et al [231]
used ARMA to forecast the winter day’s solar irradiation with
optimum 10% changes in the production. However, ARMA
is applicable only for static time series.

B. AUTOREGRESSIVE INTEGRATED MOVING AVERAGE
(ARIMA)
ARIMA is the generalized form of ARMA to deal
dynamic time series. In this context, the values of data are
replaced with the difference of previous and current values.
Amini et al. [232] used historical data to charge the electric
vehicle (EV). Similarly, it used to control and optimizes the
residential micro grid by [233], [234]. However, in large data
set, ARIMA provides large RMSE values and shows large
execution time for non-linear data. So, ARIMA is very suit-
able for linear data and time series [235]. An extra technique
such as long transformation is used in ARIMA models to
manage the non-linearity.
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TABLE 6. Advantages and limitations of different single load forecasting methods.

C. VECTOR AUTOREGRESSION
It is defined as an addition in univariate auto regression
for time series with (n) number. VAR has been used as an
statistical approach is energy forecast to get linear depen-
dencies among the many time series. The solar irradiation,
temperature and speed of wind of 61 location of America
were observed by using VAR [236]. The results showed lower
values of RMSE as compared to simple persistence method.

XI. PROBABILISTIC METHODS
Forecasting tendency is shifting from point to probabilistic
approach to meet the future generation and demand at disjoint
levels [237]. The importance of probabilistic methods was
reviewed over point prediction with changing requirements
of electric power industry [40], [238]. The past literature
regarding probabilistic forecasting has been identified in this
subsection. The literature is divided into non-parametric and
parametric approaches. These two approaches have been
briefly reviewed by authors in [8t]. Dowell et al. [239]
suggested a Bayesian probability and sparse VAR based
parametric probabilistic approach to predict the VST wind
power production with time interval of 5min in southeast-
ern Australian. The results of the proposed model showed
least RMSE value as compared to the standard VAR and
AR methods. Hong et al. [32] used parametric approach to
predict the probabilistic horizons energy consumption. Vari-
ous authors [240], [241] used probabilistic methods for price
forecasting. Weron et al. [242] highlighted the importance of
future demand forecasting in probabilistic shape to assist the
grid planning and operations in regard of energy production

and distribution. They forecasted the energy consumption
of around 3700 residencies in Ireland with time interval
of 30 min by using additional quantile regression (QR).
Liu et al. [243] assist the probabilistic forecasting by propos-
ing quantile regression averaging (QRA) with 90% percent
get PIs for consumption. However, the existing developed
probabilistic scheme often suffers in complexities of compu-
tation, thus further need is to develop more efficient methods
by considering the scenarios of energy market [244], [245].

XII. PROBABILISTIC DEEP LEARNING (PDL)
The Bayesian probability integrated with deep learning meth-
ods to supply forecasting outcomes in the shape of PIs. The
classical deep neural systems are inevitable in nature and pro-
duce point forecasts. The model parameters are described as
a function of probability distributions. For precise results, the
future PIs with various percentiles can be predicted by PDL
models. The percentiles can describe the uncertain and certain
factors in the data set which make it finer decision making.
This section defines the important role in the discipline of
PDL to help the applications of generation, needs and price
forecasting in current power systems.

A. BAYESIAN NEURAL NETWORK (BNN)
The idea of Bayesian probability integrated with artificial
neural network is outlined as BNN. Yang et al. [246] quan-
tified the contributed uncertainties between various group
of customers and proposed BNN technique to predict the
demands of energy at residential levels. Further, a data system
based on cluster was presented to handle the problem of
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over fitting by enhancing the diversity and volume of data.
The authors showed pinball scores and lower winkles for
probabilistic approaches.

B. BAYESIAN LSTM
Sun et al. [247] presented a BNN hybridized LSTM scheme
to curb the issues caused by seasonal uncertainties in dis-
tributed PV producers and then accurately generate the total
load forecasts in shape of PIs. Further, they clustered the
discrete sub profiles to improve the forecasting performance.
The patterns of energy consumption were the base of sub
profiles prior the use of Bayesian approach. The methods
were implemented on actual data set of AUS GRID for three
years with time interval of half an hour.

C. BAYESIAN BIDIRECTIONAL LSTM
The authors of [248] suggested a PDL scheme to solve the
issue of uncertainty in energy systems. The authors enabled
the propagating to make the training sequence backwards and
forwards by integrating the bidirectional RNN with LSTM.
Then authors suggested their method known as bidirectional-
LSTM (BLSTM). The proposed network was trained to cre-
ate non- parametric and Gaussian predictive distribution of
non- independent parameters of data set. Further, sampling
based on copula was used to create predictive scenarios.
However, themore sample spacemade the probabilisticmeth-
ods computationally expensive. In this content, [249] pro-
posed potential solutions in the form of dropout or reduce
the complexity and computation of Bayesian interference.
However, the issue of computational complexity still remains
as big concern, so more effective and generalized solutions
are needed to be developed in future.

