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ABSTRACT Cognitive Radio (CR) is a wireless communication system that is used for intelligent vehicles
to solve spectrum scarcity and improve the utilization of the spectrum. However, spectrum sensing and data
sharing are difficult due to the presence of malicious nodes which degrades the performance. To overcome
these issues, we proposed the BlockCRN-IoCV method which includes authentication, density aware
clustering, dual agent based spectrum access and secure beamforming. Here, authentication is performed
for both Primary Users (PUs) and Secondary Users (SUs) using the Hybrid Advanced Encryption Standard
and Hyper-elliptic Curve Cryptography (AES-HCC) algorithm by considering ID, PUF and location which
ensures the legitimacy of the users. To address themobility of the vehicle we perform density aware clustering
using Density aware Dynamic Radius Clustering (DADRC) by considering location, distance and direction
for increasing throughput. After completing clustering, we perform efficient spectrum access by using the
Dual Agent based Twin Delayed (DA-TD3) algorithm which includes two agents, the first agent performs
spectrum sensing by considering SNR, noise level and trust, and the second agent performs spectrum
allocation by considering Channel State Information (CSI), in which the CSI is predicted by Quasi-Newton
Iterative Unscented Kalman Filter (QNIUKF) algorithm for effective data transmission. Finally, secure
beamforming is performed using Bi-Gated Recurrent Neural Network (BiGRU-CapsNet) by considering
CSI, beam score, array factor, and direction of angle. The simulation is carried out by OMNET++ and
SUMO simulation tools and the performance of this work is evaluated by throughput, packet delivery ratio,
SNR, detection accuracy, BER, and delay. The simulation result shows that the proposed work achieves
superior performance compared to existing work for secure spectrum sensing and beamforming.

INDEX TERMS
Cognitive radio network (CRN), 6G, Internet of Connected Vehicles (IoCV), spectrum sensing, secure
beamforming, BiGRU-CapsNet, Quasi-Newton iterative unscented Kalman filter (QNIUKF).

I. INTRODUCTION
Cognitive Radio (CR) is a type of wireless communication
that can intelligently detect the communication channel that
is used or not [1]. A cognitive radio network (CRN) is
aware of two primary environmental objectives, such as the
efficient usage of the radio spectrum and highly reliable
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communication when needed [2]. The next generation wire-
less network with various technologies, such as beyond fifth
generation (B5G) and sixth generation (6G), are estimated to
provide a connection for the internet of vehicles (IoV) with
high reliability and low latency using artificial intelligence
(AI) [3]. The interconnection of vehicles is performed by
vehicles that are equipped with WLAN using the internet.
This is referred to as the internet of connected vehicles, and
it is used for many applications, such as smart roads and
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trafficmanagement. To avoid and prevent accidents caused by
errors of human driving systems, an automated driving sys-
tem is developed by integrating various technologies, such as
tracking, decision making and surrounding sensing. Machine
learning (ML) and Deep Learning (DL) algorithms are used
for detecting past and future predictions from large-scale
datasets [4], [5].

CR devices track all the spectra located in the area to
identify different spectrum holes and primary users. To mit-
igate the bandwidth shortage in CRs, two types of users
are introduced: primary users (PUs) and secondary users
(SUs) [6]. The licensed user can access the spectrum that has
high priority, and the other user is known as an unlicensed
user who can access the spectrum opportunistically [7]. In CR
spectrum sharing, the SUs can exist with the primary trans-
mitter and PUs below the condition that the interference
affected by the cognitive base station (CBS) is acceptable
to PUs. CR has a spectrum scarcity issue in which spectrum
access is a main function for preventing concurrent spectrum
access by SUs and PUs. The unused spectrum of PUs can be
accessed by SUs. Hence, this type of access requires extra
spectrum sensing by SUs for detecting the idle spectrum
of PUs, and SUs are permitted to transmit at the highest
power [8]. To solve these issues, a dynamic spectrum sharing
and allocation method is developed in CR technology to
enhance the efficiency of the spectrum [9], [10]. Then, the
SUs select an idle channel for occupying the spectrum and
collect the sensing report by the sensing module of the SUs.
Reinforcement learning (RL) algorithms are used for select-
ing optimal channels, which are known as spectrum decisions
in CR and control the overall throughput and false alarm
probability [11]. Recently, the number of smart devices has
increased, which leads to an increasingly high cost of upgrad-
ing and operating radio access networks. Massive multiple
input and multiple outputs (MIMO) is proposed for handling
high mobile traffic demands. A large number of antennas
in radio frequency are needed for efficient communication.
The massiveMIMO improves spectral efficiency and reduces
energy consumption [12]. The centralized MIMO leads to
high diversity gains by beamforming, which provides the
greatest performance and flexibility [13]. It can adapt the
antenna array radiation pattern in massive MIMO. Efficient
beamforming is used to suppress the problems of interference
with high data rates. Three types of beamforming techniques
are available in MIMO, such as digital, analog and hybrid
beamforming [14], [15] [16]. MassiveMIMO is implemented
in beamforming for multiple SUs to provide efficient trans-
mission and high spectrum efficiency in an environment with
high mobility. Beamforming is improved with high energy
efficiency, strong security, and enhanced spectral efficiency
by implementing 6G mm waves in massive MIMO.

Various bandwidth availability and security issues are
present in the evolution of technologies such as data band-
width support, spectrum range and availability of spectrum.
Currently, information or data security is mainly focused
on wired and wireless communication because of the large

amount of data transmission, which suspects eavesdropping.
Blockchain is used to improve data security by performing
secure spectrum sensing and beamforming [17], [18]. Hence,
more attention is given to physical layer security, which
prevents the network from attackers such as eavesdropping,
jamming and primary user emulation (PUE), spectrum sens-
ing data falsification (SSDF), and attacks such as Byzantine,
to handle spectrum scarcity for increasing QoS [19], [20].
However, effective spectrum access and beamforming in a
secure manner is still a demand of state-of-the-art.

A. MOTIVATION & OBJECTIVES
The main aim of this research is to design an autonomous
driving system using 6G and cognitive radio technology. This
research also addresses the problems of spectrum scarcity,
high mobility, security, network traffic control, and poor scal-
ability in a 6G mmWave Massive MIMO cognitive radio net-
work based IoCV environment. We are motivated by several
problems which are shown as follows,
• High Mobility: The Internet of connected vehi-

cles (IoCV) has high mobility due to its moving nature; how-
ever static mobility degrades the performance of the network.
It increases high data loss and low throughput due to weak
RSSI which reduces the communication between PUs and
SUs and leads to unreliable communication.
• High network traffic: The IoCV environment has high

network traffic due to sharing an enormous amount of data at
a particular time, which increases high latency and reduces
the performance of data sharing. The routing process is used
to increase the packet delivery rate. Not considering the trans-
mission direction leads to transmission delay.
• Lack of security/privacy: Lack of security leads to

high data threats in the IoCV environment. The IoCV vehicle
needs high security because it transmits information through
the internet in a public way that can easily be compromised
by attackers. This type of hacking leads to not only the loss
of private information but also the loss of vehicles by theft.
• Spectrum scarcity and Allocation: Most of the avail-

able spectrum allocation leads to spectrum scarcity issues.
Many types of research focus on solving these issues, but it
still does not have an accurate solution. To reduce the uti-
lization of the spectrum by SUs, proper spectrum allocation
policies are necessary to solve this issue.

The motivation issues of this research are illustrated in
fig 1. The main objective of this research is formulated by
considering these issues to design an autonomous driving
system with high security, low traffic, efficient spectrum
allocation, and high scalability. The other objectives of this
research are listed as follows:
• To increase the security level of the CRN network

by performing blockchain-based authentication for both pri-
mary users and secondary users that perform against external
attackers.
• To address the dynamic mobility of autonomous vehi-

cles by performing density-aware clustering and handover of
vehicles in an IoCV environment.
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FIGURE 1. Research motivation.

• To address spectrum scarcity by performing dual agent-
based spectrum access, which provides efficient spectrum
access. By encrypting the spectrum sensing report, this
research mitigates SSDF attacks in the network.
• To enhance the quality of the signal by performing secure

beamforming, which enhances the transmitting speed in the
network, and verifying the CSI using blockchain provides
secure beamforming.

B. RESEARCH CONTRIBUTIONS
This approach is focused on designing an autonomous driving
system by utilizing spectrum effectively using 6G and CRN.
The AI in the IoCV environment is adopted to intelligently
communicate with the environment (RSU and other vehicles)
to reduce the risk during driving. 6G communication is uti-
lized to reduce the latency and communication overhead and
provide high transmission reliability during communication.
Blockchain technology is used to ensure the security and
privacy of the individual vehicle and RSU in the environment.
Furthermore, clustering technology is adopted to reduce the
energy consumption among the vehicles and mobility issues
in the IoCV environment. The combination of these tech-
nologies in the IoCV environment supports energy efficient,
highly secure, and robust contributions. The major contribu-
tions of this research are listed as follows:
• For enhancing the security of the IoCV environment,

we perform authentication for both PUs and SUs using
blockchain by a hybrid AES-HCC algorithm.
• For addressing dynamic mobility we perform density

aware clustering using density aware dynamic radius cluster-
ing (DADRC) by considering location, distance, and direc-
tion with efficient handover.
• For efficient spectrum sensing and allocation, we per-

form dual agent based spectrum access using the DA-TD3
algorithm which properly senses the spectrum. Based on

that fusion center generate and encrypt the spectrum sensing
report which prevents eavesdropping and SSDF attacks.
• Quasi-Newton Iterative Unscented Kalman Fil-

ter (QNIUKF) is used to evaluate the CSI which improves
the efficacy of spectrum allocation and the data transmission
process.
• To improve security and signal quality, we perform

secure beamforming using the Bi-Gated Recurrent Unit-
Capsule Network (Bi GRU-CapsNet) algorithm, in which
the parameters are retrieved from the blockchain to pro-
vide secure beams that increase the security of the IoCV
environment.

Finally, the performance of this research is evaluated in
terms of throughput, packet delivery ratio, delay, SNR, detec-
tion accuracy, SINR, total transmit power, sensing delay and
spectral efficiency.

