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ABSTRACT This paper proposed distributed adaptive formation control for leader-follower bipartite time-
varying formation (BTVF) of a nonlinear multi-agent system (MAS). The proposed nonlinear MAS satisfies
the one-sided Lipschitz-type condition. In the topological graphs with directed spanning trees, the design
of adaptive protocols does not depend on the known communication topology, which can avoid the use of
global information. Given limited information, the proposedMAS can achieve desired formation tracking by
utilizing an observer protocol and converting the bipartite formation control problem into a stability problem
of system errors. The analysis results of the systematic errors by using Lyapunov candidate functions,
indicate that the MAS can be globally stable with a certain convergence rate during operation. Finally,
numerical simulations are presented to confirm the validity of the proposed approach.

INDEX TERMS Bipartite time-varying formation, leader-follower system, nonlinear dynamics, adaptive
control, coopetition network.

I. INTRODUCTION
There has been the development and progress of high tech-
nology and modern science in recent years, multi-agent sys-
tems (MASs) [1], [2] emerge and are gradually applied as
a modern form of local warfare or the resource exploration
process. An agent, is a powered system that is applied to
aircraft, satellites, mobile robots, autonomous underwater
vehicles (AUVs), and unmanned aerial vehicles (UAVs) with
a microprocessor [3]–[7]. Compared with a single multifunc-
tional agent, the cooperative control of MASs is character-
ized by autonomy, distribution, coordination and independent
learning ability, with strong robustness to external influences
and high tolerance to the failure of a single agent. Espe-
cially, many cooperative control tasks of MASs focus on
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consensuses control, such as swarming, flocking, task assign-
ment, formation control, and distributed estimation [8]–[14].
Vicsek [15] studied the consensus problem of particle
swarms, which provided the basis for later work on the con-
sensus problem. Jadbabaie et al. [16] analyzed and explained
the convergence phenomenon of the simplified model pro-
posed by Vicsek. They neglected the effect of disturbing
inputs and introduced algebraic graph theory as an analysis
tool. Olfati-Saber et al. [12] studied the basic conditions for
MASs to achieve consensus in the case of fixed and switched
topologies. Also, they separately analyzed the effect of the
presence of time delay on the convergence of MAS in dif-
ferent topologies. Dong [17] designed a formation control
protocol for UAVs with switching topologies and studied the
necessary conditions for time-varying formation. Guo [18]
proposed a control strategy that uses only the relative position
information of neighboring agents to form a formation of
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multiple autonomous robots around amoving target. The con-
troller was designed by combining target tracking and coop-
erative control of each robot. A distributed adaptive control
strategy with real-time update was designed [19] for linear
MASs to reduce the calculation, and the introduced adaptive
parameters improved the self-adjustment ability of the event-
triggering mechanism. A control algorithm based on neural
networks was proposed [20] to achieve consensus of MAS,
which consumes less energy. Distributed control of nonlinear
MASs using multiple tools in [21]–[23]. Neural networks
with high complexity cause limited computational real time.
Low-complexity control systems without neural networks,
adaptive control, and estimators have limited ability to self-
regulate and control decisions based on real-time changes in
the MAS formation state. The simplicity and inherent non-
linearity of the Lagrangian system model make this approach
inappropriate for time-varying formation control in practical
situations with uncertain, incomplete constraints.

Most of the previous studies tend to focus on the coopera-
tive behavior of agents within a cluster. However, in practical
scenarios, with increasing system scale and complexity, the
MASs can be clustered to achieve attack, obstacle avoidance,
or defense. Therefore, to enrich the diversity of tasks, the
agents are always divided into competing subsystems. It can
be observed inmany scenarios in life (e.g., employeeswork as
a team to improve the company’s performance, but they also
compete with each other in private groups). Inspired by the
cooperative control of MAS, Altafini [24] proposed a control
method with competing relationships based on Laplacian
linear and nonlinear feedback. For achieving the consensus
of distributed bipartite tracking, an adaptive fully distributed
control protocol was proposed for linear MASs in [25]. This
protocol is suitable for the case where the follower cannot
receive the leader’s information and the leader’s control input
is nonzero. The above-mentioned control methods have a
common point in solving the global feedback by the Lapla-
cian matrix. However, this reduces the operational efficiency
of the system greatly, and the methods are not applicable
under the failure of an individual or a variable system mem-
bership. To reduce the burden of communication networks
and increase the flexibility of MASs, this paper adopts a
control protocol that does not rely on Laplacian eigenval-
ues and can complete time-varying formation tracking using
only the output information of neighboring agents when the
formation joins or splits agents. In [26], an adaptive non-
smooth protocol was proposed based on output information
to achieve BTVF control of MASs. These studies provide a
reference for the research of nonlinear MASs.