XIII. HYBRID MODELS
Higher percentage of error, computational complexity and
computing efficiency are the different kinds of disadvantages
of single methods in load forecasting. From many years,
researchers have worked to build hybrid methods and models
with large precision and accuracy but minimum rate of error.
In hybrid models, two or more than two single methods are
combined to get more efficiency and accuracy. In hybrid
model, single methods are selected according to their needs,
where they can contribute beneficially in load forecasting.
There are two important and popular methods such as SVM
and ANN. Such methods are hybridized with other single
methods to get minimum error rate and best load forecasting
model. SVM is suitable for semi structured and unstructured
data to get maximum output. The actual power of the SVM’s
model is the kernel trick where any complex issue can be
solved by any suitable kernel function. A unique solution can
be produced through SVM by rounding the optimality. This
is the basic difference between SVM and Neural Networks,
which generate local minima based multiple solutions due to
which they are not trustable for several samples. This section
makes a comparison between the different hybrid models

based on ANN and SVM to optimize the output of load
forecasting.

A. ARTIFICIAL NEURAL NETWORK (ANN)
The conventional models including regression can lead to
undesirable results and so are limited. The basic cause is
computational complexity which lead to many solution times
and difficulty in non-linear data design. ANN provides an
attractive, efficient and promising analytical alternative of
conventional techniques which are limited by assumptions
including linearity, normality and variable independence.
ANNs are applied to estimate cooling/heating loads, con-
sumption of electricity and optimization of output. ANNs
are real hardware or processing devices. ANN is a machine
learning method based on the human brain’s structure. A big
ANN may contain thousands of units of neurons and inter-
actions of multiple layers. The main unit of ANN is the
neuron which sends and receives normalised signals to and
from the other neurons of the network. The interaction wires
between the neurons are known as ‘‘weight’’. The ANN
is determined by three main features; the structure of the
network (recurrent or feed-forward), the weights defining
learning rules (Hebbian, perception), the activation function
between the input and output neurons. Mostly used ANN is
the Multi-layer-Perception. Backpropagation rule is the base
of multilayer network which determine the error in output and
minimize it. ANNs are very suitable for the energy load fore-
casting [250]. Further, it is a self-adaptive model that consists
of (a) captures subtle and pattern recognition relationship,
(b) related with noise, (c) independent of knowledge of pro-
grammers about rules, (d) independent and same operations
can be performed simultaneously. However, the outcome of
ANNs cannot be evaluated easily because (a) there is no
concept of mathematic, (b) it consume time in computation,
(c) optimisation of training process is difficult, (d) large
data is needed and (e) non-convergence of model in few
cases [250]. Baek et al. [251] proposed a recurrent type of
ANNwithMAPE value (1.57%) in South Korea. In this work,
the data of actual time temperature, load consumption of day
to day, weather and month of July, 2011 was used. At the
interval of 15 min, the value of power consumption along
with temperature was taken. Whereas, the weather and day
type was recorded once a day. Multilayer perception (MLP)
is architecture of Artificial Neural Network. Park et al. [208]
usedMLP to STLF. The major drawback of this methodology
is that it consumes large MLP structure to control the actual
dataset and produce issues of redundancy.

In cognitive neurosciences and machine learning, ANN is
considered as an intelligent method because the functional
aspects of bio-neural networkmotivate it. Different tasks such
as classification, forecasting, data mining, pattern recognition
and process modelling can be implemented by organizing
ANN in different arrangements. Its excellent features such as
generalization, parallel processing, learning ability and error
tolerance provide solution in case of nonlinear and linear
mapping.
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Before the process of prediction, there is no need of spe-
cific relationship between input and output variable which is
the biggest advantage of ANN. So, for non-linear regression
applied in load forecasting, ANN is the most popular learning
tool. ANN model’s architecture can be classified into DL,
MLP, SOM and ELM. MLP is the design of feed forward
ANNwhich consists of multiple layers of nodes, where every
node is linked with next layer [250]. Neto and Fiorelli [252]
used the data of hourly load of university administration block
to make a comparison between thermal model and ANN
model in order to forecast hourly load. For thermal model,
the daily MAPE value was smaller than 13% but daily MAPE
value of ANN model was 10%. Further, the study compared
the complex ANN model (solar radiations, temperature and
relative humidity was considered as effective parameters)
and simple ANN model (only temperature was considered
as influence parameter). The mean MAPE value of complex
ANN was 9.5% which was smaller than simple ANN.

Din and Marnerides [253] used Recurrent Neural Net-
work (RNN) and Feed forward Neural (FNN) along with
deep learning for (STLF). They applied these networks on the
data set taken from New England for the duration of 2007 to
2012. The model was checked against two cases. In first case,
frequency domains and time features were used and in the
second case, the attributes of time domainwere used. The sys-
tem was evaluated by RMSE, MAPE and MAE errors, which
furnished small rates in first case as compared to second
case. Accuracy of model was boosted in the first case [253].
Reddy and Jung used ANN with wavelet decomposition. The
results of the experiments revealed the efficiency of proposed
system which surpassed the ANN [254]. In order to forecast
the electric load, the dynamic neural network was proposed
by Mardjaoui et al. [255]. The data of French transmission
system was used to design and test the proposed system. The
result of simulation proved the validation of proposed system.
The following are the most important hybrid methods used to
integrate the ANN with other single methods.