C. PAPER ORGANIZATION
The remainder of this paper is structured as follows;
Section II explains the survey of the existing works,
which includes the research gaps. Section III presents
the major problem statement of the existing approaches.
Section IV provides the research methodology of the pro-
posed BlockCRN-IoCV model with pseudocode, proper dia-
grams and mathematical representations. Section V explains
the experimental results and provides comparisons of the
proposed and existing approaches. Section VI presents the
conclusion and future directions of the proposed work.

II. LITERATURE SURVEY
In this section, various existing works related to secure
spectrum access and beamforming based on ML and DL
techniques are classified into three categories, which are
summarized as follows. This section additionally consists of
the research gaps of these previous works.

A. SCHEMES FOR SECURITY ATTACKS IN CRN
In [21], the authors proposed resource allocation in the cogni-
tive radio enabled internet of vehicles. The proposed system
network is divided into multiple cognitive cells. The pro-
posed SNO-CRAVANET model includes three subsections:
the vehicular cluster mobility model, PU activity, and packet
arrival process. First, the CRV-SU cluster is formed with
minimum time, which manages the mobility using speed.
Second, the PU (licensed user) transmits the packet from
both the cluster head and cluster members. Finally, a queue is
maintained with Q packets that are used at every CRV-SU
CM to other buffer packets. Here, SINR is considered for
estimating channel quality, which is not enough for measur-
ing channel quality because CSI and environmental factors
also affect the channel quality; hence, this work selects fewer
quality channels that degrade the performance. The authors
proposed a two-tier EI-empowered autonomous vehicle driv-
ing approach in [22]. The simulation result shows that the
proposed model achieves high efficiency and finally pro-
vides open research topics. The proposed work expresses the

74222 VOLUME 10, 2022



P. Deepanramkumar, N. Jaisankar: BlockCRN-IoCV: Secure Spectrum Access and Beamforming for Defense Against Attacks

binary offloading decision-making process and resource allo-
cation for mixed integer nonlinear programming problems
(MINLP). To solve this problem, a multitask learning (MTL)
framework is proposed that provides high efficiency and
accuracy. An autonomous driving system includes three
modes: the local inference mode, joint inference mode and
edge inference mode. The inference performance depends
on the vehicle’s computational capability. A deep neural
network (DNN) is used for dividing the edge vehicle joint
inference. Here, the performance of inference depends on the
vehicle’s current available computation capability; however,
it increases complexity in 6G environments, thus degrading
the performance.

Authors proposed detecting PUEA and SSDF attacks using
proactive learning method based MAC protocol in cogni-
tive radio network [23]. The proposed PROLEM method is
used for channel allocation due to the efficient learning and
feedback method. The proposed model predicts the trans-
mission state, such as idle or busy, for every PU channel.
It includes three modules: the set point calculation module,
error correction and target calculation module and control
calculation module. The simulation result shows that the
proposed PROLEM method achieves better performance in
terms of channel utilization, backoff rate, and sensing delay
when compared to existing methods. Here, all the processes
(ex. transmission state prediction, feedback collection) are
transmitted and stored in a public manner, which can easily
be misuse by the attacker, leading to poor security. Ensemble
learning based detection of the presence of malicious sec-
ondary users in a cognitive networkwas proposed in [24]. The
degradation in the performance of sensing caused by mali-
cious users in the network was addressed in this approach.
The performance of the multimodel based detection tech-
niquewas found to be higher than that of a singlemodel-based
detection technique. The multiple models utilized in this
approach were SVM and TCRNN. The tuning of hyperpa-
rameters was performed based on the Bayesian optimization
algorithm. The reputation based weighted majority learning
method (RWMV) was used to determine the weights of the
users based on their reputation. The probability based deter-
mination of the final threshold was performed to detect the
malicious nodes. The secondary users in the network were
determined to be trusted users and malicious users based
on the current trust report, but the lack of consideration of
the historical trust of the nodes degraded the efficiency of
detection.

A probabilistic approach-based detection of malicious sec-
ondary users in the cognitive radio network was proposed
in [25]. The detection of attacks in the network was carried
out without any prior knowledge of the attack pattern. The
fluctuation in the trust values was addressed by utilizing the
sigmoid log function approach. The sliding window concept
was leveraged to update the trust values of the nodes based
on the decision taken over the sensing report. The static
threshold was computed to differentiate the trusted secondary
users and malicious secondary users in the network. Based

on the current threshold value and the past trust of the node,
malicious nodes in the network were detected. The detection
of malicious users was performed based on the static thresh-
old computed on the difference between the sensing reports.
However, the lack of generation of dynamic threshold values
reduces the accuracy of the detection approach.

The authors in [26] proposed an approach to perform spec-
trum handoff in CRNwith high security. Initially, the handoff
mechanism was performed by computing the trust value of
every user in the CRN, which increases the security by mit-
igating CUEA attacks. The trust value (i.e., the legitimacy
or malicious characteristics) of the CU was evaluated using
CCU, which computes TV to record all the DDR of CUs. The
security of the handoff mechanism was implemented in two
various types of cases in which the first case detects the NU
as PU and the second case identifies the NU as HCU or CU.

B. SCHEMES FOR BEAMFORMING
Authors in [27], addressed the problem of traditional beam-
forming energy allocation and power control by proposing
SWIFT enable edge computing in cognitive radio. Here,
SU and ET are prepared with a single antenna for harvest-
ing radio frequency energy, creating mobile computing to
enable wireless communications. The idle users are used
to harvest the energy, which is known as energy receivers.
The probabilistic CSI model is used to identify the chan-
nel vector errors. The proposed work includes an AN-aided
communication methodology for a cognitive base station to
effectively forward the information to users with artificial
noise. The edge nodes are used to solve the energy problems
in this research. SWIPT enables CR to be extended with
unlimited scaling capability. Here, the cognitive base station
transmits the information with artificial noise to the end
users, which does not provide high security that can easily
be compromised by the attackers, thus leading to poor secu-
rity. The authors proposed antenna muting and beamforming
optimization using a deep learning algorithm in distributed
massive MIMO [28]. Here, a Deep Neural Network (DNN) is
proposed for solving the muting and beamforming optimiza-
tion problem. It includes an input layer, hidden layer, fully
connected layer and output layer, which are the beamform-
ing matrix, antenna state, and optimal transmission power,
respectively. Then, the data generation process is explained
in this paper, which includes the training and testing phases.
A stochastic gradient algorithm is implemented for solving
optimization. The simulation result shows that the proposed
model achieves better performance in terms of accuracy and
less computation time compared to the traditional algorithm.
Here, beamforming only considers the beamforming matrix,
optimal transmission power and antenna states, which are
not sufficient for secure beamforming, thus degrading the
performance of this work.

Authors in [29], proposed a beamforming verification
method for data sharing in fifth generation (5G) VANET. The
main aim of this research is to use multiple data resources
with the aid of RSU for verifying the vehicle. The proposed
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system includes two verification systems: the client server
model and the local detector. First, the local detector verifies
the target vehicle using a signal-based verification system.
Next, the information is collected from V2X signal-based
localization using the DCS-SOMPS/SAGE algorithm. The
target trajectory is extracted by cooperative awareness mes-
sages (CAM). The Dempster-Shafer method is used for fused
local and global detectors to make final decisions. The sim-
ulation result shows that the proposed work achieves better
performance in terms of response time and detection accuracy
compared to existing work. Here, all the data are shared
and stored over the internet in a public manner, which can
easily be hacked by attackers, resulting in eavesdropping of
channels and thus leading to poor security. In [30], machine
learning-based beamforming was proposed using selfish and
altruistic strategies in an ultradense network. A reinforce-
ment learning algorithm is proposed in machine learning for
obtaining the best action of beamforming. A deep Q network
is deployed to beamforming agents for calculating vectors
of beamforming. The performance of the proposed work is
evaluated in the Multiple Input and Multiple Output (MIMO)
configuration. The simulation result shows that the proposed
model achieves better performance using Q learning, which
consists of both small- and large-scale fading and beamform-
ing. Here, beamforming is performed by considering only
the balancing coefficient, which is not sufficient for optimal
beamforming and degrades the quality of the signal. The
balancing coefficient is calculated and shared in a public
manner without any verification, which leads to insecure
beamforming.

The authors proposed a beamforming approach for secure
data transmission is a 5G cognitive radio network [31]. The
proposed beamforming approach includes two users: the pri-
mary user (PU) and the secondary user (SU). Every cluster
includes multiple antennas and users. First, the licensed PU
shared their data with the same frequency and time. The data
leakage is addressed by the proposed technique in the base
station. The CSI is calculated based on the receiver’s response
using a feedback channel. The secrecy outage possibility of
both PU and SU was analyzed by the power allocation policy
of CRN. Finally, the simulation result shows that the pro-
posedwork achieves better performance compared to existing
works. During beamforming, CSI is evaluated by considering
the receiver response, which is not enough for calculating
CSI, thus increasing interference. The CSI is not verified
before beamforming, which leads to insecure beamforming,
thus reducing the performance of the proposed work.

The authors in [32] proposed an approach to perform dual
stage beamforming using a neural network and bidirectional-
long short-termmemory (Bi-LSTM) to reject the signal inter-
ferences. Initially, a neural beamformer was implemented
to evaluate the original signal with interferences and noise
using a convolutional neural network (CNN). The interfer-
ence vectors estimation from the antennas by performing
training with autocorrelation matrix using CNN algorithm.
Sampling estimation for the desired signal was performed

using Bi-LSTM. All significant features were learned using
individual memory cells of Bi-LSTM. Evaluation of this
method was performed in terms of the SINR value.

In [33], the authors proposed an approach to perform
hybrid beamforming in mmWave-based MIMO net-
work communication with secured multicells. Initially,
MU-MIMO-based mmWave communication was performed
at legitimate users, BSs, and eavesdroppers by implementing
hybrid beamforming. The eavesdropper attack was mitigated
by using the mmWave-based 3D channel model to transmit
the signal for every node. In the 3D channel model, AN beam-
forming was used to reduce eavesdropping by jamming it
during the transmission. Finally, a beamforming design was
performed by considering SLNR for the CoMP case. For the
case of Non-CoMP, ZF, RB, and MRT were considered and
evaluated in terms of computational complexity and secrecy
rate.