In the above study of MASs, the dynamics of individual
agents were set to be linear to simplify the research, but
many systems are nonlinear in practice. For AUVs [27], [28],
it can not be neglected that the main source of external dis-
turbance in operation is composed of underwater turbulence
andwaves. The control protocol that can resist external distur-
bances effectively is the fundamental guarantee for the AUV
to accomplish its mission. Therefore, the formation control

problem of nonlinear systems is significant in practical appli-
cations [3], [29]. It should be noted that most of the studies
on MASs require pre-determined information. Nevertheless,
in practical applications, the information of the system is dif-
ficult to obtain accurately. Adaptive control combines param-
eter estimators, which can generate parameter estimates and
combine them with control laws in real-time to control vari-
ous types of systems with unknown or time-varying param-
eters. The bipartite formation control problem with mixed
impulses for nonlinear MASs under an undirected graph was
solved in [30]. In [31], an adaptive control method based
on a finite-time scheme was proposed for solving the bipar-
tite consensus where the state of each agent was unknown
and the MAS system was nonlinear. Researchers combined
adaptive control strategies with impulse control techniques
to better solve the cooperative control of MASs [32], [33].
For achieving an adaptive bipartite tracking in the nonlinear
MASs, Yu and Lin [34] proposed a filtering backstepping
algorithm based on distributed fuzzy command, and an error
compensation vector was constructed to compensate for the
errors generated by the filter to solve the adaptive bipartite
tracking problem of nonlinear MAS. A distributed control
protocol based on neighbor state was proposed in [35] to
achieve bipartite consensus of MAS when the leader input
is unknown. Currently, there are more relevant studies based
on state feedback and few cases of using distributed adap-
tive control protocols based on output feedback to study the
MASs with external disturbances of BTVF control.

The state information of each agent is inaccurate or
unavailable in many cases. In order to realize the bipar-
tite formation control of MASs with external disturbances,
an adaptive control strategy based on output feedback is
proposed. The main contributions of this paper are listed
as follows: (i) The bipartite time-varying stratum problem
for MASs with external disturbances is solved under the
one-sided Lipschitz nonlinearity condition, which is more
suitable for stratigraphic control in practical applications than
the method of estimating nonlinear dynamics with neural
networks. A distributed adaptive control protocol based on
the local output information of neighboring agents as feed-
back is used, which is independent of the Laplacian matrix
eigenvalue information.When the formation is reconstructed,
the stability of the system is unaffected. (ii) The leader-
follower bipartite time-varying formation tracking problem
is investigated in the presence and absence of disturbances,
respectively, when the control input of the leader is non-
zero bounded and the state information of the leader is not
globally known. In the numerical simulation section, the
AUV noncomplete dynamics model is transformed into a
complete dynamics model for computation and bounded ran-
dom vectors are introduced to simulate external perturbations
in this model, which is more suitable for formation control
of aerospace systems, multi-UAV systems, and multi-AUV
systems etc. in practical applications.

This paper contains five subsections. In Section II, the
research background and research status of cooperative
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control of MASs are introduced. In Section III, some math-
ematical fundamentals, lemmas, and knowledge about graph
theory are presented. In Section IV, we gives a model of a
first-order nonlinear MAS, analyzes the bipartite formation
tracking problem, and designs a control protocol based on
dynamical output feedback. Constructing an error-based Lya-
punov candidate function verified the stability of the system.
Section V constructs and simplifies the model of AUV for-
mation motion with fixed depth, and analyzes the effect of
external disturbance on the formation motion through numer-
ical simulation. The research content and results of this paper
are presented in Section VI.

II. BACKGROUND AND PROBLEM STATEMENT
The definitions of mathematical symbols used in this arti-
cle and some basic theorems are given, and also the basic
definition and properties of weighted directed graphs are
introduced.

A. PRELIMINARIES
• The real matrix and complex matrix with a size of
m×m are represented asRm×m andCm×m, respectively.

• The all zeros matrix and identity matrix with a size of
m × n can be denoted as Om×n and Im×n, respectively.

• For an arbitrary matrix E ∈ Rn×n, the minimum eigen-
value and maximum eigenvalue of E can be expressed
as λmin(E) and λmax(E), respectively.

• In AT , the symbol T indicate the transpose of matrix A.
• The H positive definite (positive semidefinite) can be
represented by H > 0(H ≥ 0).

• U ⊗ V represents the Kronecker product of U and V .
The further operation rules for the two matrices are as
follows:
(1) U ⊗ (V +W ) = U ⊗ V + U ⊗W ,
(2) (U ⊗ V )(W ⊗ X ) = (UW )⊗ (VX ).

• The signum function sgn(·) was defined as

sgn(i) =


1, i > 0
0, i = 0
−1, i < 0

B. BASIC ALGEBRAIC GRAPH THEORY
Agents transmit information to achieve cooperative control
by communicating with other agents in the group. Estab-
lishing the communication topology between agents with
directed graphs is a more common approach to the model-
ing process. In a weighted digraph [26] G = {ϑ,E ,A },
the nonempty finite set of nodes is represented as ϑ =
{v1, . . . , vN }. E ⊆ ϑ × ϑ is a set of communication edges or
arcs between N agents. Setting the weights of the edges aij,
the digraph can be expressed by the adjacency matrix A =
[aij]. Two nodes are called adjacent if there is an edge between
them. It is worth noting that for digraph G , a line from node i
to node j can be denoted as vij =

(
vi, vj

)
. A directed graph is

called bidirectional if the edge between individual nodes are
bidirectional, i.e., any two points can communicate in both

directions. In the weighted adjacency matrix A , the signed
weight aij(aij 6= 0) can be negative or positive. Specifically,
if aij > 0, the ith agent and the jth agent are mutually
cooperative, conversely, they are competitive. However, aij
can only be non-negative in an undirected graph. Therefore,
the consensus control of digraph is more appropriate and
challenging than of undirected graphs.

