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ABSTRACT Centrifugal pumps are an integral part of many industrial processes and are used extensively
in water supply, sewage, heating and cooling systems. While there are several review papers on machine
learning-based fault diagnosis on induction motors, its application to centrifugal pumps has received
relatively little attention. This work attempts to summarize and review recent research and development
in machine learning-based pump condition monitoring and fault diagnosis. The paper starts with a brief
explanation of pump operation including common pump faults and the main principles of the motor
current signature analysis (MCSA) method. This is followed by a detailed explanation of various machine
learning-based methods including the types of detected faults, experimental details and reported accuracies.
The performances of different approaches are then presented systematically in a unified table. Finally,
the authors discuss practical aspects and challenges related to data collection, storage and real-world
implementation.

INDEX TERMS Centrifugal pumps, fault diagnosis, induction motors, machine learning, motor current
signature analysis, signal processing.

I. INTRODUCTION
Centrifugal pumps (CP) represent 70% of all kinds of
pumps [1] and are ubiquitous in the industrial world [2].
Althoughmodern pumps can last formany years, their sudden
failure can lead to undesirable disruptions, or even catas-
trophic failures, e.g. when it affects a water supply in hospital.
This spurred the rapid development of intelligent condition
monitoring techniques using signal processing and machine
learning methods to detect, diagnose and predict faults by
monitoring patterns in vibration, pressure or current signature
sensors.

Motor current signature analysis (MCSA) is a widely used
predictive maintenance method for fault detection and condi-
tion monitoring by analyzing the electric current of the stator
in the induction motor [3], the key component of centrifugal
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pump. Themethod is based on the idea that various faults pro-
duce characteristically distinct patterns that can be detected
through signal processing and statistical techniques [4].

Although acoustic emission, vibration, and pressure based
systems also perform well at detecting failures along with
extensive literature [5], MCSA is widely used for predictive
maintenance, i.e. maintenance based only on need, and is
more cost-effective than the other maintenance types.

An MCSA monitoring system can be deployed by attach-
ing current clamps, used as transducers, to power supply
wires without requiring direct physical access to the pump
itself. The ease of deployment, non-invasive installation, and
relatively low cost combined with high detection accuracy
are the main advantages of MCSA. For some applications,
e.g. monitoring submerged sewage pumps, MCSA is often
the only feasible and practical method.

When applied to centrifugal pumps, MCSA can detect not
only induction motor related faults, but also pump related
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faults such as cavitation, impeller fault, and other types of
faults using appropriate machine learning methods. In other
words, MCSA uses the motor as a transducer to monitor
pump conditions [6]. For example, [7] proposes fault detec-
tion in pumps using deep learning, [1] uses neural net-
works for multi-objective prediction in multi-stage pumps,
and [8] investigates cavitation faults using machine learning.
However, despite a large amount of work on MCSA-based
methods for induction motors [9], a systematic review of
MCSA-based techniques for fault detection in centrifugal
pumps is not documented in the literature to the best of our
knowledge.

In this paper, the authors present a systematic analysis
of machine-learning based MCSA methods for centrifugal
pump fault detection. Our aim is to present a comprehensive
analysis of recent work in this area summarising technical
challenges, and relevant machine learning methods and com-
paring the key results. The survey also discusses practical
challenges related to sensing, data transmission and collec-
tion that are specific to MCSA systems. In this respect, when
comparing prior work, where possible, the authors summarize
information about sampling rate, data acquisition equipment,
and other relevant to give further practical insights to readers.
To the best of our knowledge, this work is the first systematic
survey onmachine-learning basedmethods for fault detection
in centrifugal pumps.

The rest of the paper is structured as follows.
Section II and III-A1 introduce the key aspects of centrifu-
gal pump design including its components, and main fault
types. Section III discusses the key signal features and signal
processing techniques used to extract salient features of
the fault signal. A comparison of MCSA with other fault
detection alternatives like vibration signal analysis is also
presented in Section III-A. As the induction motor is the
main component of centrifugal pumps, the survey will also
cover relevant MCSA-based methods for induction motors.
Finally, the authors present machine learning-based and some
non-machine learning-based solutions to help researchers
compare their implementations.

II. CENTRIFUGAL PUMP OPERATION
As shown in Fig 1, a centrifugal pump consists of two main
parts: the rotating part containing a shaft and an impeller,
and the stationary part, which is composed of casing, casing
box, bearing and an electrical motor, typically an induction
motor [8]. The fluid inside the pump flows axially from the
eye of the casing, engaging with the impeller blades and
rotating radially to get velocity and pressure to get out of the
impeller into the casing’s diffuser.

Table 1 provides a brief summary of 31 different pump
failure types and their underlying problems [11]. In this
paper, the authors present the commonly investigated faults
and compare their related papers’ detection accuracy perfor-
mances. In the following sections, the authors first introduce
MCSA method, followed by a detailed description of each
failure type and whether it is detectable by MCSA.

FIGURE 1. Diagram of centrifugal pump with its main parts labeled [10].