Usually, the mean age of western high voltage grid is about
40 years. The average life period of installed equipment at
high voltage grid is about 50 years. So, the western electricity
distribution system needs to be upgraded andmassively refur-
nished in future. According to the DG TREN [256], the life
time of few distribution system will end in 10 years. The hier-
archical based grid was built to interconnect the small voltage
network and to cope with the breakdown of a power system.
From the decades, the grid system was not reconstructed
despite of the increase in number of customers and load
demand. The basic reason of this failure is the liberalization
and deregulation of large power markets since last 15 years.
The grid runs at their full capacity by weak load area’s wind
power. Further, the remote areas are occupied by the excellent
power resources, where electric grids are not toomuch strong.
This could be applied to mid voltage (up to 110kv) as well as
high voltage level, where decent rally generated electricity
is brought to high voltage grid. The stability of grid is a
limitation for the use of wind power and renewable sources

of energy. Therefore, the un-stability of renewable energies is
the cause of strain in the infrastructure of grid. Some of the
well-known hybrid methods combined with ANN and single
methods are discussed in this subsection.

1) NEURO-FUZZY (NF)
Neuro Fuzzy was introduced by J.S.R Jang [257]. It was dis-
covered to have memories and to cover the lack capabilities
of Fuzzy system by combining the learning arrangement of
ANN and reasoning mechanism of fuzzy sets. In fact, the
classification of fuzzy technique help ANN to calculate the
optimize parameters by the arrangement of rule base. This
is very helpful in forecasting task with raw datasets [258].
Fuzzy logic (FL) is very influencive method to characterize
the load uncertainty which is caused by various behavioral
and environmental factors. The effect of human behavior
on hourly load profile was considered by the neuro-fuzzy
model [259]. In this research, the price dependent load data
was created by using FL without the information of price.
It has been found that the efficiency of approach based on NF
was better than single neural network.

2) ANN AND WAVLET TRANSFORM (ANN-WT)
WT is a strong tool to analyze the non-stationary signals the
domains of time frequency [260]. The data of time series can
be decomposed into various levels with low and high fre-
quency components with the help of WT. The stationary data
can be improved by the transformation approach and it can
be integrated with ANN to select the input. Guan et al. [24]
decomposed the load into many components of frequency by
wavelet approach. The transformed normalized dataset was
given as an input to ANN to learn the properties of individual
components. Results of data from ISO New England showed
that wavelet neural technique is very good.

The classical FOURIER decomposition approach can be
completed by wavelet. The constituent of non-stationary sig-
nal can be examined by WT and non-stationary and sta-
tionary signals can be filtered. WT has been dictated in
different works to disintegrate the load into many frequency
components. Jawerth and Sweldens [260] concentrated on
multistage analysis of WT. Zhang et al. [261] captured the
important information on different time scales by using WT.
The load of electricity was predicted by the combination of
ANN and proposed method. Australian markete’s data was
used to validate the method. Guan et al. [24] combined the
data pre-filtering with wavlet neural networks (WNN).

3) ANN AND FRUIT FLY OPTIMIZATION ALGORITHM
(ANN-FOA)
FOA algorithm helps to measure the minimal and maximal
value and the basic part of the FOA algorithm was dis-
cussed by Pan et al [262]. The searching possibility of FOA
algorithm is very helpful to select the parameter of neural
network. For the annual electric load forecasting, FOA and
GRNN was combined by Li et al. [263], where the value of
spread parameter of GRNN model is determined with FOA.
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According to proposed model, the MSE and MAPE values
were 1.421 and 1.149% respectively. The proposed model
was compared with GRNN, FOA-GRNN and PSO-GRNN.
As compared to other methods, FOA-GRNN showed best
performance. FOA is a kind of optimization and computation
technique. It is easy to code and understand it as compared to
different algorithms and it is based on swarm intelligence.