C. SCHEMES FOR SPECTRUM SENSING AND ACCESS
The authors proposed a power domain-based dynamic spec-
trum access approach to control transmission power for build-
ing small cells in [34]. 28 GHz spectrum is allocated to the
mobile network operator (MNO), which is known as the pri-
mary MNO. The transmission power threshold is generated
by the primary MNO. In the proposed work, the secondary
MNO is used to detect the user equipment of every primary
MNO to update the accessmode of the spectrum. For that, this
research used both reactive and proactive sensing techniques.
To satisfy theminimumCCI, this research proposed spectrum
reuse techniques such as dynamic spectrum access (DSA)
techniques. Three-dimensional small cell clusters are formed
within a building to satisfy a lower CCI between small cell
base stations (SBS). Here, a dynamic spectrum access tech-
nique is proposed for spectrum sensing; however, CSI calcu-
lation is a significant feature for spectrum sensing and access;
otherwise, it leads to poor spectrum access. The allocation
of the spectrum using a deep reinforcement approach was
proposed in [35]. The integration of both backhaul and access
networks was carried out, and allocation of the spectrum for
both the backhaul links and access links was performed. The
objective of the spectrum allocation approach was to maxi-
mize the cumulative log rate of the users in the network. The
advantages of reinforcement learning approaches in solving
dynamic problems were analyzed, and an actor critic-based
resource allocation approach was introduced. The channel
state information was not considered for the allocation of
resources, which thereby reduced the complexity involved
in allocating resources. The QoS requirements for each user
were also considered for the resource allocation process. The
actor critic model was utilized to achieve an effective solution
in the allocation of the spectrum to the user nodes.

Authors proposed dynamic spectrum access and allocation
method based on trading for cognitive Internet of Things net-
work in [36]. The proposed work architecture includes four
layers: the information sensing layer, network connection
layer, cognitive layer and service layer. The IoT users need
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TABLE 1. Summary of existing works.

a spectrum from an authorized source. If the user receives
an idle spectrum, then it is divided into multiple channel
bands. The IoT users used QAM modulation to enhance the
quality of the communication. The Lagrange method is pro-
posed to solve the optimization problems (optimal spectrum
allocation) of cognitive IoT users. The experimental results
show that the proposed model achieves better performance
for spectrum optimization. Here, spectrum allocation is per-
formed by calculating the utility function; however, it does
not have CSI information and previous interference, thus
reducing the performance of the spectrum allocation in a
cognitive IoT environment.

Authors in [37], proposed a QoS aware sensing access
technique using a machine learning algorithm for the cog-
nitive radio network. The main aim of this research is to
reduce the sensing delay and be conscious of unlicensed user
requirements. The proposed system includes 4 RATs near the
SU for data transmission and provides coverage for the SU,
which searches the available frequency band. The coverage
considers the distance of the SU from its present location.
The spectrum sensing process considered the selected RAT
bandwidth. Sensing latency is used to calculate the delay by
unsuccessful sensing, which is increased to many failures.
An ANN is proposed for predicting the future traffic load
for every RAT using historical data. Here, ANN is used for
predicting future traffic load; however, the processing time
of ANN is unknown, which increases high latency and does
not provide optimum results, thus reducing the efficiency of
the work.

The detection of false sensing reports generated in the
cooperative sensing of the spectrum was proposed in [38].
The advantages of performing cooperative spectrum sensing

to mitigate several sensing problems were considered, and
the effect of SSDF attacks in the cooperative sensing model
was addressed in this approach. The credibility-based valida-
tion of the legitimacy was performed. Evidence theory was
adopted to determine the probability assignment function for
each node, and the weighted sum of these probabilities was
computed to provide the global decision. The probability-
based detection of malicious users was found to resist the
influence of illegitimate users but cannot fully overcome the
effects of these illegitimate secondary users. Table 1 shows
the summary of the previous works.

III. PROBLEM STATEMENT
The major problem statement in spectrum access and beam-
forming is to minimize the sensing delay and maximize
spectrum utilization and security. This is expressed in this
section along with problems faced by existing works in
spectrum access and beamforming in the 6G mmWave Mas-
sive MIMO cognitive radio-based IoCV environment. Let
the number of SUs in the network be denoted as SU i =

{su1, su2,. . . sui} and the number of PUs be denoted as
PU i = {pu1, pu2,. . . , pui}. The objective of this research
is to minimize the sensing delay and maximize the spectrum
utilization, security, throughput, and packet delivery rate in
the proposed environment. Every SU takes ti amount of
time to sense the available spectrum, which is formulated as
follows:

Min
∑
i∈R

SL i,t(i) (1)

SL =
Nf
SUP

(2)
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where SL represents sensing delay t(i) represents the sensing
time of i SUs, Nf represents a total count of channels sensed
and SUP represents the total count of transmitted SU packets.
To reduce spectrum scarcity issues, we need to utilize the
spectrum efficiently. For that purpose, we need to improve
the spectrum utilization by SUs, which is defined as follows,

Max
∑
i∈R

ãi,a(i) (3)

where α̃ represents the spectrum utilization and a(i) repre-
sents the number of SUs utilized in the available spectrum in
the environment. The other problems presented in the existing
work are explained as follows. Blockchain-based security in
the cognitive radio-assisted internet of connected vehicles
environment was proposed in this paper [39]. The degradation
in the performance of connected vehicles due to the presence
of malicious nodes in the network was considered, and an
effective security approach was executed during the sensing
of the spectrum and transmission of information. The major
problems of this research are listed as follows:
• The trust value of the vehicles in the network was

computed by the fusion center by incorporating the TOPSIS
method; however, it faced difficulties in maintaining the con-
sistency of the decision.
• The CRT-BIoV approach improved the security and

transparency of communication in the network, but security
threats such as random SSDF attacks were not mitigated,
which affected the security of the network.
• The data transmitted in the network are stored in the

blockchain, which cannot be tampered with, but during the
communication between the vehicles or to the infrastructure,
the attackers can initiate eavesdropping due to lack of encryp-
tion of the data.

The deep reinforcement learning-based cooperative sens-
ing of a spectrum inmultiple user environments was proposed
in this paper. The dueling deep Q network was implemented
for the dynamic sensing of the spectrum to allocate the
unoccupied spectrum to the users [40]. The two-level secu-
rities were provided for the users during spectrum sensing in
cognitive radio networks [41]. The genetic algorithm (GA)
based filtration of false sensing reports was proposed in this
paper [42]. The major problem of this research is defined as
follows:
• The security attacks such as PUE, jamming, eavesdrop-

ping, and SSDF carried out in the cognitive network dur-
ing the spectrum sensing process were not mitigated which
leads to increased interference and waste of resources in the
network.
• However, the SSDF attacks launched by malicious sec-

ondary users during spectrum sensing were mitigated by this
approach,but the other attacks such as jamming, PUE, and
eavesdropping, during spectrum sensing were not mitigated
affecting the robustness of this approach.
• The reputation of the nodes in the network was deter-

mined by the neighboring nodes based on the difference in
the report but this increases the confusion in determining the

accurate reputation of a node as the malicious nodes provided
the bad reputation to the legitimate users.

Secure beamforming framework for cognitive radio (CR)
and Non-orthogonal Multiple Access (NOMA) networks was
proposed in [43]. This research examines the physical layer
security for the CR-NOMA network.
• The secure beamforming was carried out based on the

CSI value but the lack of consideration of significant factors
such as array factors and Direction of Angle (DoA) affects
effective beamforming.
• Here, the secrecy rate is based on the QoS at the PU

and transmitter power of the ST, which is not enough for
calculating the secrecy rate of the SU, thus degrading the
robustness of the process.
• The formation of a beam for the effective transmission of

data was inefficiently performed due to the exception of the
beam score, which leads to further scattering of the beam.

IV. BlockCRN-IoCV MODEL
The proposed work focuses on increased efficiency in the
transmission of data through secure sensing and allocation
of resources in the 6G mmWave Massive MIMO cognitive
radio network-based IoCV environment. 6G communication
is adopted to achieve increased throughput in the trans-
mission of data between autonomous vehicles. Blockchain
technology is used to ensure the security and privacy of
the overall network. The implementation of various entities,
methods, and technologies is performed in this work, which
is described as follows:
(i) 6G Core- This technology provides high bandwidth

and communication speed, which is mainly implemented to
perform effective communication between PUs to SUs and
SUs to FCs in terms of high reliability and ultralow latency
with sufficient network coverage.
(ii) Beamforming- The beamforming technique is used to

enhance the signal quality by creating high-quality beams
that also improve the spectral efficiency of the overall IoCV
environment.
(iii) Blockchain- This technology is deployed to increase

the security in the network. The trusted authority verifies all
the requests of SUs by authenticating the SUs and stored in
the blockchain to provide security during data transmission
based on SU legitimacy.
(iv) Spectrum Sensing- Spectrum sensing is performed

to analyze the available spectrum for allocating resources.
FC performs decisionmaking to ensure security by evaluating
trust.

The increased spectral efficiency is achieved by integrat-
ing the Massive MIMO technology in the cognitive radio
network. The research methodologies of this approach are
explained by the following subsections,

A. NETWORK MODEL
The proposed 6G mmWave Massive MIMO cognitive radio-
based IoCV environment includes primary users (PUs) that
are also known as licensed users and several vehicles that
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FIGURE 2. Architecture of BlockCRN-IoCV.

are known as secondary users (SUs) that are also called
unlicensed users, which are illustrated in fig 2. The SUs can
sense the environment to utilize the licensed spectrum if any
of the licensed PU spectra is idle. All the SUs send the sensed
spectrum report to the Fusion Center (FC), which is also
called the Cognitive Base Station (CBS). Both CBS and FC
have the same meaning in this research and are deployed
with a mmWave Massive MIMO antenna. Here, the Trusted
Authority (TA) is used to ensure the legitimacy of SUs and
PUs because it provides the secret key to every PU and SU
for validation. These private transactions are stored in the
blockchain to provide high security. In this way, we mitigate
the attacks in the environment and perform secure spectrum
and beamforming. Table 2 represents the goals of the pro-
posed work.