FIGURE 2. Diagram of simulated (healthy and faulty) MCSA line currents
and their FT version [14]. The broken bars affecting sidebands of winding
harmonics is highlighted in logarithmic scale.

III. MOTOR CURRENT SIGNATURE ANALYSIS AND
FAILURE TYPES
MCSA is based on the idea that certain electrical andmechan-
ical faults introduce harmonics in electric current, which can
be detected through a combination of signal processing and
machine learning methods. The healthy motors work with a
50Hz fundamental frequency (60Hz in the US). However,
during the machine’s fault development, different harmonics
other than 50Hz start to appear [12]. Pump load affects
the fundamental frequency component. On the other hand,
the load fluctuation causes the noises and harmonics [13].
Therefore, the detection can be done by checking the lateral
bands around the fault’s fundamental frequency.

The current is measured by attaching current probes to
power supply wires, which makes it relatively convenient
and inexpensive to install and maintain. The range of faults
detected by MCSA includes stator winding breakdown, bro-
ken rotor bar or electric bearing problems [15]. The type of
faults detectable by MCSA includes:
• Bearing fault: Outer Race Fault [12], Inner Race Fault,
ball defect [4], [16].

• Cavitation: [2], [8].
• Impeller: Inlet tip, exit tip fault [17], [18].
• Blockage [19]–[21].
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TABLE 1. Extensive list of failures and problems [11].

Fig. 2 illustrates the broken rotor bar fault detection using
MCSA. It can be seen that the fault is affecting the amplitudes
of attenuated fundamental components’ lower frequencies.

A. COMPARISON WITH VIBRATION SIGNATURE ANALYSIS
Vibration signature analysis (VSA) analyses the signals from
the vibration sensors attached directly to the pump [15].
The analysis can be done by monitoring the signal’s spectral
content and can locate the part of the machine where a fault
occurs [22], [23]. The assumption is that the frequencies
where the vibrations happen point to the part of the machine
where the error occurs [22], [23]. Vibration can be measured
by accelerometers, which need to be attached close to the rig
of the centrifugal pump [23], [24].

Although VSA has its advantages, MCSA’s cost-
effectivity, ability to detect electrical faults [15] and the
sensitivity compared to other techniques [6] giveMCSAmore
usability. Regarding motor faults, the MCSA is used to detect
both mechanical and electrical faults, whereas VSA needs the
acceleration measurement for displacement to find the error.

In terms of fault-detection performance, Corne et al. [15]
claim that MCSA cannot distinguish bearing at drive-end and

non-drive end if they have the same dimension. However,
they suggest that the magnitudes of the frequency compo-
nents should be evaluated [15] and that the unstable current
sample will spread the magnitudes of the components to the
spectrum. Zhang et al. [25] also claim that MCSA is easy to
implement and has economic savings. However, just like the
previous paper’s claim, the varying stator currents at bearing
fault can harden the process of having a universal threshold
for detection.

1) FAILURE TYPES
In this section, some of the most common motor and pump
faults will be discussed in detail. As the induction motor
is a key component of a centrifugal pump, the section first
introduces the MCSA detectable induction motor faults.
Section III-A1.b then presents centrifugal pump specific
faults and their detectability using various methods.

a: INDUCTION MOTOR-BASED FAULTS
i) BROKEN ROTOR BARS

Broken rotor bars (BRB) are mostly an induction motor
mechanical fault that has several severities of fault conditions:
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partial-BRB, one or more BRBs. BRB starts with a partially
cracked bar which affects the physical magnitudes and makes
the prediction difficult [26]. The fault can be physically sim-
ulated by drilling a hole in all of its depth [27].

BRBs can be detected with several techniques like MCSA
and VSA, or even, temperature. The image of a broken rotor
bar fault by [28] can be seen in Figure 3:

FIGURE 3. Broken rotor bars faults cause speed oscillations in the rotor,
leading to premature wear of bearings and other components [28]. The
condition can be detected using MCSA and can be artificially generated
by drilling holes in rotor bars.

ii) BEARING
The bearing fault is another crucial mechanical fault in
motors. [12] reports that they constitute 44% of induction
motor failures. The fault is caused by the lack of lubrication,
mechanical stresses on the bearing’s balls, misalignment,
corrosion, damaged inner/outer race and more [12], which
cause load irregularities in themagnetic field, hence changing
the mutual and self-inductance [29]. The image of Bearing
damage is presented in Fig 4.

FIGURE 4. In the presence of a bearing fault, the rolling elements (balls)
pass over the defect area periodically, producing impulses with a certain
frequency, which can be detected by MCSA [29]. The condition can be
artificially generated by drilling holes of various diameter.