Furthermore, if a path exists between node i and any other
node, the digraph is strongly connected. The weighted Lapla-
cian matrix L = [lij] of the digraph G be constructed as
follows:

lij =


∑N

j=1,j6=i

∣∣aij∣∣ , i = j,

−aij, i 6= j.
(1)

Since no follower can convey information to the leader,
i.e., no arrow can point to the leader, the relevant weighted
Laplacian matrix L as follows:

L =
[
0 01×N
L2 L1

]
(2)

where L1 = RN×N , and L2 = −[a10, a20, . . . ,
aN0]T ∈ RN×1.
Lemma 1 [36]: Each row of the weighted Laplacian matrix

sums to zero and contains at least one eigenvalue of 0. Con-
cerningmatrix L, several statements are equivalent as follows:

(1) G is balanced structurally.
(2) The gauge transformed A is equal to a non-negative

matrix.
(3) λmin(L) = 0.
Definition 1 [24]: If the set represented by all agents is

separated into two subsets Va and Vb without intersection,
the digraph G is structurally balanced. Two subsets satisfy
the following conditions:

(1) Va ∪ Vb = V and Va ∩ Vb = ∅.

(2)

{
aij ≥ 0, ∀i, j ∈ Va,
aij ≤ 0, ∀i ∈ Va, j ∈ Vb,

a 6= b(a, b = 1, 2).

For the convenience of distinguishing to which subset the
agents belong and using the gauge transformations in [24],
introduce a matrix D = diag(d1, d2, . . . , dN ), D ∈ D . The
value of di satisfies the following conditions:{

di = 1, i ∈ Va,
di = −1, i ∈ Vb,

Lemma 2 [37]: For a digraph where all nodes can be
divided into two subsets, there exists a transformation. The
matrixDmentioned above satisfies that termsDAD have non-
negative entries and DLD have all non-positive off-diagonal
entries.
Lemma 3 [38] (Schur Complement): Supposing that the

matrix A =
[
A11 A12
AT12 A22

]
composed of A11, A12, and A22 are
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symmetric matrices of appropriate dimensions, inequalities
(1)-(3) are mutual equivalence:

(1)
(
A11 A12
AT12 A22

)
< 0,

(2) A11 < 0 and A22 − AT12A
−1
11 A12 < 0,

(3) A22 < 0 and A11 − A12A
−1
22 A

T
12 < 0. (3)

III. DEFINITION OF BIPARTITE FORMATION TRACKING
Measurement noise and unknown dynamical phenomena
including friction, external disturbances are widely present in
various industries such as aerospace, robotics, and automa-
tion and can affect their control performance. Therefore,
disturbance suppression has been one of the fundamental
issues in controller design. To address this issue, equations
(4) and (5) are used to model the nonlinear dynamic system,
and the corresponding control strategy is designed to main-
tain the multi-agent formation under external disturbance
(e.g., formation maintenance when AUV formations are
affected by ocean currents). Suppose that a nonlinear
dynamic MAS is consisted of N + 1 agents in general time-
varying states. The time-varying state vector (xi) and output
vector (yi) are introduced to describe the dynamics equations
of each agent. The dynamic equations for theN followers and
leader are as follows:

Followers:

ẋi = Axi + Bui +8ω (xi) ,

yi = Cxi, i = 1, 2, . . . ,N . (4)

Leader:

ẋ0 = Ax0 + Bu0 +8ω (x0) ,

y0 = Cx0, (5)

The connections between this system are represented by
the digraph G . The vector x =

[
xT1 , . . . , x

T
N

]T contains
velocity and position information which is the global state
vector. x0 ∈ Rn is the leader’s state; ui ∈ Rp and u0 ∈ Rp

are the control input of the ith agent and the leader; ω (xi) and
ω (x0) denote the bounded exogenous disturbance of the ith
agent and the leader, respectively; A ∈ Rm×m and B ∈ Rm×q,
andC ∈ Rp×m are constant matrices. ThematrixB ∈ Rq×m is
pseudo-inverse matrix satisfying BB = Iq (B ∈ Rq×m is input
matrix). The matrix B̃ ∈ R(m−q)×m satisfying B̃B = 0 and[
B
T
, B̃T

]T
is nonsingular.

Remark 1: In practical applications, with the change of
time and missions, the topology relationship of each agent
in the MAS varies subsequently. This paper only considers
the fixed topology, and interested readers can refer to [39] for
detailed information on topology variation.
Remark 2: There are two other types of control based on

output feedback, ‘‘neural dynamics-based output feedback
scheme’’ and ‘‘data-driven adaptive extended state observers
for output feedback scheme.’’ The neural dynamics-based
output feedback approach used in literature [40] and [41]