4) ANN AND FIREFLY ALGORITHM (ANN-FA)
Yang et al. [264] introduced FA to state the problem of
optimization. It was developed to solve the drawback of local
optimal of neural network. Liye et al. [265] developed the
new change of FA to minimize the weight coefficient of
integrated FA neural network for the purpose of load forecast.
The data set of the state of victoria, New South wales and
Queensland of Australia was used to evaluate the ability
of forecasting. The results of different combined algorithms
such as WT-ANN and GA-ANN were compared with the
algorithm of proposed model. The proposed model showed
better results as compared to other models. In ANN-FAmeth-
ods, the non-linear mapping is created by using FA and its
learning ability is achieved by the works of ANN. The accu-
rate and efficient forecasting model can be developed through
this model, but its performance is not good with respect to
RMSE value. Kavousi-Fard et al. [266] developed an accurate
and efficient forecasting model by combining ANN and FA.
The mathematical expression (10) of the proposed hybrid
ANN and MFA model is

Xk = [wi,1,wi,2,wi,3 . . . . . . .wi,Mw, bi,1, bi,2, . . . ..bi,Mb](1,M)
M = Mw +Mb (10)

Where, Xk represent the firefly which was selected randomly
from the set of fireflies, wi represents the adjusting coeffi-
cient M dimensional row vector, and Mb, Mw represents the
biasing and weighting factors, respectively.

5) ANN AND PARTICLE SWARM OPTIMIZATION (ANN-PSO)
The network weights as well as optimal arrangement were
measured by adapting PSO algorithm to the neural network.
Telbany [267] assessed the feasibility of forecasting of MLP
recurrent network which was developed by PSO for the
forecasting of daily load. PSO assisted to get rid of few of
the neuron weights by reducing their values through global
searching. The algorithm of back propagation was outper-
formed by the results of PSO. BP displayed poor performance
due to complexity and over training. Liu et al. [268] also used
the combination of ANN-PSO. They optimized the parameter
of ANN in order to predict the load in a small grid with
high randomness and small capacity. The high quality of
PSO is that it can find effective element from many possible
alternative and also it can be implemented easily and compu-
tationally in- expensive. It only needs the values of objective
function rather than its gradient information. It was suggested
that the proposed method is suitable for small grids with large
load fluctuations. Zhang andMa [269] combined the RBF and

PSO algorithm where RBF neural network was used to learn
accuracy and weight were optimized by PSO. This proposed
model performed very well.

6) ANN AND ARTIFICIAL IMMUNE SYSTEM (ANN-AIS)
The immune system is very beneficial due to which the sys-
tem can be made parallel because the ANN-AIS has the infor-
mation by processing capabilities. This system is invigorated
by the immunology of human. The complex patterns can be
identified by both ANN and AIS. The immune algorithm can
overcome the defect of premature phenomenon. So, the pre-
cision and speed of searching can be improved by the special
trait of AIS. Yong et al. [270] used immune algorithm (IA) to
design the BP neural network (BPNN) for STLF. It was given
the name of Artificial immune network (AIN). The proposed
method found the optimize parameters by taking the benefits
of quick searching ability of AIS algorithm. The AIN MAPE
value and MAPE value of proposed model was 2.038% and
2.52%, respectively.

7) ANN AND OPTIMIZATION ALGORITHMS
ANN is very popular forecasting technique, which is used
for the prediction of load forecasting. The fitting of model to
actual data decides the performance of prediction. A neural
network with back propagation algorithm have problem of
convergence to local minima and parameters initial values
sensitivity. Many layered neural network based on gradient
has low possibility to find the optimal solution, due to which
many local minima results in cost function.

8) ANN AND GENETIC ALGORITHM (GA)
The GA is an optimization engine which provides a technique
of global search. The non-linear issues of neural network can
be solved by this suggested technique. This integration was
used by Ling et al. [271] to design a forecasting model. The
proposed GA algorithm based neural network. GA with non-
uniform mutation and arithmetic crossover was used to help
in adjusting the proposed network’s parameter. The proposed
technique reduced the number of parameters. There are two
main function of this model called dynamic and static acti-
vation function. If vij represents the connection weight from
node xi to jth neuron, nh corresponds nodes of hidden layer,
netja (.) is the jth dynamic activation function, netjs (.) rep-
resents the static activation function, then the mathematical
equation (11) for the daily based load forecasting is:

yl (t) = net l0(
∑nh

j=1
net jd (net

j
s(
∑24

i=1
xivij),m

j
d , σ

j
d )wjl)

(11)

where
netlo (o) is the ‘l’ output neuron’s activation function mj

d
represents dynamic mean
σ
j
d corresponds to dynamic standard deviation for the

jth DAF.
The MAPE value of this proposed model is less than the

conventional neural models. Azadeh et al. [272] integrated
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TABLE 7. Comparison of MAPE, MAE and RMSE values for different ANN based models.

the ANN and GA algorithm to access its performance. They
designed a logarithmic linear model for the forecasting of
energy. Different variables including number of customers,
price, and value of electricity consumption were used to

the GNN. The affective coefficient with less error rate has
been recognized by changing the parameters through GA.
The performance of this proposed model was excellent as
compared to series model. Table 7 shows the comparative
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study of MAE, MAPE and RMSE values of various ANN
based models.