Bearing fault can be detected by VSA and MCSA [12] and
has at least three different types: Outer-race fault (ORF) [12],
inner-race fault and ball defect [4]. Continuous wavelet
transform/2D wavelet scalogram, along with relative wavelet
energy, can also be used with MCSA to detect ORF in ball
bearings [29].

iii) STATOR WINDING
Stator winding (SW) fault is an IM specific mechanical fault
that holds 38% of IM failures [30]. Stator faults’ main reason

for the failure is a degradation of insulation which is followed
by inter-turn short circuits [31]. More importantly, the devel-
oping fault can cause the motor’s destruction if it is not fixed
on time too. The effect of SW fault on MCSA signals is that
asymmetric SW causes spatial harmonics that vary at a single
frequency [30]. This effect can be seen clearly in Figure 5.
There are many ways to detect SW fault, such as using fuzzy
logic with motor current signatures data to detect specific
components [30].

FIGURE 5. Phase currents of a healthy motor (top). A stator winding fault
produces unbalance in the motor currents (bottom) [30].

b: CENTRIFUGAL PUMP-BASED FAULTS
Centrifugal pumps’ faults are types of faults that can occur
by themselves or depend on each other in their creation. They
can be categorized into two types: Mechanical or fluid-flow-
induced faults [32].

i) IMPELLER
Impeller fault is a centrifugal pump specific fault that occurs
at the impeller blades. Tian et al. [17] show that defects on
the impeller due to inventible cavitation and erosions cause
changes in both static and dynamic torque, which can be
sensed through the current. The fault can be artificially gen-
erated by removing a portion of the metal [18] from the
impeller. Fig. 7 shows healthy and faulty impellers [17].

Furthermore, there are several sub-faults under the impeller
fault’s domain: Inlet tip, exit tip [17]. These sub-faults
can decrease in amplitude at the blade pass frequency in
MCSA [33]. Then impeller’s imbalance can also cause
mechanical faults or fluid flow hydraulic faults [18] on
top of sub-faults. These faults can be detected by several
popular methods like VSA and MCSA [17] and interest-
ing methods like DQ patterns [19], and discriminant feature
extraction [18].
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ii) CLOGGED IMPELLER
Another type of fault that occurs at the impeller area, and
is well detected by MCSA is a clogged impeller fault. It is
caused by pump impellers filled with external matter such
as polystyrene (see Figure 6), hence, decreasing flow rate.
This type of fault is also mentioned in Table 1. Clogged
impeller causes effective value reduction in motor current
and reduced efficiency. When a clogged impeller fault occurs
in the pump, its efficiency is reduced by 9 to 15% [34].
Its effects on the frequency domain are the most prevalent
when three and four of seven channels are clogged (in other
words, half-sided clogging). The fault frequency’s amplitude
increases a lot at 5th harmonics (791.9 Hz and 875.3 Hz)
under the condition of 10 kHz sampling rate and 30 seconds
duration. This phenomenon is more visible at higher speeds
like 1800 rpm and 2500 rpm [34].

The equipments used by [34] includes pressure sensors
(IFM PU5413), data acquisition devices (NI USB-6363)
and more in each pipe to measure differential pressure and
signal of the pressure sensor. Electronic pressure switch
(WIKA PSD-30) and temperature switch (WIKA TSD-30)
are used for life-accelerated tests.

FIGURE 6. Clogged impeller reduces the pump efficiency. The condition
can be artificially generated by using polystyrene to clog impellers [34].

iii) BLOCKAGE
Blockage fault means blocked pipe and is one of the main
reasons for pump breakdown. The fault is created by the
pump’s closed or modulated valve hand valve [19], [20].

For hydraulic pumps, the blockage of the outlet causes
the reduction of hydraulic load and pumping of less liquid
and eventually the need for less current [21]. If a pump is
blocked and themotor stops, no current will be drawn. Hence,
noMCSA data will be collected to work with. However, if the
blockage is beyond the area of the pump, then MCSA signals
can be collected and the fault can be shown.

Blockage fault can be detected in many ways rather than
just simple MCSA on deep learning or VSA. Given that the
blockage can apply pressure on the pump, pressure signal
based deep learning techniques can fully detect the fault [20].
Additionally, the fuzzy-logic based detection system or Park
transformation based DQ pattern plotting with the help of
MCSA can also be a method to detect this fault [19], [21].

FIGURE 7. Healthy and faulty impellers [17].

iv) CAVITATION
Cavitation fault occurs when the pump’s absolute static pres-
sure falls below the saturated vapour pressure of the fluid,
hence causing vaporization [2]. Due to the pressure change,
the blockage based fault detection papers overlap with this
fault too [20].

The five major causes of cavitation fault are: failure of
the pump housing, destruction of the impeller, excessive
vibration, higher than necessary power consumption, and
decreased flow and pressure. There are five types of cavita-
tion: vaporization, turbulence, vane syndrome, internal recir-
culation, air aspiration cavitation [8]. According to [35], if run
for a long period of time, the cavitation also creates unsteady
flow that causes following internal surfaces’ failure such as
volute, bearing, shaft, seal and etc.