B. AUTHENTICATION
The authentication of both primary and secondary users is
carried out to achieve increased security in the IoCV envi-
ronment. For this purpose, both the primary users (PUs)
and secondary users (SUs) in the CRN are authenticated
by the blockchain-based trusted authority. In our proposed
approach, the primary users are the road side units (RSUs),
and the secondary users are the autonomous vehicles present

in the environment. Initially, credentials such as ID, Physi-
cally Unclonable Function (PUF), and location of both the
PUs and SUs are registered to the blockchain-based trusted
authority in which the credentials are stored in blocks in
a hashed manner. The blocks are chained together, thereby
providing an untampered nature. The secret key is generated
by incorporating the hybrid AES-HCC algorithm. The execu-
tion of authentication mitigates the security threats caused by
malicious secondary users.

The number of PUs is represented as PU i = {1, 2, . . .N },
and the number of SUs is denoted as SU i = {1, 2, . . .N }
The credentials of PUs and SUs, such as ID, PUF , and L is
registered to TA, which is expressed as follows,

TA ← Reg(PU ID)(PUPUF )(PUL) (4)

TA ← Reg(SU ID)(SUPUF )(SUL) (5)

The credentials of PUs and SUs are hashed and stored
in the blockchain after successful registration to the TA for
authentication by hybrid encryption using the AES-HCC
algorithm.

The Advanced Encryption Standard (AES) supports a
128-bit data block with keys of 128, 192 and 256 bits. Input
data are arranged in 4× 4 bytes with two-dimensional arrays
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TABLE 2. Goals of proposed blockcrn-IoCV model.

Algorithm 1 Authentication
1: Begin
2: Initialize PU i and SU i where i=1,2,3,. . . ,N
3: for all PU i and SU i do
4: Credential registration Phase ();
5: Register Ci ();
6: Ci = {PUID,PUPUF ,PUL , SUID, SUPUF , SUL}
7: Store Hashed Credentials in Blockchain;
8: Initialize Authentication Phase ();
9: Initialize AES phase ();

10: AddRoundKey (state, &w[00])
11: for i=1 step 1 to 4 do
12: SubBytes (state)
13: ShiftRows (state)
14: MixColumns (state)
15: AddRoundKey (state, &w[j*4])
16: end for
17: Initialize HCC phase();
18: Encrypt AES key using Public Key of HCC;
19: Compress the ciphertext;
20: Generate secret key for PUs and SUs;
21: Verification of credentials;
22: If (secret key == true) then
23: Authentication Successful;
24: Else
25: Authentication Failed;
26: End if
27: end for
28: End

known as the state, which has 16 bytes. It consists of three
major steps, which are described as follows,

SubBytes is a first step, which is also a substitution step
with nonlinear bytes that performs independently by a sub-
stitution table on State’s every byte. Based on two transfor-
mations, the substitution table is derived and is invertible.
Calculate multiplicative inverse in Galios Field, i.e., GF(28)
for the elements being mapped, and an affine transform is
applied over GF(2).

The second step is the ShiftRows step, which is also known
as the transposition step that shifts the AES last three rows
cyclically toward the left with few bytes.

MixColumns is a final step and it is also called a per-
mutation step that performs on each column present in the
state. Every column of the state is assumed as four term
polynomial with GF(28) and y4 + 1 multiplied modulo with
k (y) = {03} y3 + {01} y2 + {01} y + {02} fixed polynomial.
The multiplication results in replacing four bytes in a single
column which is expressed as follows,

á0,k = ({02} · a0,k )⊕ ({03} · a1,k )⊕ a2,k ⊕ a3,k (6)

á1,k = a0,k ⊕ ({02} · a1,k )⊕ ({03} · a2,k )⊕ a3,k (7)

á2,k = a0,k ⊕ a1,k ⊕ ({02} · a2,k )⊕ ({03} · a3,k ) (8)

á3,k = ({03} · a0,k )⊕a1,k ⊕ a2,k ⊕ ({02} · a3,k ) (9)

In this step, each byte ai,k is multiplied by several con-
stants, i.e., 01, 02, and 03 during encryption.

AddRoundKeys is the last step in which the addition of
RoundKey with state and key scheduler is used to derive each
RoundKey from the cipher key.

Hyper Elliptic Curved Cryptography (HCC) is used to
encrypt the AES Key (kAES ) using the public encryption key
of HCC EN (kAES ).

The transaction consisting of
(
Kpb

)
, (Kpr ), EN (kra),

key lifetime (kL), current timestamp are submitted to the
blockchain. The plaintext credentials are grouped to 1M
packet and encrypt packet by the key generated by AES and
public key of HCC respectively. Compressing the ciphertext
of both AES and HCC to obtain overall ciphertext, this is
expressed as follows,

R1

=

h∑
c=1

{
C
[
Én (Tcmod2 ≡1)ķAES

]
‖

[
Én (Tcmod2 ≡0)ķHCCpub

]}
(10)

where C represents compression and Én denotes encryption.

R2 = Én
(
ķAES

)
ķHCCpub

(11)

Encrypt the AES key by the HCC public key which is
expressed as follows,

Where, ķAES represents the AES key and ķHCCpub repre-
sents the public key of HCC.
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FIGURE 3. Authentication of PUs and SUs.

ConnectR1 andR2 compress to obtain the overall cipher-
textR, which is expressed as follows,

R = C (R1‖R2) (12)

Initially, the SUs request the execution of the transaction
in the network. Depending upon the request of SUs, a new
block is created for transaction. The blockchain then verifies
the newly created block by using the consensus mechanism.
If consensus is achieved and the transaction is verified, the
new block is mined, and the credentials of SUs are recorded in
the blockchain. By doing so, the legitimacy of the SUs is ver-
ified before taking part in transmission. Only authenticated
SUs can transmit through the fusion center; otherwise, mali-
cious SUs are mitigated. Fig 3 illustrates the authentication
of PUs and SUs.

C. DENSITY AWARE CLUSTERING
The mobility of vehicles in the environment is a crucial

factor to be considered to address practical scenarios. For
this purpose, the clustering of SUs is carried out in which
the dynamic topology of the vehicles is considered. Density
AwareDynamic Radius Clustering (DADRC) is implemented
based on significant parameters such as distance and direc-
tion. Only the same direction SUs are considered neighbor
nodes. The radius of the cluster depends upon the density
of the vehicles in a region at a particular time. Let N =
(n1, n2, . . . , ni}, ni ∈ Pd be the set of nodes, and n0 ∈ Pd be
a given node and γ represent the positive integer of arbitrary.
A set S ⊆ N is known as γ radius neighbor of n0.

S = {ni ∈ N : d(ni, no) ≤ γ } (13)

Algorithm 2 Density Aware Clustering
1: Begin
2: Initialize cnew1 = ∅, i = 1
3: for all nodes (n) do
4: If (direction==1) then
5: Select the nodes for clustering
6: Else
7: Get values of u1, u2, u3 using (16), (17) and (18)
8: If (Values == True) then
9: Compute cnew1 = {u1, u2, u3}

10: Else
11: cnew1 = {u1}
12: End if
13: End if
14: Develop cnew1 using γ radius based on (23) and (24)
15: If (cnew1 == ρi)then
16: Go to step 9
17: Else
18: ci = cnew1 , i := i+ 1, data := data\cnew1
19: End if
20: Calculate the adaptive radius and centroid until met

stopping condition
21: If (data == ∅) then
22: Stop cluster construction
23: Else
24: Go to step 7
25: End if
26: // CH Selection
27: Initiate CH selection
28: If (n == Max (RSSI )&&Max (T )) then
29: Select the current n as CH
30: End if
31: end for
32: //Handover
33: Initialize parameters SINR, RSSI , d ′,LOS
34: Compute Fp = {SINR+ RSSI + d ′ + LOS}
35: If (SU > Th) then Th = −

∑m
j=1 P(Fp)logP(Fp)

36: Perform Handover
37: End if
38: End

where d(ni, no) represents the Euclidean distance between ni
and no. Here, the cluster is expanded based on the value of
radius γ . The maximum extension of the cluster is calculated
as follows,

γ = max D =m+ 2sd (14)

where m and sd represent the mean and standard deviation of
the past and current clusters, respectively. The largest value
of the mean extension is calculated as follows,

γ = m+
1.96sd
√
i

(15)

Then, initialize co1 = ∅, cn1 = ∅, and Cennew = ∅,
where co1 and c

n
1 represent before and after the update of the
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current cluster, respectively. The three values of the cluster
are defined as follows,

u1 = Arg min
ni∈N

k∑
j=1

d(ni, nj) (16)

u2 = Arg min
ni∈N/u1

n∑
j=1

d(ni, u1) (17)

u3 = Arg min
ni∈N/u1,u2

n∑
j=1

d(ni, u1) (18)

where u1 is the value of the cluster centroid and u2 represent
the nearest neighbor of u1 and u3 are the nearest neighbors
of u1.

d (u2, u1) ≤ d (u3, u1) <
(
2
n

)−1∑
i6=j

d(ni, nj) (19)

Update,

cold1 = (u1, u2, u3} ; c
new
1 = {u1, u2, u3} (20)

If u2 and u3 are the two nearest neighbors of u1, however,
the difference of distance is larger than the current dataset
distances, then u1 is considered as a single cluster and stops
the cluster extension process. The distances are calculated
based on the following formula,

d (n,m) =

√√√√ d∑
i=1

(ni − mj)2 (21)

where m and n represents the data points and d represent the
distance between the two data points. After calculating the
distance the data are normalized into the interval [0, 1] to
equalize the data. The calculation of normalization is defined
as follows,

Zij =
nij −Mini(nij)

Max i
(
nij
)
−Mini(nij)

(22)

where nij represents the variable value and Zij represents the
normalized value of the variables. Max i

(
nij
)
and Mini

(
nij
)

represent the maximum andminimum values of the variables.
For every ui ∈ cnew1 calculate the adaptive γ radius and update
cnew1 and Cennew based on the following formula,

cnew1 := cnew1 ∪ ρi (23)

Cennew :=
Cennew
ui

(24)

where ρi represents the radius of neighbor nodes and Cennew
represents the value of the new centroid. If cnew1 /cold1 6= ∅,

then cold1 := cnew1 and cnew1 := Cennew ∪ cnew1 /cold1 . Again
calculate adaptive radius and centroid until Cennew = ∅,
and then stop clustering. The above processes are repeated
until all the nodes are assigned to the cluster. After cluster
construction is completed, cluster head (CH) selection is initi-
ated. Here, CH is selected by considering the maximumRSSI
value and trust value. CH acts as an intermediate between the

FIGURE 4. Dynamic clustering of SUs.

cluster member and the Fusion Centre (FC). The cluster head
ID is generated to the CH by the trusted authority and broad-
cast to the cluster members to facilitate secure transmission.
The clusters are formed in such a way that every vehicle in
the cluster possesses one-hop communication with the CH.
Handover of the vehicle is necessary for the high mobility
environment. It is performed by PU between interclusters to
increase the efficiency of coverage by considering coverage
parameters such as SINR, direction, RSSI, distance, and ele-
vation angle to address the dynamic mobility of the vehicles
that are present in the network. Fig 4 represents the dynamic
clustering of SUs.