B. SUPPORT VECTOR MACHINES (SVM)
In machine learning, SVMs are much effective models
with ability to solve non-linear problems with less training
data [283]. Vapnik et al. [284] developed this popular ML
algorithm in 1995. They can be employed for regression
problem and for classification. In first case, it is called support
vector regression (SVR). The big advantage of SVMs over
ANN is that they have the ability to search global min-
ima [285]. Borges et al. [286] used three different buildings of
eastern slovakian to compare the different ML methods. The
author concluded that day ahead hourly forecasting results
of SVR model were more accurate as compared to ANN for
these three buildings. SVMhas been remained popular choice
among ML methods since 1990. The convex optimized prob-
lem defined the SVM. There are effective methods for opti-
mization problem such as sequential minimal optimization
SVM provides a unique solution. For the prediction of load,
SVM is a bright learning tool. It theoretically guarantees to
get special global minima. Slow running and computationally
expensive are the drawbacks of SVM. The unique solution
of SVM depends upon important parameters for the used-
selected kernel function. The SVM parameter values and
classes of Kernel function can be optimized by different
optimization algorithms. The well-known hybrid methods
that combine single methods with SVM are discussed in this
subsection.

1) SVM AND PARTICLE SWARM OPTIMIZATION (SVM-PSO)
Wang et al. [287] combined weighted LS-SVM with PSO
to predict the load. It was revealed that the performance
of this proposed model was better than the other methods
because the mean MAPE value was reduced to 3.095% from
3.22%. Yu et al. [288] employed the algorithm of k-nearest
neighbors (KNN) to preprocess the load data and integrated
SVM with PSO to predict the load. The big advantage of the
PSO is that it has the memory space to store the solution of
all particles. Also, same parameters of PSO can be adjusted
due to which it become an optimization method to find the
solution of non-linear problems [289]. PSO was combined
with adaptive ANN to adjust the weights of network [290].
The proposed model showed better computational results as
compared to conventional BP algorithm. Wang et al. [291]
proposed a hybrid model based on SVM. They integrated
empirical mode decomposition (EMD), SVM and PSO. The
effect of holidays, weekend and temperature were also con-
sidered. The residential load data was decomposed into
intrinsic mode function by EMD. These functions were
forecasted by SVM. The selections of parameter were per-
formed by PSO. The results showed that (EMD-PSO-SVM)
model was significant tool and effective for residential
STLF.

2) LEAST SQUARES SUPPORT VECTOR MACHINE (LSSVM)
Chen et al. [292] proposed a new forecasting model by com-
bining EMD, PSO and least squares support vector machine.
They used EMD based filtering method to decrease to effect
of noise signals. The seasonal components of de-noised
resulting series were eliminated by ESPLSSVM and the
resulting series were modeled by LSSVM. The proposed
ESPLSSVM model reduced the mean MAPE, MAE and
RMSE values by 26.16%, 24.70% and 34.89%, respectively.
So the proposed model improved the accuracy of load fore-
casting. Jin et al. [293] proposed an LSSVM and spermwhale
algorithm based load forecasting model to improve the accu-
racy of the forecasting. The redundancy of input vector was
reduced by selecting the optimal feature by discrete wavelet
transform and inconsistency rate model. The mapping ability
of LSSVM was improved by replacing the kernel function
of LSSVM by wavelet kernel function. The sperm whale
algorithm was used to optimize the parameter of W-LSSVM
and finally the W-LSSVM-SWA method was established.
The proposed method was feasible and effective for STLF
in energy system. Wei et al. [294] proposed on LSSVM and
wavelet transform model to improve the accuracy of load
forecasting by reducing the effect of external factors. Fruit fly
algorithm (FOA) was used to optimize the proposed model
for STLF. To increase stability of data and remove errors
points, wavelet transform was used.

3) SVM AND GENETIC ALGORITHM (SVM-GA)
The increasing complexity and importance of STLF demands
an accurate forecast model. Wei et al. [295] proposed genetic
algorithm (GA) based SVMmodel with deterministic anneal-
ing (DA). DA was adopted to cluster the load in order to
solve the issues then GA-SVM model was established. The
performance of GA-SVM was compared with conventional
BP forecasting model. The MAPE and RMSE values were
1.66% and 386.42 for GA-SVM model. But for the BP
forecasting model, these values were 4.03% and 877.94.
The values of errors parameters for GA-SVM were smaller
than the BP forecasting model. Arash et al. [296] devel-
oped a modified support vector regression based long short
term memory (SVR-LSTM) model. The proposed model was
applied on the data set from micro-grid MG in Africa. The
value of co-relation coefficient was 0.9901 for SVR-LSTM
and 0.9809, 0.9770 were for the SVR and LSTM respectively.

4) SVM AND FRUITFLY OPTIMIZATION ALGORITHM
(SVM-FOA)
Food process based FOA was proposed by Pan [262]. It is
popular due to short program code as compared to other
optimization algorithm. FOA can search quickly to the global
optimal solution. So it had been used for various forecasting
applications.

A hybrid SVM-FOAmodel was proposed by Li et al. [297]
in his research work. The result of SVM-FOA was compared
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with heuristic optimization algorithms including GA and
stimulated Annealing (SA). The proposed model showed
better results by less researching time to find global optimum
with 3% forecasting error for annual load. Also, the accuracy
of FOA over PSO for SVM parameter was proposed by
Cao et al. [298]. Comparative study for advantages and
disadvantages of different state-of-art forecasting methods is
given in table 8.