As most centrifugal pumps have induction motors and
reflect all dynamic information to stator current signal or
transient power signal, MCSA can be used to detect this
fault [2]. Besides that Luo et al. [13] state that the stator cur-
rent spectrum is the composition of fundamental frequency,
harmonics and noise. Therefore, it can be inferred that these
components can be captured during MCSA of centrifugal
pump fault detection.

Finally, Table 2 summarises the distribution of various
faults. It can be seen that bearing fault and stator winding
faults are two crucial faults that occur frequently and affect
pump operations.

IV. METHODS
In this section, the MCSA based literature works on fault
detection will be presented. The authors will now briefly
explain the selection criteria for papers and the justification
for choosing IM papers. The main research criteria was based
on priority keyword search, which was carried out using the
keyword ‘‘MCSA’’ followed by ‘‘fault detection’’, ‘‘ML’’
and then ‘‘CP’’. Among the papers the authors searched on
IEEE, ScienceDirect and more, the authors tried to select the
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TABLE 2. Distribution of induction motor faults [36].

most relevant and recent (e.g 2020, 2021 and 2022) papers.
During our research the authors observed that the vibration,
non-ML, IM based papers were vastly more than what the
authors were looking for. In order to make the ML survey
paper more exhaustive and increase the detectable fault count
with MCSA and ML, the authors also included papers with
IM faults as long as they satisfy the MCSA and ML must-
include criteria. Given that IM is a component of CP, fault in
one will eventually affect the other’s performance on overall
output.

A. FAULT DEVELOPMENT MODELS
Before starting discussions of any ML or non-ML based
solutions to detect faults, the authors would like to provide
Ofuchi et al. [37]’s notable mathematical modelling of cen-
trifugal pump head degradation over time. The authors used
electric submersible pumps (ESPs) to investigate their degra-
dation when highly viscous flows were given. The authors
hypothesize that ESPs will be degraded more given that
their design is for water-based operations. The authors aim
is to propose a model to estimate the head and flow rate
degradation of a centrifugal pump operating at a broad range
of Reynolds numbers. The reported working conditions of
the pump are rotation speeds up to 3500 rpm and kinematic
viscosity up to 822 · 10−6 m

2

s . The data collected is from
the two mixed flow type electric submersible pumps and
one radial type pump. The author uses polynomial models
to estimate the pumps’ pump head degradation curve under
viscous operations. In the end, they compare their method
against well-known engineering standards like Hydraulic
Institute. In the end they compare their method against
well-known standards of engineering like Hydraulic Institute.
Their results from three pumps are at different rotating speeds
and fluid viscosities. Industrial standards like HI and KSB
result in similar curves, but they are generally underesti-
mating performance degradation whereas the authors’ model
is better at estimating head versus flow rate curves under
moderate to high viscosity.

B. TRANSFORMATIONS
Transformations are crucial components in the pump/motor
fault detections, as they can help extract the relevant features
for the main technique. Examples like Fourier transform,
wavelet transform, and Park transform can be given for fea-
ture extractions in MCSA.

1) FOURIER TRANSFORM
Fast Fourier transform (FFT) is a computational method that
is used to compute discrete Fourier transform (DFT) of time

series (e.g. signals). DFT is mainly used in digital spectral
analysis, filter simulation, and more. Its efficiency comes
from iteratively calculating the coefficients of DFT [38].
In the signal processing domain, FT decomposes a signal into
frequency components. The formula for Fourier Transform is

X (ζ ) =
∫
+∞

−∞

x(t)e−2π iζ tdt (1)

where x(t) ∈ C, t is time and ζ is frequency [39].
There are several ways to observe the motor’s fault

with FFT: Short-time Fourier transform (FFT over time) and
frequency over samples. They are ways to visualize the fault
developing over time. As much as it is a great technique to see
the frequency domain easily, in some cases, it suffers from
spectral leakage due to MCSA’s limitations (e.g. machine
operating at low slip) [40].

Many kinds of research utilize FFT to detect faults in 60 Hz
IMs such as [41]. They use FFT as a spectral estimation
method in their detections. This research acknowledges the
spectral leakage problem and addresses it by using multi-rate
fractional re-sampling sampling and the combination of
interpolation and decimation to the stator current signal at
8000 and 8192 Hz [41]. Romero-Troncoso [41] investigates
BRB that can also have other mechanical failures such as
unbalance and misalignment. The data acquisition devices
are hall-effect sensor model L08P050D15 and 16-bit four-
channel serial-output sampling analogue-to-digital converter
ADS8341 to investigate IM with BRB at different loads and
PicoScope 4262 to investigate IM with low loads. Hence,
using real IM motors to conduct the experiments. The benefit
of the research for FFT is its usability in the analysis of power
quality as well [41].

The other robust and simple method of FT that is used
in induction motors is windowed FT. On top of that, using
quadratic time-frequency analysis is also efficient form of
method for windowed FT due to its independent window sizes
and types [42].