can use neural networks to identify the system output quan-
tities to obtain the unknown parameters of the controlled
object. Compared with the traditional PID controller, the
neural network has excellent approximation capability and
strong robustness. However, as the complexity of the sys-
tem increases, the number of neurons in the hidden layer
of the neural network increases and the system runs slower.
In addition, the neural network structure can only be selected
empirically. Another output feedback method is the data-
driven extended state observer (DAESO)-based adaptive con-
trol [42], [43], which can control the system using only
input/output data and can simultaneously evaluate param-
eters such as input gain, total perturbation, and unknown
velocity, and is suitable for dynamical models with unknown
model parameters. The controller considers the effect of sys-
tem input changes at the current moment and multiple past
moments of system input changes on system output changes
at the next moment, giving higher degrees of freedom and
greater flexibility in controller design, but noise and distur-
bances in the system can seriously affect system stability due
to the high dependence on input and output data.
Definition 2 [44]: Digraph G is said to realize a bipartite

formation tracking if xi of ith agent meets the conditions:{
limt→∞ ‖xi − fi(t)− x0‖ = 0, ∀i ∈ Va
limt→∞ ‖xi − fi(t)+ x0‖ = 0, ∀i ∈ Vb

(6)

where fi(t) is the bipartite formation control vector corre-
sponding to ith agent and f =

[
f T1 (t), . . . , f TN (t)

]T. Based on
Definition 1, equality (6) can be rewritten as:

lim
t→∞
‖xi − fi(t)− dix0‖ = 0, i = 1, 2, . . . ,N . (7)

Before theoretical verification, we present some basic
assumptions on system dynamics and connections between
agents.
Assumption 1: The constant umax > 0, so that
‖u0(t)‖ < umax.
Assumption 2 [11]: Suppose that the digraph G is struc-

turally balanced and the root node can reach any node along
an edge, indicating there exists a directed spanning tree in the
directed graph.
Assumption 3: The (A,B,C) is observable and

controllable.
In Assumption 1, the boundedness of the control inputs

ensures that all the agents eventually converge to a specific
final value or a specific region. Controllability and observ-
ability represent the ability of the system input to effectively
control the system state and the ability of the system output
to respond exactly to the system state, respectively. Thus
Assumption 2 and Assumption 3 are prerequisites for MAS
to achieve consensus.

Define

L̄ , DL1D (8)

Before proceeding to algorithm design and proof, two
sufficient conditions for reaching consensus are given.
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Lemma 4 [45]: If L̄ ∈ Rm×m is nonsingular, there a matrix
R > 0 make RL̄ + L̄TR > 0.
Lemma 5 [46] (Barbalat’s Lemma): If the function g(t)

is derivable and has a finite limit as t → ∞, if the
first-order derivative ġ(t) is uniformly continuous, we have
limt→0 ġ(t) = 0.

This paper aims to investigate the conditions satisfied by
the control protocol when nonlinear MASs (4) and (5) can
achieve bipartite formation.
Assumption 4: The nonlinear function ω (xi) satisfies the

Lipschitz condition as follows:∥∥ω (xi)− aω (xj)∥∥ ≤ k ∥∥xi − axj∥∥ ,
∀xi, xj ∈ Rn, t > 0. (9)

where xi, xj ∈ Rn and k ∈ R are constants. Assumption 4
guarantees that there is an equilibrium point for the nonlinear
MAS system and the solution of the model is available.
Assumption 5: Suppose the matrixM ∈ Rp×m that satisfies

8 = BM . This matrix can be combined with other terms to
eliminate the nonlinear terms in the equation.
Theorem 1: Suppose matrix P satisfies Assumptions 2-3

and the following inequality. The bipartite tracking formation
of the nonlinear MASs can be solved by introduced the
matrix P.

PA+ ATP− 2PBBTP+ k2PP+ In < 0, (10)

The information transmission between adjacent agents is
realized accomplished through a communication topology
network. For a system contains N + 1 agents, the state
of leader serves as a reference state for the remaining N
followers, and the follower remains at a specific distance
and orientation from the neighbors to form the specified
formation.

IV. DESIGN OF BIPARTITE FORMATION TRACKING
CONTROL PROTOCOL
A control strategy is presented for solving the bipartite
time-varying tracking formation of the MAS with external
disturbance through output feedback. Where suppose each
agent can obtain its own relative output information relative
to its neighbors. In Definition 1, if limt→∞ ‖xi − fi(t) −
dix0‖ = 0, whichmeans that the designed control strategy can
solve the bipartite formation of MAS. The control input and
the estimated state of ith agent can be expressed as follows:

ui = cK
(
x̂i − δ̂i

)
+ νi − diθi

(
BTPx̃i

)
˙̂xi = Ax̂i + Bui +8ω

(
x̂i
)
+ ciFC

(
x̂i − xi + fi

)
˙̂x0 = Ax̂0 + Bu0 +8ω

(
x̂0
)
+ FC

(
x̂0 − x0

)
˙̂
δi = Aδ̂i + FCφi − diBθi

(
BTQφi

)
ċi = x̂Ti PBB

TPx̂i (11)

Remark 3: For this system, two observers x̂i and δ̂i are
created, and x̂i is the state value when the ith agent form
a desired formation obtained by calculation. Assuming that

only the output of each follower is known. Therefore it is
necessary to design a state observer that helps to observe the
unknown state of each agent, and x̂0 indicates the leader’s
observed state. δ̂i is each team reference state relative to
the leader’s state. The leader’s team takes the leader as a
reference, and the other team uses the opposite state of the
leader as a virtual reference tomaintain the desired formation.
δ̂i is defined as follows:{

δ̂i = x̂0, di = 1
δ̂i = −x̂0, di = −1

where ci(ci > 0) is the adaptive coupling weight of each ith
agent. Meanwhile, for the leader, x̂0 = δ̂0 and φi = diφi, F
and K are the control parameter and output feedback matrix,
and they are determined later. νi is the formation compen-
sational vector, and it can be defined as νi = B̄

(
ḟi − Afi

)
.