XIV. MODERN TECHNIQUES
A. FUZZY LOGIC (FL)
Fuzzy logic is based on Boolean theory, but instead of taking
a value of 1 or 0 as an input, it considers particular qualitative
ranges. The input is related to qualities based comparison. For
example, the temperature of some quantity may be ‘‘low’’,
‘‘medium’’ or ‘‘high’’ however, the outputs can be deduced
from fuzzy or noisy inputs in fuzzy logic and there is no
need to specify the mapping of inputs to outputs [340]. The
uncertainties can be controlled by fuzzy methods. There is
a membership function for every fuzzy set, which shows a
continuous fitting curve which change from 0 to 1. To get
better prediction results, often the other method are combined
with fuzzy theory. The main benefit of fuzzy logic is that
there is no existence of mathematical model to design map
between inputs and outputs. Also, there is no existence of
noise free inputs properly designed and general rules based
fuzzy logic systems are powerful in the forecast of electric
load. In whole processing through fuzzy logic, there is a need
of ‘‘defuzzification’’ for precise outputs [341].

B. EXPERT SYSTEMS
The expert system used computer programming to under-
stand, explain and expand knowledge base information with
the access of new information. Expert system integrates
the procedure developed by human expert and rules. There
should be convenience in the knowledge of expert system
so that its code could be developed in the form of software.
In other words, the decisions of experts must be understand-
able to the program developer. The information is translated
in coding form by using facts and IF THEN conditions. The
code develops relationships between the effecting factors and
load of systems. With the passage of time, some conditions of
code have to change continuously but some rules do not have
to change [340].

Interference engine is the part of expert system which is
used to search the solution or reasoning related to the con-
clusions. The expert system should be able to trace reasoning
if asked by the customers. Interference component is used to
built this facility. Rehman and Baba demonstrated this rule
based algorithm in their research work. This function based
algorithm developed to forecast the logical basedmodel in the
form of rules in rule base approach. This approach consists
of relationships between variations influencing factors and
variations in system load. Statistical criteria were used to
accept the possible relationship [342].

C. GENETIC ALGORITHM
In 20th century, computer scientist studied effectively the
evolutionary system to solve the engineering problems by
using evolution as an optimization tool. The idea was to
develop a population of solution for a given engineering
problem by using operators, which copy the natural selection
and genetic variations [343]. The idea of genetic algorithms
was introduced by John Holland and he published his idea
in a book. Also, GA was popularized by David Goldberg
in 1989. Genetic Algorithms is the most commonly used
evolutionary computational techniques [344]. GAs represents
a search technique which based on natural selection and
principles of genetics. They combine the individuals under
selection rules to reduce the cost function and to enhance the
efficiency of solution. The principle ‘‘survival of the best’’
based GA methaheuristic method was presented by Hol-
land. This popularized GAs as a useful tool to solve intense
optimization problems [344]. In summary, GA represents
the computer programming based field which can find the
optimal solution to minimize or maximize the criterion func-
tion. Genetic Algorithm consists of the following important
components [345]–[347].

1) Fitness function which is important component of algo-
rithm. It is the function to be optimized by the algorithm.

2) Population of values which shows a solution of solv-
able problem. Random sample of chromosomes (values)
is selected as an initial population. Then the problem
solved ability of each chromosome is tested by the fit-
ness function.

3) A reproducible chromosome is selected which based on
the probability distribution.

4) Next level of chromosomes generation is produced
which resemble the division of chromosomes in biolog-
ical cell meiosis process.

5) A random mutation to flips the individual bits in the
newly produce chromosomes.

In load forecasting system, GAs are well suited for non-linear
systems. GAs can conduct a specific optimization which
based on principles of natural selection found in candidates’
population [348]. GAs had been used to measure the optimal
parameters of ARIMAmodel [349]. Gupta and Savangi [350]
used back propagation methodology based on GA for electric
load forecasting.

Newly developed approaches regarding learning and archi-
tecture are required in order to handle the variations in data,
to make model to adopt itself promptly and capture the
patterns with new revealing.

D. ONLINE ADAPTIVE RNN
This load forecasting system works with continuously reach-
ing data and adjusts to the new design. These approaches
employ batch-normalized RNN (BNRNN) as base learner
and integrate performance monitoring, Bayesian optimiza-
tion and buffering to line the BNRNN framework on the
fly. Figure 13 depicts the newly online adaptive model. Data
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TABLE 8. Summary of advantages and disadvantages of different forecasting methods.
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TABLE 8. (Continued.) Summary of advantages and disadvantages of different forecasting methods.

becomes available from sensors and other smart meters with
the passage of time. The pre-processing module transforms
this data into processing form for RNNs. The pre-processing
module comprises of sliding window and online normaliza-
tion. Batch normalization is used to control the covariate shift
and tominimize the training time. The sensitivity to variations
in the learning rate is also reduced by batch normalization.
Consequently, it support the turning module to adjust the rate
of learning in order to capture the data in better way. Batch
normalization consists of prediction, online normalization
and model training [351].