2) WAVELET TRANSFORMS
The DWT has a quick filtering ability to extract the bands
of interest [42] for quick implementation [28]. The signal
is decomposed to multi-resolution by filters of cut-off fre-
quencies. The process involves the selection of the mother
wavelet and the number of decomposition levels such as
the Daubechies-40 [28]. Furthermore, it is a time-frequency
based transformation with variable window size tool in dif-
ferent frequencies [43]. The DWT is defined as [43]

DWT (j, k) =
1
√
2j

∫
x(t)ψ(

t − 2jk
2j

)dt (2)

3) HILBERT TRANSFORMATION
Hilbert transformation is a transformation that is used for sig-
nal’s demodulation operations and used in [27].With Hilbert
transformation’s usage in fault signature, instantaneous fre-
quency and amplitude can be extracted. Therefore, faulty
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component induced signal’s modulation can be showed. The
Hilbert transform is defined as:

H (x(t)) =
1
π

∫
+∞

−∞

x(τ )
1

1− τ
dτ (3)

Essentially three phase motor signatures are provided to
Hilbert transform and to obtain Aa,Ab,Ac, φa, φb, φc where
A is amplitude modulation and φ is phase modulation respec-
tively for phases a, b and c.

4) PARK TRANSFORMATION
The Park transform is the conversion of a three-phase system
to a two-phase system to describe three-phase IM phenomena
with Park’s vector [27].

xd (t) =

√
2
3
xa(t)−

1
√
6
(xb(t)− xc(t)) (4)

xq(t) =
1
√
2
(xb(t)− xc(t)) (5)

The space vector:

xs(t) =
√
x2d (t) + x

2
q (t) (6)

where xd and xq are Park’s vector components that are made
of weighted three-phase components and subtractions from
each other [27].

In some solutions, Hilbert and Park transformations are
combined and compared against FT in order to detect broken
rotor bar, unbalanced voltage, one air-gap eccentricity and the
outer raceway ball bearing defect [27]. Park transformation
is generally used alone in most literary works to detect stator
winding fault as well. After Park transformation, the healthy
motor DQ pattern shows a circular shape. When a fault is
introduced, the shape becomes elliptic [44].

With that said, the initial studies that are conducted on Park
transformation was about its pattern recognition associated
with the current’s Park’s Vector form [42].

Fortunately, now there are new solutions in Park transfor-
mation that also address several limitations (e.g load depen-
dency and sensitivity to transient) of converter diagnosis
in permanent magnet synchronous motor/generators. The
method is applying Park transform on three phases then tak-
ing vectormodulus. The normalization is done by the dividing
phase current by Park’s vector modulus [45].

C. NON-MACHINE LEARNING METHODS
There are several solutions that do not use ML at all,
despite utilizing MCSA. One interesting solution, which
uses a centrifugal pump with three-phase, 1.5 hp, 3450 rpm,
60Hz specs, proposes an electric diagnostic technique for
fault analysis without extra sensors [19]. Irfan et al. [19] use
motor line current and voltage to measure the three-phase
line current, transform it into two-phase DQ patterns.
1000 samples with 4000Hz sampling rate were collected
from three-phase stator current sensors using PXIe-1082 data
acquisition module [19]. The fault detection is done with

pattern classification based on statistical indices after the
DQ pattern plot is generated. The success comes from the
shape of the figure. When the healthy pump has a hexago-
nal shape, the pumps with impeller fault or blockage have
distorted (fan shape circular). Their past papers also include
bearing, winding damage and eccentricity [19].

MCSA is used to detect faults such as impeller clogging
in the signal domain. According to a paper that focuses on
impeller clogging [34], Becker et al observed that four par-
ticular frequencies’ amplitude increase. Their experimental
setup benefits fromMCSA to detect healthy motor levels and
different clogging levels. The authors use current, voltage,
flow (17.9m3/h) and head (6.6m) with a high sampling
rate (10 kHz, 30 seconds). The power analyzer is Yokogawa
PX8000 for one phase input values. The authors’ pump’s
fundamental frequency is 166.7Hz [34]. They find that the
power consumption decreases, and the amplitude increases
with increasing clogging and blockages, but the amplitude
decreases with the increasing number of clogged channels.
They observe that higher (e.g. 4) clogged channels better
represent the characteristics. Besides, the higher speed levels
also define the differences between minor faults and healthy
faults (e.g. 1800 rpm and higher speeds). Although the paper
did not create an automatic system to detect faults, the focus
on MCSA confirmed other papers’ hypotheses and defined
the characteristics of faults’ effects onMCSA [34]. The paper
also discussed the limitations of the faults detection frequency
that they call the blade pass frequency. The paper’s authors
hypothesize that the amplitude of blade pass frequency is
affected by the faultiness of the clogged impeller. However,
said frequency is not affected when the pump is used as a
circulation pump.