(i) SINR- It is defined as the ratio between signal power
and the sum of noise and interference power. It is also known
as the signal-to-interference and noise ratio. The calculation
of SINR is expressed as follows,

SINR =
šp

Ņp +
∑I

i=0 Pi
(25)

where, šp represents the signal power and Pi denotes the ith
channel’s interference. Ņp indicates the noise power.
(ii) RSSI- It is defined as the amount of received signal

powerwhich ismeasured by the ratio of the transmitted power
to the received power and is expressed as follows,

RSSI =
T́ xp
Řxp

(26)

(iii) Distance (d ′)- The distance is calculated between two
SUs in which the formulation for calculating distance can be
represented as,

d ′
(
r̂, û

)
=

√√√√√ k∑
j=1

(ûj−r̂j)2 (27)
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FIGURE 5. Dual agent-based spectrum access.

where, r̂ , û represents the SUs and ûj, r̂j represents the direc-
tions of the SUs.

(iv) Elevation Angle (LOS)- It is defined as the angle
between the PUs horizontal line of sight and line of sight of
SUs. The measurement of the elevation angle is represented
as,

LOS =
1

1+ e−v(
180
π
θ−y)

(28)

where v and y are constant values based on the environment
and θ represents the elevation angle.

D. DUAL AGENT-BASED SPECTRUM ACCESS
The process of determining the availability of the unoccupied
spectrum in the network is called spectrum sensing. Every
SU in the network performs spectrum sensing and shares
the sensing report with the FC to determine the global deci-
sion and to allocate the resources according to it. The Dual
Agent-based Twin Delayed Deep Deterministic Policy Gra-
dient (DA-TD3) algorithm is performed for spectrum access,
in which the first agent focuses on spectrum sensing and
the second agent focuses on the allocation of resources. The
sensing of the spectrum is carried out based on factors such
as SNR, noise level, and trust factor for each time interval.
Fig 5 illustrates the spectrum access using the DA-TD3 algo-
rithm. The trust factor is considered to mitigate the security
attacks caused by the compromised SU. During sensing of the
presence of PU, the PUE attack is mitigated by comparing the
past nature of the signal with the current signal. The SUs in
the network sense the spectrum by discovering the PU signal
presence, which is formulated as follows,

Rn =
{
y(n), T0 = PU Absent
Cg ∗ S(n) + y(n), T1 = PU Absent

(29)

TABLE 3. Attributes of DA-TD3 algorithm.

where n = 1, . . . .N and N represent the count of samples
and R(n) represent the received signals of the SU and S (n)
represent the signal of PU and y (n) represent the additive
noise with zero mean and variance and T represent the sens-
ing channel gain. This spectrum sensing is performed by the
first agent of DA-TD3. The spectrum sensing is constructed
as a Markov decision process with Action(H), State (A),
and Reward(R). The proposed DA-TD3 algorithm performs
spectrum sensing and allocation. The attributes of DA-TD3
are illustrated in Table 3. Every agent includes actor net-
work

(
π i
)
and two critic networks

(
Cπ1 , Cπ2

)
and the target

network. This type of joint environment is used to observe
the current status of the environment to perform an action.
At time t, the action (Hi

t ) performed by the agents based on
the current observation (Oit ) in i, which represents the agent
index. The combined reward (Rt ) is produced for the agent-
based on Hi

t . The two agents learn the policy π i(Oi|Hi) to
maximize the reward. The new state A′t (At+1)is generated to
perform the corresponding action in this state.

The value of the gradient is calculated based on the contin-
uous policy with parameters θ i which is defined as follows,

∇θ inJ (πi) = EA,H∼D
[
∇θ iπ

i
(
Hi
|Oi
)
∇HiQ π i(

A,H1, . . . ,Hn
)
|Hi=π i(Oi)

]
(30)

One of the main reasons for using DA-TD3 is the over-
valuation of Q values, which is mitigated using three main
methods: developing clipped double Q learning, updating the
policy using the delayed method, and target policy smooth-
ing. Using the clipped double Q learning, the network selects
a minimum Q value through the minimization function. That
value is sent to the policy network, which is defined as
follows,

x = R+ σ (1− D)Min Qiπ̃
(
Õ,H

1
, . . . ,H

n
)

(31)

Target policy smoothing is performed to make it problem-
atic for the policy to make use of the errors in the Q function,
which is defined as follows,

H = clip
(
π̃ i
(
Õi
)
+ Ñ (0,Err) ,Hl, Hu

)
(32)

where N (0,Err) represent the Gaussian error with zero mean
and variance Err, respectively. The error value is added to
the target actions when executing the critic updating. Hl
denotes the lower bound of the smoothed action, and Hu
denotes the upper bound of the smoothed action. With πθ i
the policy of agents, the sample sequences

[
O1,O2, . . . ,

On, H1, . . . ,Hn, R, Õ1, Õ2, . . . Õn
]
are obtained from the
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buffer D to update the action function, which is defined as
follows,

x = R+MinQπ̃1,2

×

((
Õ1,H

1
, . . . ,

(
Õn,H

n
)))
|
H
i
=π̃ i(Õi)+Ñ (0,Err)

(33)

φ1,2←ArgMinφ1,2
∑(

Q π1,2

((
O1H1

)
, . . . ,

(
On,Hn))

− x
)2

(34)

The policy delayed updating is performed to create the
critic network for converging the priory, hence updating the
actor network with an appropriate gradient, which is formu-
lated as follows,

∇θ iJ (πi) = EA,H∼D

×

(
∇HiQ π

((
O1,H1

)
, ..,

(
On,Hn))

|Hi=π i(Oi)

]
(35)

In this way, the network learning rate is increased gradually
without disturbing the stability. By using DA-TD3, all the
SUs sensed the spectrum, and the sensing report was for-
warded to the CH, whose responsibility was to generate the
reputation for the cluster members based on the aggregated
sensing report. The sensing report along with the reputation
value is transmitted to the FC through a control channel that
determines the final decision. The FC performs the weighted
average of the report and provides the decision. The FC
computes the trust value of the nodes in that particular time
interval and generates a dynamic threshold for the trust value,
which is expressed as follows,

Tni =
Tni,j, SU i|Ti,j ≥ Max
Tni, j|Ti,j ≥ Max

(36)

where Tni represents the threshold of the trust value between
SU i and SU j in the network. Based on the trust value, the
legitimacy of the nodes is evaluated. If the node has a maxi-
mum level of threshold trust, then it will know as a legitimate
node; otherwise, it is considered a malicious node. Based on
the computed trust value and historic trust values achieved
in past time intervals, the FC determines a node to be the
malicious node. By doing so, the SSDF attacks in the network
can be mitigated.

The allocation of resources is carried out based on the
decision of the FC, which is performed by the second agent.
Here, the Channel State Information (CSI) of the communi-
cation link between the vehicles along with the interference
is considered to perform the precise selection of transmit
power and channel. The CSI is considered imperfect and
estimated more accurately using the Quasi-Newton Iterative
Unscented Kalman Filter (QNIUKF) [44] based on several
signal factors, such as RSSI, spectral efficiency, SINR, and
environmental factors, such as weather, temperature, and
humidity. The proposed QNIUKF only needs to compute the
first-order derivatives when compared to Newton’s method.
Hence, the second-order term has the importance of finding

Algorithm 3 Dual Agent-Based Spectrum Access
1: Begin
2: Initialize actor networks π i with parameters θ i

3: Initialize critic networks Q π1,2 with parameters φ1,2

4: Initialize target actor networks θ̃ i← θ i,
5: Initialize target critic networks φ̃1,2← φ1,2

6: Initialize replay buffer D
7: Set i = 2
8: for e < Max e do
9: Random noise initialization

10: Get both agent observations from A0 as,
11:

[
Oi1,O

i
2, ..,O

i
t
]
, A0

12: for t=1 to Max i length do
13: for both agents do
14: Select action using (32)
15: end for
16: Execute action and achieve Rt , Ãt
17: Stock

(
At , Ãt ,At ,Rt

)
in D and update At+1← Ãt

18: end for
19: If not met the termination condition then
20: Calculate Q value of critic using (33)
21: Execute the updation of value function using (34)
22: If t Mod delay then
23: Execute the update of policy parameter using (35)
24: Update the parameters of the target network
25: θ̃ i← µθ i + (1− µ)θ̃ i

26: φ̃1,2← µφ1,2 + (1− µ)φ̃1,2

27: End if
28: End if
29: end for
30: End

a better search direction when the initiating point is distant
from the optimum or when it lacks a Jacobian. The second-
order term matrix is calculated and added into the IUKF,
which is formulated as follows,

yi+1 = ŷ+ kpi (x − x̂l − hiŷl)− s
p
i Tiŷl (37)

spi = (hTi r
−1hi + p−1 + Ti)−1 (38)

kpi = spi h
T
i r
−1 (39)

where ŷl = ŷ − yi and add a parameter of step size to the
result to (37), (38), (39) which is formulated as follows,

yi+1 = yi+ ∝i (ŷl + k
p
i (x − x̂l − hiŷl)− s

p
i Tiŷl) (40)

Then calculate the covariance by using the following for-
mula,

Rt|t = (I − kihi)R(I − kihi)T + kiQkTi (41)

By doing so, the effective allocation of resources to the SUs
for data transmission is carried out. The parameters of the CSI
prediction are listed as follows:

(i) Spectral Efficiency(SE ) - The amount of information
present in the transmitting signal through the channel is
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FIGURE 6. BiGRU-CapsNet based beamforming.

stated. It is measured based on the ratio of channel band-
width (BC ) and information rate(RI ), which is formulated as
follows,

SE =
RI
BC

(42)

(ii) Temperature (T̨) - The temperature affects the radio
signal by initiating signal fading and scattering. Hence, the
temperature is taken for accurate CSI prediction.