Parameters φi and c are expressed as follows:

φi =

N∑
j=1

∣∣aij∣∣ (δ̂i − sgn
(
aij
)
δ̂j

)
+ ai0

(
δ̂i − diδ̂0

)
c = diag (c1, . . . , cN ) (12)

Furthermore, θi(·) is a nonlinear function that can be used
for subsequent proofs. It is defined as follows:

θi(κ) =


κ

‖κ‖
, ‖κ‖ 6= 0,

0, ‖κ‖ = 0,
κ ∈ Rq (13)

In this subsection, according to the formation control pro-
tocol (11) and Assumption 5, the dynamical equations of the
nonlinear MASs in (4) and (5) can be transformed into:

ẋi = Axi + cBK
(
x̂i − δ̂i

)
+ Bνi

− diBθi
(
BTPx̃i

)
+8ω (xi) ,

˙̂xi = Ax̂i + cBK
(
x̂i − δ̂i

)
+ Bνi +8ω

(
x̂i
)

− diBθi
(
BTPx̃i

)
+ ciFC

(
x̂i − xi + fi

)
,

˙̂x0 = Ax̂0 + Bu0 +8ω
(
x̂0
)
+ FC

(
x̂0 − x0

)
. (14)

Proof: Let

ε̃i = xi − fi(t)− dix0,

x̃i = x̂i − dîx0,

where ε̃i denotes the value of difference between the actual
state and desired states for the desired formation; x̃i indicates
the formation error between the observed state of ith agent
and leader.

Simplifying equations (4), (5), and (14) yields

˙̃εi = Ãεi + cBK (̂xi − δ̂i)+ Bνi + Afi − ḟi
− diB(θi(BT P̃xi)+ u0)+8(ω(xi)− diω(x0)). (15)

and

˙̃x i = Ãx + cBK (̂xi − δ̂i)− diB(θi(BT P̃xi)+ u0)

× ciFC (̃xi − ε̃i)+8(ω(̂xi)− diω(̂x0)). (16)
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Let

ε̃ =
[̃
εT1 , ε̃

T
2 , . . . , ε̃

T
N

]T
,

x̃ =
[̃
xT1 , x̃

T
2 , . . . , x̃

T
N

]T
,

δ̃ =
[̃
δT1 , δ̃

T
2 , . . . , δ̃

T
N

]T
,

According to (15) and (16), the global dynamic system can
be simplified as:

˙̃ε = (IN ⊗ A) ε̃ + (c⊗ BK )(x̃ − δ̃)+ (IN ⊗8) W̄
+ (IN ⊗ B) ν + (IN ⊗ A) f − (IN ⊗ In) ḟ

− (D⊗ B)
(
θi

(
BTPx̃i

)
+ IN ⊗ u0(t)

)
. (17)

˙̃x = [IN ⊗ (A+ cBK )] x̃ − (c⊗ BK )δ̃ + (IN ⊗8)W
− (D⊗ B)

(
θ
(
BTPx̃

)
+ IN ⊗ u0(t)

)
+ (c⊗ FC)(x̃ − ε̃). (18)

where ν =
[
νT1 , ν

T
2 , . . . , ν

T
N ,
]T .

W̄ =


ω
(
x̂1
)
− d1ω

(
x̂0
)

ω
(
x̂2
)
− d2ω

(
x̂0
)

...

ω
(
x̂N
)
− dNω

(
x̂0
)
 . (19)

Besides, according to the state information of the neigh-
boring agents, let

ri =
N∑
j=1

∣∣aij∣∣ ((xi − fi)− sgn
(
aij
) (
xj − fj

))
+ ai0 (xi − fi − dix0) (20)

Since dix0 = sgn(aij)djx0, equation (20) be simplified as:

ri =
N∑
j=1

∣∣aij∣∣ (ε̃i − sgn
(
aij
)
ε̃j
)
+ ai0ε̃i (21)

To facilitate stability analysis, the coordinate transforma-
tion is performed on equations (12), (18), and (21):

r̄ = (L1 ⊗ In) ε̃,
x̄ = (L1 ⊗ In) x̃,
δ̄ = (L1 ⊗ In) δ̃,

To simplify equations (20) and (21), let� = (IN ⊗ B) ν +
(IN ⊗ A) f − (IN ⊗ In) ḟ and ϒ = θ

(
BTPx̄

)
+ IN ⊗ u0(t).

We have:

ṙ = (IN ⊗ A)r + (c⊗ BK )(x − δ)
+ (L1 ⊗ In)�− (L1D⊗ B)ϒ + (L1 ⊗8)W .

ẋ = [IN ⊗ (A+ cBK )]x − (L1D⊗ B)ϒ
− (c⊗ BK )δ+(c⊗ FC)(x − r)+ (L1 ⊗8)W . (22)

From Assumptions 1-4, the following equations hold:

B̃Afi − B̃ḟi = 0

QA− 2CTC + ATQ < 0

AP−1 − 2BBT + P−1A < 0 (23)

There are appropriate scalars µ1,µ2 > 0, and the matrixe
F = −Q−1CT is the solution of LMI (Linear matrix inequal-
ities) (24), See Eq. 24, as shown at the bottom of the page.