D. MACHINE LEARNING METHODS
1) NON-DEEP LEARNING
In this section, classic machine learning techniques used in
motor fault detection will be explained.

a: SUPPORT VECTOR MACHINES
Support vector machines (SVM) is a supervised learning
model which is used in classification tasks. In literature,
its domain is under curve square optimization problem
and statistical learning theory [18], [46]. SVM maps the
training data’s non-linear dimension to a higher dimension
(aka. feature space) with a transformation [46]. SVM’s are
used mainly in detection problems with both vibration and
MCSA based data:

Centrifugal Motor Faults Oriented Solutions:
The authors of [32] combine MCSA and VSA in their

investigation. They use line-current probes and accelerom-
eters to collect time domain-based data and convert it to
the power spectrum. They compare and choose the best
suitable features: Mean, standard deviation and 1/ standard
deviation [32]. Then they train and test with a multi-support
vector machine (MSVM). The authors use a 30Hz centrifugal
pump and use 33 faults. They find that every fault alters
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the flow patterns with a unique effect on signatures. There-
fore, with the MSVM solution, they aim to classify isolated
and/or combined faults (e.g. interdependence of mechanical
and hydraulic CP faults), find faults with various severities
(like suction and discharge blockages), compare high and
low-frequency resolutions, and classify 33 critical centrifu-
gal pump faults [32]. They collect 2000 samples of both
20 kHz sampling rate and 5 kHz sampling rate, and they vary
the proportion of test to train ratios. The authors also tried
with different pump speed pairs (30-40, 40-50Hz, etc) to
test intermediate speeds as an alternative option in case no
specific fault data are available. Finally, the final obtained
test classification accuracy for the same speed training/testing
is 83.2% which gets worse if based on a different speed
instead or gets better if more resolution is used [32].

Induction-motor Faults Oriented Solutions:
IM faults based paper [47] authors use multi-class SVMs

to focus on the cage induction machines’ rotor fault
diagnosis with five conditions: Healthy, broken bar, broken
end-ring, static eccentricity (EC), dynamic EC. The test rig
created is 1.5 kW, 50Hz, 220V and one pair pole cage
induction machine. The paper first utilizes FFT to derive
stator current signal’s frequency spectra and extract other
features. The sampling frequency is 8192 Hz, and the tests are
repeated 30 times with 100:50 training to test the dataset. The
authors compared the majority voting method, binary tree
decision method, neural network method and hybrid matrix
method to decide the best way to combine the results of
sub-classifiers. They found that (with wavelet transformed
data) neural network synthesizing scheme has the best result
(97.38%) but has worse performance with random hidden
neurons [47]. Therefore, the mixture matrix synthesizing
scheme is favoured with 97.32% accuracy and a lower time
cost. In the end, mixture matrix/SVM has significantly less
training time despite its very small lower accuracy [47].

In another research, Toma and Kim [16] use MCSA IM
data from a university dataset. Their dataset consists of two
current signals with 180 degrees of phase difference and has
17 different combinations of metadata such as but not limited
to: bearing, damage in the inner ring. The dataset was labeled
with 3 main labels: Healthy bearing, inner ring or outer ring
failure. To classify 10 features (e.g. mean, median, vari-
ance, skewness) a random forest, SVM, K-Nearest Neighbor
(K-NN) algorithms were used. The data was partitioned to
70:30 and 80:20 which are named as training:testing respec-
tively. The performance of random forest, RF and K-NN
algorithms is compared using precision and recall metrics.
The reported accuracy of SVM and KNN using GridSearch
methodwas 99% andRF has 98% respectively. On top of that,
the authors observe that SVM performs slightly better than
KNN with a higher recall (99% against 98% respectively).

There are other types of transformations that can be
used with MCSA data as well. With the implementation
of Hilbert Park transforms, Hilbert modulus current space
vector (HMCSV) and Hilbert phase current space vector
(HPCSV), the faults like broken rotor bars, supply voltage

asymmetry, air-gap eccentricity and outer raceway ball bear-
ing can be detected with SVM [27]. The experimental setup is
a three-phase 50Hz four-pole, 28 rotor bars, 1.1 kW induction
machine and samples with 10 kHz. The data acquisition is
done in MATLAB. The authors create a pipeline that consists
of obtaining HPCSV spectral component, training and testing
with Gaussian kernel SVM (for each fault in tree shape) [27].
The ratio of 90 to 60 samples for training to test dataset was
used to get 95% accuracy. The authors find that HPCSV is
better in showing harmonics than HMCSV [27].

The other papers which use SVMs in fault detection utilize
vibration data instead [18], [46], [48], [49].

b: MULTI-LAYER PERCEPTRON
Multi-layer perceptron (MLP), a class of artificial neural
networks, is modelled to work the same way a brain performs
a task or a function. The MLP has an interconnection of
simple computational cells named ‘‘neurons’’. MLP has three
core elements: Input connections with ‘‘weights’’ and ‘‘sum’’
functions to gather results and an activation function [50].
MLP/ANN uses feed-forward neural network architecture,
and its neuron weights are updated (aka trained) by the back-
propagation algorithm [11]. The figure of MLP can be seen
in Fig 8.