T̨ = {t̨1, t̨1, . . . , t̨i} (43)

where T̨ represents the overall temperature and t̨i represents
the temperature in jth time.
(iii) Humidity (h) - The level of humidity also affects the

signal transmissionwhich causes signal scattering and fading.
The formulation of gas present in the air is given as follows,

ε = εo + εw = 1820× 10−4fr Ň fr (44)

where ε represents the attenuation, which is computed in
terms of db/km; εo represents the attenuation in dry air;
εw represents the attenuation in water molecules present in
the air; fr represents the frequency; 1820 denotes the attenu-
ation constant; and Ň represents the refractivity.

(iv) Weather- The changes in weather conditions also
affect signal propagation. The attenuation produced due to
rainfall is formulated as follows,

εr = Pgβ (45)

where εr represents the rate of attenuation, g represents the
rainfall rate, and the parameters β and P are varied regarding
other factors.

E. SECURE BEAMFORMING
Communication is carried out by the transmission of data

between the nodes in the network. Beamforming is per-
formed to enhance the quality of the signal, thereby improv-
ing the speed of the transfer of information. Here, beams

Algorithm 4 Secure Beamforming
1: Begin
2: Initialize parameters CSI ,BS ,AF , DOA
3: for all SUs do
4: Compute DOA using (49),(50)
5: Compute AF using (52)
6: Compute BS using (53)
7: Feed the input into both GRUF and GRUB
8: Compute the output of F(H (t)) using (54)
9: Compute the output of B(H (t)) using (55)
10: Concatenate the output of F(H (t)) and B(H (t))

using (56) to get the output of BiGRU
11: Feed the output of BiGRU to CapsNet for beamform-

ing
12: Performing beamforming using (63)
13: end for
14: End

are generated between FC and multiple SUs because we
used mmWave Massive MIMO for beamforming using 6G,
which provides higher bandwidth and less congestion. Hence,
we proposed the Bi Gated Recurrent Unit-Capsule Network
(BiGRU-CapsNet) to perform effective beamforming. The
BiGRU performs faster results and acquires limited mem-
ory than the existing models, such as BiLSTM and RNN.
CapsNet gives concentration to features that are interpreted to
be important. Fig 6 illustrates the secure beamforming using
BiGRU-CapsNet. The parameters considered for beamform-
ing are the CSI, beam score (BS ), array factor (AF ), and
DOA. In most massive MIMO situations, the FC follows the
channel state from the uplink transmitted signal from several
terminals at tth time (T = 1, 2..t); hence, the received signal
at the FC can be defined as follows,

zi,v (T ) =
√
Qv

K∑
k=1

hi,k (T ) Sk (T )+ ni(t) (46)
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where hi,k (T ) ∈ CM×1 represents the channel vector of
uplink transmission from k th user in the FC, M represents
the number of elements in the antenna array, Sk is a symbol
transmitted through k th user in the FC at T th time slot, and
ni(t) ∈ Cm×1 represents the vector of additive noise received
at time slot T . We used Massive MIMO with a set of array
elements (m × n). The antenna array of both the x-axis and
y-axis is defined as follows,

Xf =
[
a0, a1ei(∅1+µx ), . . . , anein(∅1+µx )

, . . . , an−1ei(N−1)(∅1+µx )
]

(47)

Yf =
[
b0, b1ei(∅2+µy), . . . , bmeim(∅2+µy)

, . . . , am−1ei(M−1)(∅2+µy)
]

(48)

where an and bm represent the weight values of the nthand
mthantenna elements, and µx , µy represent the values of the
direction of angle (DOA) at the location, and ∅1, ∅2 repre-
sent the intended SUsDOA. Themathematical representation
of these parameters is defined as follows,

∅1 = vδxsinθcosϑ (49)

∅2 = vδysinθsin ϑ (50)

where δ = 2π/ω and µx = −vδxsinθcosϑ , µy =
−vδysinθsin ϑ . For efficient beamforming, we need to com-
pute the values of array factor (AF ) by adding the overall
elements present in the vector. To calculate the array factor,
we consider µx or µy and the radiation factor, which is
defined as follows,

µxy = µ
T
x × µy (51)

Here, the calculation of (AF ) for the mmWave Massive
MIMO antenna is defined as follows,

AF =
∑N−1

n=0

M−1∑
m=0

σnmej[n(∅1+µx )+m(∅2+µy)] (52)

where σnm = an × bm represents the weight value of the
antenna array. Based on AF , CSI, DOA and BS , beams are
generated using Bi GRU-Caps Net. where BS is evaluated as
follows,

BS =
I∑
i=0

nb × VCSI (53)

where nb represents the number of baseband channels and
VCSI is the N-dimensional CSI vector of the antenna along
with the historic information. These parameters are retrieved
from the blockchain, thereby producing secure beamforming.
Here, Bi-GRU-CapsNet generates the beams for SUs, which
includes three layers: the input layer, BiGRU layer and Cap-
sule layer. Initially, all the input parameters are fed into the
backward and forward layers of the GRU concurrently. Then,
the hidden layer adds the output of both forward F(H (t)) and

backward GRU B(H (t)) at time t , which are represented as
follows,

F(H (t)) = GRUF (F(H (t − 1), It)) (54)

B(H (t)) = GRUB (B(H (t − 1), It)) (55)

Ht = Con [F (H (t)) ,B(H (t)) ] (56)

The working of the GRU cell state is defined as follows,

yt = σ
(
wy. [ht−1, It ]+ ay

)
(57)

Pt = σ (wP.[ht−1, It ]+ aP) (58)
v
H (t) = tanh (wH . [yt ∗ H (t − 1) , It ]+ aH ) (59)

H (t) = (1− Pt) ∗ H (t − 1) ∗ Ĥ (t) (60)

where σ represents the sigmoid function, wy,wP,wH rep-
resents the weight matrices, ay, aP, aH represents the bias
metrics, It represents the input, H (t) is a hidden layer, Pt
is an update gate that is used for controlling the previous
and current hidden layer output, and Pt represents the reset
gate. The output of BiGRU is fed into the capsule layer for
beamforming. The process involved in the capsule layer is
defined as follows,

Vi/j = wij.Vi (61)

Si =
∑
i

dijVi/j (62)

Vi =
‖Si‖2

1+ ‖Sj‖2
Sj
‖Sj‖

(63)

cij = cij + Vi/j.Vi (64)

where Vi/j represents the output predictive vector of
jthprimary capsule and ithdigit capsule, wij represents the
weight matrix and cij is the logarithmic preceding probability
of the capsules, which is normalized through the softmax
layer to obtain dij. Then, squashing (Si) is performed to
obtain the output digit capsule. Finally, the weight values are
updated using (64), and the process continues until conver-
gence. In this way, BiGRU-CapsNet performs beamforming
for SUs. Furthermore, the secure routing of data is facilitated
by encrypting the messages using the proposed cryptographic
algorithm and transmitting it through the most trusted path.

V. EXPERIMENTAL RESULTS
The performance of our proposed BlockCRN-IoCV method
is evaluated in this section. The experimental results of the
proposed method prove that this approach achieves high
efficiency. This section is further divided into three subsec-
tions: simulation setup, comparative analysis, and research
summary.

A. SIMULATION SETUP
The proposed BlockCRN-IoCV work is performed by com-
bining the technology, i.e., mmWave massive MIMO with
CRN-IoCV and blockchain. The proposed work is simu-
lated by the Objective Modular Network tested in C++
(OMNET++) for network simulation and Simulation of
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FIGURE 7. Simulation source coding.

UrbanMobility (SUMO) for traffic simulation. The execution
of the simulation is performed using an Intel Core i7-11370H
processor with 8 GBRAM. The operating system used for the
simulation of the proposed work is Windows 10 pro 64 bits.
The system parameters of the proposed method are illus-
trated in Table 4, and the simulation parameters are shown
in Table 5. The source code of this simulation is illustrated in
Fig. 7.

B. USE-CASE SCENARIO (SELF-DRIVING Cars)
Currently, the technology of IoCV in CRNs and its appli-
cations are expanded, especially for self-driving cars that
are connected to the internet. Fig 8 illustrates the use-case
scenario of self-driving cars in the IoCV environment. Based
on this application scenario, several processes are performed
in this application of self-driving cars, such as data sharing
(i.e., multimedia file sharing), emergency message dissem-
ination, sharing of safety and traffic conditions, parking
requests, etc. Various issues are present in the applica-
tions, such as high delay, spectrum scarcity, security issues,
etc., which remain unsolved. Therefore, we proposed a
BlockCRN-IoCV approach for the application of self-driving
cars. Authentication of PUs and SUs is performed by hybrid
encryption using the AES-HCC algorithm. The credentials of
the PUs and SUs are stored in the blockchain in an as hashed
manner to improve security by mitigating the malicious SUs
before data transmission. For this application of self-driving
cars, a huge amount of spectrum is needed for the reliable
transmission of data. This is achieved by performing dynamic
spectrum access and efficient allocation of resources using
the DA-TD3 algorithm. Secure beamforming is performed
by considering the beam score, array factor, direction of
angle, and CSI to reduce spectrum scarcity for efficient data
transmission. This also increases the speed of data transmis-
sion, which reduces the transmission delay. Various attacks,
such as random SSDF attacks, PUE attacks, eavesdropping,
and jamming, are detected and mitigated by comparing the
nature of previous and current signals using the trust values
generated by the FC and blockchain information.

TABLE 4. System parameters.

TABLE 5. Simulation parameters.