To make the equations more convenient to calculate, let

_
r = (D⊗ In)r,
_
x = (D⊗ In)x,
_
χ =

_
x −

_
r , (25)

According to Assumption 3, L = DL1D and DD = IN .
The derivatives of

_
r ,

_
x and

_
χ in equation (25) are indi-

cated as:

_̇
r = (IN ⊗ A)

_
r +(c⊗ BK )(

_
x −

_

δ )− (L ⊗ B)ϒ

+ (DL1 ⊗ In)�+ (DL1 ⊗8)W . (26)
_̇
x = [(IN ⊗ (A+ cBK )]

_
x −(c⊗ BK )

_

δ −(L ⊗ B)ϒ

+ (c⊗ FC)
_
χ +(DL1 ⊗8)W . (27)

_̇
χ = (IN ⊗ (A+ cFC))

_
χ −(DL1 ⊗ In)ϒ. (28)

According to the definition of B ∈ Rm×q, B ∈ Rq×m, B̃ ∈
R(m−q)×m and condition (21), it is easy to obtain that B̃Bνi +
B̃Afi− B̃ḟi = 0, and BBνi+BAfi−Bḟi = 0. Then, Bνi+Afi−

ḟi = 0 can be obtained due to
[
B
T
, B̃T

]T
is a nonsingular

matrix and νi = B(ḟi − Afi). Thus,
_̇
r is expressed as:

_̇
r = (IN ⊗ A)

_
r +(c⊗ BK )(

_
x −

_

δ +(DL1 ⊗8))W . (29)

and the
_̇
χ is expressed as:

_̇
χ = (IN ⊗ (A+ cFC))

_
χ . (30)

Let ei = x̂i − xi, e0 = x̂0 − x0 indicate the error between
the actual state and the observed state of follower and leader.

According to equations (4), (5), and (10), we have:

ei = ˙̂x i − ẋi
= Aei +8(ω(̂xi)− ω(xi))+ FCei, (31)

and

e0 = ˙̂x0 − ẋ0
= Ae0 +8(ω(̂x0)− ω(x0))+ FCe0, (32)

QA+ ATQ− 2CTC ∗ ∗

∗ QA+ ATQ− 2CTC + 2µ1kIN + 2µ2ρIN QBN − µ1IN + µ2ηIN
∗ ∗ −2µ2IN

 < 0 (24)
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Taking a Lyapunov candidate function for the observer
errors consisting of (26)-(32), the result are presented as
follows:

V1 =
N∑
i=1

_
x
T
(IN ⊗ P)

_
x +

N∑
j=1

(ci − c0)2

+

N∑
i=1

_
χ
T
(IN ⊗ Q)

_
χ,

V2 =
N∑
i=1

eTi Qei + e
T
0Qe0, (33)

Based on the results from equations (26)-(30), the time
derivative of V1 being expressed as:

V̇1 =
N∑
i=1

_
x
T
(IN ⊗ P)

(
[IN ⊗ (A+ cBK )]

_
x
)

−

N∑
i=1

_
x
T (

(c⊗ BK )
_

δ −(L ⊗ B)ϒ
)

+

N∑
i=1

_
x
T (

(c⊗ FC)(
_
x −

_
r ) + (DL1 ⊗8)W

)
+ 2 (ci − c0) ċi +

N∑
i=1

_
χ
T
(IN ⊗2)

_
χ,

≤
_
x
T [

IN ⊗
(
PA+ ATP− 2c0PBBTP

)]
_
x

− 2
_
x
T
(c⊗ PBK )

_

δ −2
_
x
T
(L ⊗ PB)ϒ

+ 2
_
x
T
(c⊗ PFC)

_

2 +2
_
x
T
(DL1 ⊗ P8)W

+

N∑
i=1

_
χ
T
(IN ⊗2)

_
χ . (34)

When c0 sufficiently large and c0 ≥ 1, we have:

V̇1 ≤
_
x
T [

IN ⊗
(
PA+ ATP− 2PBBTP

)]
_
x

+ 2
_
x
T
(DL1 ⊗ P8)W +

N∑
i=1

_
χ
T
(IN ⊗2)

_
χ

− 2
_
x
T
(c⊗ PBK )

_

δ −2
_
x
T
(L ⊗ PB)ϒ

+ 2
_
x
T
(c⊗ PFC)

_

2 .