FIGURE 8. Multi layer perceptron / artificial neural network diagram [46].

i) CENTRIFUGAL MOTOR FAULTS ORIENTED SOLUTIONS
In [11], the authors experiment MLP with PCA (developed
in MATLAB) for fault diagnosis and achieve a 100% in
detection with 170 epochs and 6.76 sec. However, the authors
generate simulated 600 (1:4 ratio for non-faulty to faulty) data
with centrifugal pump. The training to testing dataset ratio
is 3:1. The MLP without PCA still has 99.3% accuracy with
81.81 sec that is still a very good result [11]. They consider
20 faults from the centrifugal pump system, including but are
not limited to shaft wear, wrong impeller, suction leak, self-
bearing rotation and oil seal leakage. The paper uses PCA
to preprocess the data to extract 11 relevant features that are
voltage, current, speed and more [11].

ii) INDUCTION-MOTOR FAULTS ORIENTED SOLUTIONS
Unlike the previousMLP papers, the authors of [51] has a real
test rig with three phases, 1 hp (0.75 kW)AC inductionmotor.
The data is sampled with 100Hz to capture 4000 samples.
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The MLP model has one hidden layer with 46 neurons and
three output parameters (healthy, inner race and outer race
faults). The loss is calculated with MSE and the correlation
factor [51]. The paper identifies that the current spectrum
increases as applied load increases, and RMS, kurtosis fea-
tures provides a good indication about the bearing’s state.
If ORF is present, the amplitude changes higher. The test
dataset has unseen data totalling up to 360 sets with 120 per
condition [51].

The remaining papers which use MLP’s in fault detection
utilize vibration data [46], [48], [50].

c: RANDOM FOREST
Random forest (RF) is an ensemble classifier that is made of
a collection of a tree-structured classifiers. RF uses bootstrap
sampling to select k samples from the training dataset, creates
k decision treemodels based on these samples and gets k clas-
sification results. After k classification results, the classifiers
vote for the final decision [52].

i) INDUCTION-MOTOR FAULTS ORIENTED SOLUTIONS
The remaining papers which use RF’s in fault detection utilize
vibration data [52].

2) DEEP LEARNING
a: CONVOLUTIONAL NEURAL NETWORK
Convolutional neural networks (CNN) are another type of
feed-forward neural network (like MLP) that can automati-
cally extract features with convolutional methods [53]. CNN
is a deep learning method that uses signals or images as
inputs. The whole network is built by several convolutional
layers that compute the dot product between the input image
and set of convolutional filters [26] like in Fig 9.

CNN is also used to detect broken rotor bars in induc-
tion motors. Valtierra-Rodriguez et al. [26] use CNN’s image
classification ability to detect the faults that appeared on the
short-time Fourier transform-based time-frequency (STFT)
plane, and also uses MCSA for current signals in the transient
state. Four induction motor cases are used: half-broken rotor
bar, one broken rotor bar, two broken rotor bars, and a healthy
rotor. The paper achieves 100% accuracy in the detection
of all classes. STFT is a graph plane that demonstrates
the change in magnitude of each frequency with respect to
time (s) [26]. The test rig used has two poles, 28 bars, the
nominal power of 1 hp, and is fed with 220Vac at 60Hz to
obtain 100 current signals for each condition with 1500Hz
Sampling frequency [26].

b: RECURRENT NEURAL NETWORKS AND LONG-SHORT
TERM MEMORY
Given that motor current signatures changes over time, the
usage of recurrent neural networks (RNN) or long-short term
memory (LSTM)s are not uncommon. RNNs/LSTMs are
types of deep neural networks that can work with arbitrary
lengths of data series [54]. LSTMs are modified RNNs to pre-
vent gradient vanishing or exploding in RNNs. LSTMs have

FIGURE 9. Convolutional neural network [26].

memory cells that include ‘‘forget-cell’’ to handle long-term
dependency problems along with hyper-parameters like the
hidden states, time steps [54], as shown in Fig 10.

FIGURE 10. Long-short term memory [54].

Given that LSTMs and (1D -) CNNs detect the fault
from different perspectives, Khan et al. [55] investigate their
performance on fault detection separately. The paper uses
healthy and ‘‘inter-turn fault in the stator’’ conditions for the
dataset (3:1 ratio for generated training and testing dataset
respectively). Healthy data is acquired under balanced and
imbalanced voltages. As a result, (chosen optimal model)
4 layered LSTM got 83% accuracy which is lower than
(chosen optimal model) seven-layered CNN that got 99%
accuracy [55].

E. SUMMARY AND PERFORMANCE COMPARISON
In this section, research results will be compared for induc-
tion motors (IM) and CP. Although the authors conducted
exhaustive research to find CP faults based machine learning
papers that utilize MCSA data, the authors observed that
there are more research papers for IM based faults. Besides,
the lack of recent journal publications from the last 3 years
(2020-2022) also made it hard to find MCSA based CP (or
even IM) publications that use ML to detect faults. Moreover,
another observation was that the VSA based research papers
for CP were also abundant. Secondly, the authors saw that the
most successful methods to classify CP/IM faults were CNN,
RF and MLP with their over 95% success rates. Therefore,
with features used appropriately, near-perfect accuracies can
be obtained by implementing those researches. Our other
observation was the faults that are investigated popularly
in the research papers the authors read. These faults were
BRB, IRF & ORF, unbalanced power/voltage sources, stator
windings that most are IM faults.
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TABLE 3. A comparative summary of MCSA based approaches.