E. GENERALIZED ADDITIVE MODELS (GAM)
The additive models decompose the response variable yt as
described by equation (12):

yt = β0 +
d∑
j=1

fj
(
xt,j
)
+ εt (12)

where εt is random noise and xt = (xt,1, . . . . . . xt,d ) repre-
sents the explanatory variable and fj depicts the non-linear
effect which is decayed on a spline basis (Bj,k ) with βj
coefficients. The function of non-linear effect is described by
equation (13) as:

fj (x) =
mj∑
k=1

βj,kBj,k (x) (13)

where mj is the function of dimension of spline basis [352].

F. SINGLE MULTIPLICATIVE NEURON MODEL (SMN)
Figure 14 shows the architecture of SMNmodel having single
neuron for I inputs, where ωi represents weights, bi is biases
and ui is input of the framework. The multiplicative operator
Z can be written as by equation (14):

z =
I∏
i=1

(ωiui + bi) (14)

FIGURE 13. Structure of online adaptive RNN [351].

If the activation function’s nature is logistic, then equa-
tion (15) represents the outcome function of the SMN model
as [353].

y =
1

1+ e−z
(15)
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FIGURE 14. Architecture of SMN model [353].

G. FUTURE GRID
In field of non-conventional energy, there are two disputed
approaches:

i. Distribution to electricity to wide area
ii. Decentralized production

1). Super grid is the idea of transmission of non-conventional
renewable electricity of large scale and over large dis-
tances. In world, there is non-uniform distribution of energy
sources [354]. The prerequisite for energy source based elec-
tric system is an expansion of effective and large distance
transmission grid. The solar and wind energy potential in
the wordly deserts would be able to fulfill the demand of
energy across the world. The supply of electricity up to
large area depends on structure which transmits the electricity
from generation places to consumption sites. High voltage
direct current lines (HVDC) technology has been developed
to transmit the electricity over large distances. There are
many advantages of direct current system over alternating
current system. There is no limit on underground or sea
cables and aerial lines for transmission over long distance.
Also, the impact of environment is small. DESERTEC idea
of Rome’s club is the vision of a super grid. In it, the desert
having massive potentials for non-conventional with assets of
technology [355], [356].

2). The decentralized access based on cluster of distributed
production installations (biogas digester, mean wind turbines,
gas turbines, and fuels cells) which are linked through a smart
grid. The practical power plants or clusters are jointly derived
by a control entity that deals with the output of full cluster
by governing the power plants. Some of the renewable tech-
nologies are able to generate electricity on need like biomass
or hydro plants, provide controlled feed-in of photovoltaic or
wind. The entire feed-in of virtual plant is handled and kept
at a fixed level. The cluster of renewable energy power plant
is considered to be reliable and controllable by this approach
[357], [358]. Smart grid consist of hardware tools and soft-
ware with ability of routing power in more effective way,
thus minimize the requirement of extra capacity. The basic
difference between smart grid and current grid is that smart
grid is a modified electricity and supply network. In smart
grid, modern intelligent technologies and two-way commu-
nications are used to ameliorate the reliability and efficiency
of electric transmission and supply system. Smart grid are
equipped with optimize technology based on Information and

Communication Technologies, which are able to communi-
cate with demanded loads. The production and grid load can
be made more predicted by the option provided by the smart
grids.

H. SUPER SMART GRID
The lower scale decentralized smart grid and large or promi-
nent scale approach of super grid are sensed as alternate
of each other. However, we indicate that these ideas are
interchangeable and can co-exist to assure a transition to a
carbon free economy. What is needed is, hence, a super smart
grid (SSG). The infrastructure to supply non-conventional
renewable production of electricity from large and small
generating places across wide areas with the quality of man-
aging loads and fluctuating supply. The important issue of
fluctuating transmission renewable production is addressed
comprehensively by super smart grid. From the idea of Super
grid, mostly fluctuations will finally cancel out each other in
a supply across wide area [359], [360]. There is a high proba-
bility that wind will blow and sun will shine somewhere in the
domain of large region. Super smart grid also uses the concept
that hydro power storage plants and pumps are not expensive
technology with enough capacity. Further, it also depends on
flexible and quick biomass power stations to complement the
hydro storage. The concept of smart grid assures the possible
economic of an appreciable share decentralized production
and also show important for the transitional phase. Basically,
such technologies are related to load management and control
the demand in proper way to assure that demand and supply
are in balance at any time. New developments of wind energy
and mass electro-mobility are potential candidates in keeping
the entire costs of demand and matching supply within rea-
sonable range.