Recalling that ϒ = λ(BTPx)+ IN ⊗ u0(t), ones obtain:

−2
_
x
T
(L ⊗ PB)

(
θ
(
BTP

_
x
)
+ In ⊗ u0(t)

)
≤ −2

N∑
i=1

ai0
_
x
T
i PB

(
θi

(
BTP

_
x i
)
+ u0(t)

)
− 2

N∑
i=1

|ai0|
_
x
T
i PB×

(
θi

(
BTP

_
x i
)
− θi

(
BTP

_
x j
))

≤ 2 (umax − 1)
N∑
i=1

ai0
∣∣∣BTP _

x i
∣∣∣

≤ 0 (35)

Based on (9) and (19), one has:

2
_
x
T
(DL1 ⊗ P8)W

≤ 2
_
x
T
(L1 ⊗ P) (D⊗8)W

≤ 2
N∑
i=1

ai

∥∥∥∥_x Ti P∥∥∥∥ · ∥∥di (ω (x̂i)− diω (x̂0))∥∥
≤ 2 k

N∑
i=1

∥∥∥∥_x Ti P∥∥∥∥ · ∥∥∥_x i∥∥∥
≤

_
x
T [

IN ⊗ k2PP+ In
]
_
x . (36)

Noting that 4 = (PA + ATP − 2PBBTP) < 0, 2 =
(QA− 2CTC + ATQ) < 0, K = −BTP, F = −Q−1CT , and
umax < 1, ones obtain that:

V̇1 ≤
_
x
T
(IN ⊗4)

_
x −2

_
x
T
(c⊗ PBK )

_

δ

+ 2
_
x
T
(c⊗ PFC)

_
χ +2

_
x
T
(DL1 ⊗ P8)W

+

N∑
i=1

_
χ
T
(IN ⊗2)

_
χ

≤
_
x
T (

IN ⊗4+ k2PP+ In
)
_
x

− 2
_
x
T
(c⊗ PBK )

_

δ +2
_
x
T
(c⊗ PFC)

_
χ

+

N∑
i=1

_
χ
T
(IN ⊗2)

_
χ (37)

According to Theorem 1 and Schur’s Lemma (Lemma 3),
it can be determined that PA+ ATP− 2PBBTP+ k2PP+ In
is negative definite.

FromYoung’s inequality, 2
_
x
T
(c⊗PFC)

_
χ and

∑T
i=1

_
x
T

(IN ⊗2)
_
χ in (37) can be transformed into:

−2
_
x
T
(c⊗ PBK )

_

δ

≤
4λ2max

(
PBBTP

)
λmin(4)λmin(2)

_

δ
T
[c⊗2]

_

δ −
1
4
_
x
T
(c⊗4)

_
x .

(38)

2
_
x
T
(c⊗ PFC)

_
χ

≤
4λ2max

(
PFCCTFTP

)
λmin(4)λmin(2)

_
χ
T
[c⊗2]

_
χ −

1
4
_
x
T
(c⊗4)

_
x .

(39)

Substituting (36), (38), and (39) into (34), yields

V̇1 ≤ −
1
2
_
x
T (

IN ⊗4+ k2PP+ In
)
_
x

+
4λ2max

(
PBBTP

)
λmin(4)λmin(2)

_

δ
T
[c⊗2]

_

δ

+

(
1+

4λmax
(
PFCCTFTP

)
λmin(4)λmin(2)

)
_
χ
T
[c⊗2]

_
χ (40)

let ρ1 = 4λ2max

(
PBBTP

)
/λmin(4)λmin(2)m, ρ2 = 1 +

4λmax
(
PFCCTFTP

)
/λmin(4)λmin(2), we have:

V̇1 ≤ −
1
2
_
x
T (

IN ⊗4+ k2PP+ In
)
_
x

+ ρ2
_
χ
T
[c⊗2]

_
χ +ρ1

_

δ
T
[c⊗2]

_

δ . (41)
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According to (31) and (32), the derivative of V2 is repre-
sented by:

V̇2 = 2
N∑
i=1

eTi Qėi + 2eT0Qė0

= eTi [IN ⊗2] ei + eT0 [IN ⊗2] e0eTi (IN ⊗ QBM) ω̃i

+ eT0QBM ω̃0 + ω̃
T
i

(
IN ⊗MTBTQ

)
ei

+ ω̃T0M
TBTQe0

= eT [IN+1 ⊗2] e+ eT (IN+1 ⊗ QBM) ω

+ωT
(
IN ⊗MTBTQ

)
e. (42)

where ω̃i = ω(̂xi) − ω(xi), ω̃0 = ω(̂x0) − ω(x0), ωT =[
ω̃T0 , ω̃

T
i

]T
, eT =

[
eT0 , e

T
i

]T
. By using the Lipschitz con-

dition, it can be found that

2µ1
(
ω
(
x̂i
)
− ω (xi)

)T (x̂i − xi)
≤ 2kµ1

(
x̂i − xi

)T (x̂i − xi)
2µ2

[(
ω
(
x̂i
)
− ω (xi)

)T (
ω
(
x̂i
)
− ω (xi)

)]
− 2µ2

[
ρ
(
x̂i − xi

)T (x̂i − xi)]
≤ 2ηµ2

(
x̂i − xi

)T (
ω
(
x̂i
)
− ω (xi)

)
(43)

where µ1, µ2. Subsequently, equation (43) can be rewrit-
ten as:

2µ1

[
ωT e− keT e

]
≤ 0,

2µ2

[
ωTω − ρeT e− ηeTω

]
≤ 0, (44)

Substituting (44) into (42), yields

V̇2 ≤ eT [IN+1 ⊗ (2+ 2µ1kIN + 2µ2ρIN )] e

+ eT (IN+1 ⊗ QBM − µ1IN + µ2ηIN ) ω

+ωT
(
IN ⊗MTBTQ− µ1IN + µ2ηIN

)
e

− 2µ2ω
Tω. (45)