C. SECURITY ANALYSIS
This section explains the security analysis of the
BlockCRN-IoCV environment. Spectrum/data sharing is a
challenging task due to the presence of malicious users;
hence, we need to provide security to the environment. In this
research, we detected four attacks, which are listed as follows:

i) SSDF- In this type of attack, the attacker provides the
wrong information about spectrum sensing to the FC. If the
PU is available then the malicious users report the PU is
occupied, based on this information SU broadcast the data.
In order tomitigate and prevent this attack, we have encrypted
the sensing report using a hybrid AES-HCC encryption
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FIGURE 8. Scenario of IoCV self-driving cars.

algorithm and the ciphertext of the sensing report is then sent
to the FC, which performs against SSDF.

ii) PUE- In this attack, the attacker emits the signals like
a licensed primary transmitter. However, the malicious user
provides the wrong information about the spectrum status to
the SUs. To mitigate this attack, we perform secure spectrum
sensing using DA-TD3. In addition, the trust factor is eval-
uated for every user in the environment which leads to high
security and performance against PUE attacks.

iii) Eavesdropping - In this attack, the attacker discov-
ers the information of the confidential communication and
drops the corresponding information in terms of modify-
ing. To overcome this issue, we have encrypted the spec-
trum report using a cryptography algorithm. In addition,
we perform authentication using blockchain which allows the
authenticated node to participate in the communication.

iv) Jamming - In this attack, the attacker compromises the
sensing time of PU and data transmission of SU by decreasing
the SINR. To detect the jamming attack, we evaluate the
noise and SNR during spectrum sensing using blockchain
which increases high security and performs against jamming
attacks.

D. COMPARATIVE ANALYSIS
In this section, the proposed BlockCRN-IoCV method is
compared with several previous methods, such as CRT-BIoV
[39], DSS [40], SSS-CRN [41], SSGA-CR [42], and
RSB-CRN [43], to analyze its performance. Various metrics
are considered to evaluate the performance of these works,

such as throughput, packet delivery ratio, delay, bit error rate,
detection accuracy, probability of detection, total transmit
power, sensing delay, and spectral efficiency.

1) ANALYSIS OF THROUGHPUT
The sum of the delivered data for every SU present in the net-
work is known as throughput. throughput calculates the effi-
cient data delivery at the respective time slot over the network,
which is represented as,

T =
Ds
Tx t

(65)

where Ds denotes the size of the data and Txt represents
the time required for transmission. The throughput is gen-
erally computed as bits/second. The maximum throughput
achieved by any beamformer can be formulated as,

Tw (∂θ ) = 0.5E{(W −W bw
w ) log2(1+ iw)} (66)

where the channel bandwidth is denoted as W , the allocated
bandwidth is denoted as W bw

w , and the concave function is
denoted as log2. However, the concave function hampers
the analytical analysis; therefore, the upper bound can be
formulated as,

T ubound
w = 0.5E{(W −W bw

w ) log2(1+ iw)} (67)

where,

Tw(∂θ )→ T ubound
w (68)
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FIGURE 9. Throughput vs. # of SUs.

FIGURE 10. Throughput vs. # of malicious SUs.

The above equation denotes that both cases are the same;
therefore, Tw(∂θ ) can be altered as,

Tw(∂θ ) = 0.5{(Rr − Rbww ) log2(1+ iw)} (69)

where Rr and Rbww denote the bit rates of transmission and
overhead, respectively. The overall throughput gain can be
formulated as,

GTw(∂θ ) =
Tw(∂θ )− T ubound

w

T ubound
w

(70)

Fig. 9 represents the comparison of throughput to the num-
ber of SUs between the proposed BlockCRN-IoCV method
and various existing methods. If the number of SUs increases,
it increases the throughput simultaneously. The CRT-BIoV
and DSS methods have high-security threats by various
attacks, such as random SSDF attacks and PUE attacks. The
CR-BIoV method computes only trust values by TOPSIS
for every user; however, the sensing report remains insecure,
which leads to SSDF attacks. This affects the throughput
of these works. The proposed work achieves better through-
put than CRT-BIoV by performing detection and mitigation
of random SSDF attacks and PUE attacks by sending the
encrypted sensing report to the fusion center and calculating

the trust factor for every SU in the environment. Poor detec-
tion of malicious nodes is performed in the SSS-CRN and
SSGA-CRmethods, which increases the time complexity and
decreases the throughput when compared with the proposed
work.

Dynamic clustering by the DADRC algorithm and node
reputation computed by CH decreases the time complexity
and increases the throughput. Secure beamforming is per-
formed in the proposed method to increase the throughput,
whereas scattering of the beam occurs in the RSB-CRN
method, which provides less throughput when compared with
the proposed work. The BlockCRN-IoCV method achieves
an average throughput of 93% while the existing works
RSB-CRN, SSGA-CR, SSS-CRN, DSS, and CRT-BIoV
achieve average throughput of 79%, 81%, 82.6%, 84.6%,
and 87.8% which is 8-13% greater than the existing meth-
ods. Similarly, Fig.10 shows the throughput for malicious
SUs, which is approximately the same as the throughput
of legitimate SUs. Efficient authentication, dynamic clus-
tering, and secure beamforming performed in the proposed
BlockCRN-IoCV method increases the throughput when
compared with various existing approaches. The average
throughput of the proposed BlockCRN-IoCV is 94% while
the existing works RSB-CRN, SSGA-CR, SSS-CRN, DSS,
and CRT-BIoV achieve an average throughput of 80%, 82%,
84%, 86%, and 89% which is 5-14% greater than the existing
works.

2) ANALYSIS OF PACKET DELIVERY RATIO (PDR)
Packet delivery ratio is defined as the ratio of a total number of
successfully received packets to the total number of packets
transmitted without any loss from source to destination. The
formulation of the packet delivery ratio is represented as,

P =
Rp
Txp

(71)

where Rp represents the received packets and Txp denotes
the total transmitted packets. For an efficient packet delivery
ratio, low packet loss is needed.

Fig 11 represents the comparison of the packet deliv-
ery ratio to the number of SUs between the proposed and
existing works. An increase in SUs increases the packet
delivery ratio. The proposed work achieves a high packet
loss ratio by the detection and mitigation of attacks such as
SSDF, PUE, and eavesdropping that are performed in the
BlockCRN-IoCV method by the AES-HCC and DA-TD3
algorithms, which decreases the loss of packets. While the
existing work CRT-BIoV limits with less packet loss ratio as
the packets are manipulated by the attackers by performing
various attacks during communication between vehicles and
fusion center. Secure spectrum sensing is performed in both
the SSS-CRN method and SSGA-CR method by analyz-
ing the reputation of the SUs and selecting optimal sensing
reports; however, poor attack detection and mitigation during
spectrum sensing increases the packet loss due to various
attacks that affect the packet delivery ratio. Secure spectrum
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FIGURE 11. Packet delivery ratio vs. # of SUs.

FIGURE 12. Packet delivery ratio vs. # of malicious SUs.

sensing and beamforming are performed by the DA-TD3 and
Bi-GRU-CapsNet algorithms, which reduces packet loss by
mitigating attacks to increase the packet delivery ratio. The
proposed BlockCRN-IoCV method has an average packet
delivery ratio of 93.4% while the existing works RSB-CRN,
SSGA-CR, SSS-CRN, DSS, and CRT-BIoV achieve average
packet delivery ratios of 79.7%, 82%, 83.7%, 85.7%, and
87% which are 7.4-15% greater than the previous works.
Fig. 12 illustrates the packet delivery ratio of malicious SUs,
which is the same as the packet delivery ratio of legitimate
SUs. The proposed BlockCRN-IoCV method has an average
packet delivery ratio when the number of malicious users
is increased of 93%, while the existing works RSB-CRN,
SSGA-CR, SSS-CRN, DSS, and CRT-BIoV achieve average
packet delivery ratios of 79%, 81%, 83%, 85%, and 87%,
which is 7-14% greater than the previous works.

3) ANALYSIS OF DELAY
Delay is referred to as the amount of time required for the
data transmitted from source to destination. The computation
of delay consists of queuing(ÐQ), transmission time (ÐTxt )
and propagation (Ðp). The formulation of calculating delay

FIGURE 13. Delay vs. # of SUs.

FIGURE 14. Delay vs. # of malicious SUs.

can be represented as,

Ð = [ÐQ+ÐTxt+Ðp] (72)

Efficient spectrum sensing and beamforming reduce the
time for transmission of data.

Fig. 13 represents the comparison of delay to the number
of SUs between the proposed BlockCRN-IoCV method and
various previous methods. In the DSS and SSGA-CR meth-
ods, spectrum sensing is performed for efficient data trans-
mission, but high noise and low SINR values affect spectrum
sensing, which leads to a scarcity of spectra. This condition
increases the data transmission time, which increases the
delay. In the SSGA-CR method, malicious SUs are detected
by a genetic algorithm. However, this algorithm increases
the time complexity, thereby decreasing the detection rate
of malicious SUs, which reduces the data transmission rate.
In the proposed BlockCRN-IoCV method, spectrum sensing
is performed dynamically by using the DA-TD3 algorithm
for efficient spectrum sensing and resource allocation. This
increases the rate of data transmission, which decreases the
delay when compared with the existing approaches. The
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FIGURE 15. Bit error rate vs. SNR.

proposed BlockCRN-IoCV method achieves a low average
delay of 7.2 ms for 100 SUs by a high data transmission rate,
while the existing works have delays of 22 ms, 29 ms, 31 ms,
33 ms, and 35 ms, which are 15-22 ms greater than those of
the proposed method. Fig. 14 shows the delay of malicious
SUs, which is greater than the delay of legitimate SUs. The
low average delay of malicious SUs in the environment is
52 ms, while the existing works achieve 67 ms, 69 ms, 71 ms,
73 ms, and 75 ms, which is 17-23 ms less than the previous
approaches.

4) ANALYSIS OF BIT ERROR RATE (BER)
The bit error rate is defined as the ratio of the number of error
bits (Eb) to the total number of transmitted bits (Txb). The
computation of BER is represented as,

B =
Eb
Txb

(73)

The BER is based on the characteristics of MIMO with
noise, signal interference, and fading of channels.