The comparison of related reviews and novelty of our
review work is summarized in table 9. The aforementioned
review work did not presents a comprehensive detail of types
of load forecasting techniques along with their advantages
and limitations. Also, none of review work presented datasets
for forecasting. Our review is intrinsically different due to
presentation of detailed types of load forecasting techniques.
DP, ML and AI based single and hybrid methods to forecast
load and energy consumption and production, presentation
of datasets, current challenges, way forwards and future
directions.

XV. CONCLUSION AND FUTURE TRENDS
The prediction of electrical load need accuracy, precision and
often checks for changing parameters. The researchers had
researched on different ML, DL and AI models to increase
the efficiency of developed forecast technologies. This review
paper has addressed the study of single methods and hybrid
methods. Time horizon regarding various load forecasting
technologies has been presented based on which different
prediction models enlisted for comparative analysis. SVM,
ANN and related models have proved fruitful because these
schemes showcased better opportunities in getting a popular
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TABLE 9. Summary of comparison of existing review and our work. Note: PY: published year; LF: load forecasting; DP: deep learning; HM: hybrid method;
WSF: wind speed forecasting; PPT: pre-processing data techniques; Ref: references.

power system where the prediction about demand load have
little error percentage.

The percentage error has been compared by using statis-
tical measurements in order to select the best method for
certain forecasting routine.

In electric load forecasting, the MAPE value of Deep
learning method STLF-RNN is 0.0535. TheMRE and RMSE
values are 2.92 and 6.99 for DL based Integrated SAE
and ELM method and LSH Deep auto encoder method,
respectively. In case of wind speed prediction, RMSE and
MRE values for DL based boosted regression tree (BRT)
method and wavelet threshold denoising- recurrent neural
network - adaptive neuro-fuzzy interference system (WTD-
RNN-ANFIS) method are 0.1389 and 0.6516. For hybrid
methods, the mean MAPE (%) and RMSE (MW) values are
0.5071 and 0.0486 for ANN based BNN method and Inte-
gration of wavelet and GNN-GAF systems (GNN-W-GAF)
method, respectively. Table 4 also represent the outcomes
of the performance comparison in terms of MAE, RMSE
and MAPE of different forecasting techniques in this review
work.

A. WAY FORWARD
There is a significance influence of weather, forecasting time
and economic system on the accuracy of design of specific
load forecaster. The previous load bank of data set has a
key scale in the augmentation of precision and accuracy.

The processing of statistical operations and addition of load
data or economic factors can approximate the STLF values to
MTLF or LTLF.

The accuracy of single and hybrid predictive model can be
analyzed by the evaluation criteria such as MAE, MAPE, and
RMSE.
• The forecast value can be improved and made accurate
by single predictive models as well as by the integration
of single models.

• In single method described above, the MLP shows the
best classification precision and accuracy while ELM
gives quick training.

• The error analysis index of FCM is better while the
universal accuracy is of FRBS.

• The forecasting of time series can be performed by
statistical methods.

• ARM and ARIMA are best for the investigation of static
and dynamic time series, respectively.

• The outcomes of hybrid predictive models such as SVM
and ANN are much better then single forecasting predic-
tive models.

The readers can obtain deep knowledge from the outcomes
of the review about the comprehensive detailed predictive
models. The new hybridmodel can be designed to forecast the
load and energy. The disadvantages of the enlisted methods
based on single or two models can be addressed by the future
research about hybrid models consisted of more than two
methods.
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1) FUTURE TRENDS
In order to increase the forecasting accuracy, the following
strategies could be considered.

a: DEVELOPMENT OF NEW DATA PRE-PROCESSING
METHODS
There is a uncertainty in power and wind data which has not
been evaluated and analyzed sufficiently. It means existing
data based analysis are not effective for power and wind data
which turn to biased conclusions. So, there is a deep need
to develop new data pre-processing methods to reduce the
uncertainty and to handle problem with complex uncertainty.
This problem can be solved by integrating various types of
pre-processing approaches.

b: INCREMENT IN NUMBER OF EFFECTING FEATURES
Fluctuations in data are the results of many factors. So, the
use of moremeteorological and topographical factors at study
site may precisely describe the variations in the datasets. The
problem can be solved by recording the data through the
installment of modern suitable sensors.

c: INCREASE IN ABILITY FOR NON-LINEAR FITTING
Usually, the difficult terrain and climate variability make it
tough to characterize and evaluate the fluctuations in data.
Although, the non-linear fitting tendency of different model
is better and their outcome is constrained due to their limited
ability of learning and fluctuations in training data. So, it is
need to combine different model to enhance the non-linear
fitting ability.

d: DEVELOPMENT OF HYBRID MODEL CONSISTING OF
MORE THAN TWO MODELS
The readers can obtain deep knowledge from the outcomes
of the review about the comprehensive detailed predictive
models. The new hybridmodel can be designed to forecast the
load and energy. The disadvantages of the enlisted methods
based on single or two models can be addressed by the future
research about hybrid models consisted of more than two
methods.
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