V. PRACTICAL CHALLENGES
As much as MCSA is an attractive method, just like VSA,
it has its own challenges and shortcomings for successful
implementation. This section contains a discussion and anal-
ysis of the major challenges that relate to practical design
and development of machine learning algorithms for pump
monitoring.

A. DATASETS
The research of machine learning algorithms for fault detec-
tion and condition monitoring invariably requires access to
large amount of accurate current data. Virtually all surveyed
research papers rely mostly on simulated data generated from
an analytical model or collected from testbed in controlled
conditions.

There is a lack of open datasets of pumps working in
real conditions that could be used for design, develop-
ment, and comparative analysis of various machine learning
approaches. Despite the fact that Case Western Reserve Uni-
versity does have a dataset for bearing fault that is collected
under 2 hp reliance electric motor in MATLAB, they unfor-
tunately use vibration data instead of MCSA data [56]. Given
that the motors can have linear degradation in performance or
sudden drops [57], it is crucial to have a reliable and correctly
annotated dataset and a model. Collecting such dataset can
be extremely challenging as any monitoring system has to
be operating for a long enough time to detect its degradation
over time and its eventual failure. Given the typical lifetime of
centrifugal pumps of 8-15 years (and 15-20 under well main-
tenance), this would require data collection over many years
or scaling the data collection to a large number of pumps.
Any resulting dataset would be imbalanced and dominated
by healthy signatures with a very small proportion of faulty
data [25]. Invariably, the datasets from such experiments
could be limited, and not all faults could be captured and
isolated (especially in real-time).

B. PREDICTIVE MONITORING
The estimated lifetime of the pump is uncertain due to
many aspects and conditions. Many models assume a binary

approach by detecting whether a motor is faulty or not,
potentially recognising the type of the fault under controlled
conditions, e.g. by drilling a hole in the bearing or introducing
an artificial blockage. Detecting multiple faults, which may
happen with real pumps is more complicated as different
faults can have inter-dependence which can complicate an
analysis [32]. What is needed is an approach that allows to
evaluate the overall health of the pump, detect early signs
of faults and changes in the fault severity level to enable
operators to make informed decisions on when to replace or
service the pump.

C. ROBUST DATA COLLECTION
Even thoughMCSA is a non-invasive method, which is much
easier to install and operate compared to vibration based
or pressure-based methods. The installation usually involves
putting current clamps around the cables with the data fed
into a microcontroller or a single board computer. However,
deploying and operating a robust data collection system can
still be challenging for multiple reasons. The control panels,
where MCSA hardware is attached can be in areas with
no or poor wireless connectivity. Even if Internet access is
available, missing packets or any other hardware problem
can still happen to disrupt the system. On top of that, the
captured data can be noisy and make it hard to extract the
desired features. Processing this data locally requires either
a relatively high-performance system or a reliable wireless
connection. Besides, processing and monitoring the data in
real-time require a systemwith a specific software installation
which can further increase the cost.

D. PUMP SPECIFIC RESEARCH
Finally, despite that IMs are part of centrifugal pumps, their
faults may be different, but they still affect the overall pro-
cesses. Therefore, any solutions that plan to create predictive
maintenance should consider thinking about both sides of the
problem. Unfortunately, there are only little researches in the
literature with a focus on centrifugal pump faults. Especially
the ones that use deep learning on MCSA. This situation

VOLUME 10, 2022 71353



C. E. Sunal et al.: Review of Machine Learning Based Fault Detection for Centrifugal Pump Induction Motors

makes the literature too limited to find/implement relevant
papers. Hence, finding only a handful of research papers to
compare their results in the same fault categories.

VI. CONCLUSION AND FUTURE WORK
The presented survey attempts to provide a systematic anal-
ysis of machine learning-based fault detection for centrifu-
gal pumps. The main objective was to explain the relevant
approaches and critically compare the performance of various
methods. In particular, the survey explains the benefits of
MCSA and compares them with other alternatives like VSA.
Having described the relevant machine learning methods,
data acquisition techniques and metadata, the authors have
realized that CNN and MLP based neural network solutions
(when paired with a good training algorithm or transfor-
mation) perform better than SVM or other solutions (e.g.
LSTM). Therefore, the authors believe that such ML devel-
opments in the future have a great potential in terms of both
prediction accuracy and resource requirements. The survey
also highlights some of the practical challenges related to
fault detection in centrifugal pumps. This includes the lack
of public annotated datasets, that could be used to develop
and compare the performance of various diagnostic algo-
rithms. The authors hope that this work will be useful to
other researchers and engineers in developing non-invasive
and low-cost predictive maintenance solutions for centrifugal
pumps.
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