Fig 15 illustrates the comparison of BER to the SNR range
between the proposed BlockCRN-IoCV method and several
existing methods, such as the CRT-BIoV and RSB-CRN
methods. An increase in SNR decreases the bit error rate.
In the CRT-BIoV method, the security of the network
is improved, but the presence of noise increases the bit
error rate, while the lack of consideration of channel noise
improves the bit error rate. In the RSB-CRN method, beam-
forming is performed with a lack of beam score that increases
the scattering of the beam, which results in a high bit error
rate.

In the proposed BlockCRN-IoCV method, dynamic spec-
trum sensing is performed by considering the SNR, noise,
and trust factor using the DA-TD3 algorithm, and secure
beamforming is performed by considering parameters such
as the beam score, CSI, array factor, and DOAwith mmWave
massive MIMO using 6G. This reduces the bit error rate up to
0.07 when the SNR is 4 db, which is approximately smaller
than the 0.3-bit error rate of the CRT-BIoV method and the

TABLE 6. Numerical analysis of bit error rate.

FIGURE 16. Detection accuracy vs. # of iterations.

0.47-bit error rate of RSB-CRN. Table 6 shows the numerical
analysis of the bit error rate.

5) ANALYSIS OF DETECTION ACCURACY
The detection accuracy is defined as calculating the detec-
tion of attack preciseness in the proposed BlockCRN-IoCV.
The detection accuracy is formulated by the total number of
attacks detected from the overall SUs, which are represented
as,

Â =
T̨p + F́p

T̨p + T̨n + F́p + F́n
(74)

where T̨p denotes true positive, F́p represents false positive,
T̨n shows true negative and F́n denotes false negative.

Fig 16 illustrates the comparison of detection accu-
racy to the number of iterations between the proposed
BlockCRN-IoCVmethod and various existing methods, such
as the CRT-BIoV method and the SSGA-CR method. The
detection accuracy increases with an increasing number of
iterations. The CRT-BIoVmethod improved network security
by detecting random SSDF attacks. However, the method
used for the computation of the trust value of the Sus attains
decision difficulty, which affects the detection accuracy.
In the SSGA-CR method, the detection of malicious Sus was
performed by computing a static threshold, which reduces the
detection accuracy. The proposed BlockCRN-IoCV method
performs the computation of the true value based on the
current time interval and historic trust value for an effective
decision, and the dynamic threshold is computed for the
detection of malicious Sus to increase the detection accu-
racy. The proposed works achieve high detection accuracy
when compared with existing works. The average detection
accuracy of the proposed BlockCRN-IoCV method is 93%
while the existing works achieve average detection accuracy
of 84.3% and 87%, which is 6% greater than the CRT-BIoV
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TABLE 7. Numerical analysis of detection accuracy.

FIGURE 17. Probability of detection vs. SINR.

method and 9% greater than the SSGA-CR method. The
numerical analysis of detection accuracy is represented in
table 7.

6) ANALYSIS OF PROBABILITY OF DETECTION
This metric is used to calculate the performance of
detection of attacks by FC for effective mitigation of
attacks. The proposed work achieves a high probability
of detection.

Fig. 17 represents the comparison of detection probability
to the SINR value between the proposed BlockCRN-IoCV
and several existing works, such as CRT-BIoV and SSGA-CR
methods. An increase in SINR increases the detection prob-
ability. The proposed BlockCRN-IoCV method performs
the computation of the trust value by performing average
weights for providing decisions using FC, and it deter-
mines the malicious nodes accurately, which increases the
detection probability when compared with the CRT-BIoV
method. The CRT-BIoV method computes trust values with
high decision difficulty. Based on the dynamic threshold,
the detection of malicious SUs is performed in the pro-
posed BlockCRN-IoCV method to improve the probabil-
ity of detection, whereas the SSGA-CR method detects
malicious SUs with a static threshold that decreases the
detection probability when compared with the proposed
BlockCRN-IoCV method. The average detection probabil-
ity of the proposed BlockCRN-IoCV method is 0.73, while
the existing work achieves average probabilities of 0.3 and
0.45, which are 0.3 higher than those of the CRT-BIoV
method and 0.45 higher than those of the SSGA-CR method.
Table 8 shows the numerical analysis of the probability of
detection.

TABLE 8. Numerical analysis of probability of detection.

FIGURE 18. Spectral efficiency vs. SNR.

7) ANALYSIS OF SPECTRAL EFFICIENCY
This metric is used to analyze the spectrum sensing by the
amount of information present in the transmitting signal and
it is measured as the ratio of channel bandwidth and informa-
tion rate. It is computed in terms of bits per second per hertz.
The spectral efficiency of downlink scenario with K number
of antennas and N number of vehicles can be represented as,

SE = log2

(
1+

RKN 2
∀
2
|ατ |2sinc2(βµ)sinc2(βℵ)

KN 2∀2|ατ |2sinc2(βℵ)σ 2 + σ 2

)
(75)

where ∀, σ , βµ, and βℵ are constants. Two cases determine
the spectral efficiency,

Case 1: For an ideal system, SE will be reduced, which can
be denoted as

SEideal = log2

(
1+

R
σ 2KN

2
|ατ |2

)
(76)

Fig 18 illustrates the comparison of spectral efficiency
to the SNR between the proposed BlockCRN-IoCV method
and existing works. An increase in the SNR value increases
the spectral efficiency. In the DSS method, spectrum sens-
ing is performed without considering the noise and SINR
value, and the presence of malicious SUs increases the signal
interference and provides high resource wastage that leads
to spectrum scattering, which affects the spectral efficiency.
In the SSGA-CR method, several attacks, such as random
SSDF and PUE, are not mitigated during spectrum sensing,
which decreases the spectral efficiency.

In the proposed BlockCRN-IoCV method, dynamic spec-
trum sensing is performed by considering several parameters,
such as SINR, noise, and trust factor, using the DA-TD3
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TABLE 9. Numerical analysis of accuracy.

TABLE 10. Numerical analysis of proposed vs. existing works.

algorithm and the detection and mitigation of malicious SUs
by computing the trust value based on the current inter-
val of time and historic trust values at FC to improve the
efficiency of spectrum sensing, which increases the spec-
tral efficiency when compared with existing works. Addi-
tionally, the secure beamforming in the proposed work
by BiGRU and CapsNet improves the spectral efficiency.
The proposed BlockCRN-IoCV method has a high aver-
age spectral efficiency of 48 bps//Hz, while the existing
works achieve average spectral efficiencies of 27 bps//Hz,
29.7 bps//Hz, 31 bps//Hz, 33 bps//Hz, and 36 bps//Hz, which
are 8-13 bps//Hz greater than those of the existing methods.

8) ANALYSIS OF ACCURACY
This metric is used to analyze the accuracy for beamforming
generation between the proposed BiGRU-CapsNet algo-
rithm and other algorithms, which was proposed in sev-
eral existing approaches, such as DNN [27], DQN [29],
and Bi-LSTM [31]. It is computed in terms of percentage.
Fig. 19 shows the comparison of accuracy between the pro-
posed BlockCRN-IoCV and several previous works. The
proposed BI-GRU-CapsNet performs efficient beamforming
with high accuracy due to its forward and backward GRU
units, such as the reset gate and update gate. This algo-
rithm requires fewer memory and training parameters to
train, which provides faster training and execution with high
accuracy. CapsNet is combined with BiGRU to identify the
entities regarding security for providing secure beamform-
ing. However, other existing algorithms provide incomplete
and indistinct information about the signals with low fea-
ture concentration, which reduces the accuracy when com-
pared with the proposed BiGRU-CapsNet algorithm. From
the figure, it is proven that the proposed BiGRU-CapsNet
performs secure beamforming with high accuracy when com-
pared with the state-of-the-art algorithms. The proposed algo-
rithm achieves a high accuracy of approximately 93%, which
is 8-19% greater than the previous methods’ algorithms.
Table 9 shows the analysis of accuracy.

E. RESEARCH SUMMARY
The proposed work integrates technologies such as 6G com-
munication, blockchain technology, and mmWave MIMO in

FIGURE 19. Accuracy vs. models.

the IoCV environment. The integration of these technologies
impacts positive outcomes which result in,

• Low latency and high transmission reliability
• High communication efficiency
• Ensure security and privacy
• Energy efficiency and spectral efficiency
• Highly robust

The 6G communication in the proposed IoCV environ-
ment enables highly reliable communication without com-
munication overhead, as there are many PUs and SUs in
the environment. mmWave MIMO beamforming supports
high-frequency communication. The process and method
are used to enhance the performance of spectrum sens-
ing in the BlockCRN-IoCV environment. Furthermore, the
deployment of blockchain and FC improves the security
and performance in terms of throughput with a packet
delivery ratio of 94%, detection accuracy of 93%, spec-
tral efficiency of 48 bits/s/Hz, BER of 0.042, and delay of
7.2ms. Finally, the comparison study shows that the proposed
approach achieves superior performance compared to exist-
ing approaches. Table 11 denotes the algorithm parameters
of the proposed work. Table 12 represents the comparison of
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TABLE 11. Hyperparameters of proposed algorithms.

TABLE 12. Comparison of existing beamforming algorithm with proposed.

the proposed BiGRU algorithmwith existing algorithms such
as LSTM and RNN.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have proposed the BlockCRN-IoCV model
to achieve better performance in spectrum sensing and beam-
forming. To achieve this objective, we integrate multiple
technologies that provide us with a robust, energy-efficient,
highly efficient, and secure environment. The proposed four
processes, authentication, clustering, secure spectrum sens-
ing, and beamforming, achieve security by verifying the enti-
ties to the blockchain. First, authentication is performed by
using theAES-HCC algorithm,which provides security to the
environment. In the second, clustering is performed to handle
the mobility of the environment, which provides reliable
communication. Third, we perform secure spectrum sensing
using the DA-TD3 algorithm, which enhances spectrum uti-
lization and reduces spectrum scarcity. Finally, we perform
secure beamforming using BiGRU-CapsNet, which retrieves
the input parameters from the blockchain to enhance security.
The proposed work achieved better performance in terms of
throughput, packet delivery ratio, BER, detection accuracy,
and delay. In the future, we plan to perform hybrid beam-
forming to provide hardware efficiency, spectral efficiency,
and computational efficiency.
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