Since 5 =
[
_
x
T _

δ
T _

χ
T _

e
T _

ω
T
]T

, we have

V = V1 + V2,

V̇ ≤ 5
[
IN ⊗11 0

0 IN ⊗12

]
5, (46)

where

11 =

−
1
2

(
IN ⊗4+k2PP+In

)
ρ1[c⊗2]

ρ2[c⊗2]

,
(47)

12 =

[
2+ 2µ1kIN + 2µ2ρIN QBM − µ1IN + µ2ηIN

∗ − 2µ2IN

]
,

(48)

According to Schur’s Lemma (Lemma 3), under condi-
tions (10), (21), and (22), V̇ will be negative definite. Accord-
ing to (46) and Barbalat’s Lemma (Lemma 5), one gets
limt→∞ ε̃(t) = 0, which indicates that

lim
t→∞
‖xi − fi(t)− dix0‖ = 0 (49)

Thus, the proof of BTVF for MAS is completed.

V. NUMERICAL RESULT
Assume the directed communication graph of MAS is given
by Fig.1, which contains one leader (numbered 0) and eight
followers (numbered 1 to 8). The model of the AUV is shown
in Fig.2.

FIGURE 1. The communication topology of the constructed MAS (the
black line indicates a cooperation relationship and the red line indicates
a competition relationship.

FIGURE 2. The ith AUV.

Consider the formation of nine AUVs in waters of constant
depth from the horizontal. Select a reference coordinate sys-
tem XOY at the same altitude of the ocean, and the coordinate
system of ith AUV own is xioiyi. The oi is located at the
center of mass of each AUV. Select a point Li outside the ith
AUV for subsequent formation control, the coordinates are
expressed as pi = (xxi, xyi). Set the position vector of ith AUV
as p̃i =

[̃
xxi, x̃yi, αi

]
and the velocity vector as γi = [vi,$i].

Since the AUV cannot move along the axis yi under water,
i.e., it cannot produce a lateral shift, the dimension of the
velocity vector γi ∈ R2 is smaller than the position vector
p̃i ∈ R3, so Fig.2 is a non-complete mechanical system of
the AUV. The relationship between x̃xi, x̃yi, αi, and$ can be
obtained as: [

˙̃xxi
˙̃xyi

]
=

[
uix
uiy

]
=

[
vi cosαi
vi sinαi

]
α̇i = $ (50)

The coordinates of Li are denoted as:[
xxi
xyi

]
=

[
˙̃xxi
˙̃xyi

]
+ Hi

[
cosαi
sinαi

]
(51)
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where Hi is a constant and represents the distance from oi
to Li. Take Hi = 1. From (50) and (51) we obtain:

γi = R(αi)ṗi (52)

where

R (αi) =
[

cosαi sinαi
− (sinαi) /Hi (cosαi) /Hi

]
, Hi 6= 0 (53)

The significance of this simplification is that we can con-
trol the AUV directly by controlling the point Li. The validity
of the designed output feedback-based control strategy is ver-
ified by a system consisting of nine AUVs. The AUV model
after simplification is represented by (4) and (5), referring
to [25] and [47], we can set the parameter matrix as

A =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , B =


0 0
1 0
0 0
0 1

 , xi =


xxi
vxi
xyi
vyi

 ,
C =

[
1 1 0 0
0 0 1 1

]
, νi =

[
νxi
νyi

]
, ui =

[
uix
uiy.

]
In Fig.1, all AUVs are divided into two groups, the

black line represents the cooperative relationship between
two agents in the same group, and the red line means
the competitive relationship between agents in different
groups. Meanwhile, the followers are split into two sets:
Va = {1, 2, 3, 4} ,Vb = {5, 6, 7, 8}. For the coopeti-
tion network illustrated in Fig.1, the value of di repre-
sents the cooperative and competitive relationship between
each follower and leader. It can be expressed as D =

{1, 1, 1, 1,−1,−1,−1,−1} .8 = BM = B
[
1 0
0 1

]
. Further-

more, calculations show that k = 1 satisfies the Lipschitz
condition, i.e. Assumption 4 for the nonlinear MAS. For
the protocol of output feedback, umax = 0.1 is selected.
It indicated that ‖uo(t)‖ < 0.1, so the leader’s control input
be expressed as:

u0 =



[
0.05, 0.07

]T
, t ≤ 25 s[

0, −0.07
]T
, 25 s < t ≤ 40 s[

0, −0.03
]T
, 40 s < t ≤ 60 s[

0, 0
]T
, t ≤ 100 s

The control inputs of the leader are plotted along with time
in Fig.3. The formation control vector fi(t) and the formation
compensational vector νi(t) of BTVF for follower i can be
expressed as:

fi(t) =


ρ1 sin (τ1t + 2πλ(i)/n1)
ρ1τ1 cos (τ1t + 2πλ(i)/n1)
ρ1 cos (τ1t + 2πλ(i)/n1)
−ρ1τ1 sin (τ1t + 2πλ(i)/n1)

 , i ∈ Va,

fi(t) =


ρ2 sin (τ2t + 2πλ(i)/n2)
ρ2τ2 cos (τ2t + 2πλ(i)/n2)
ρ2 cos (τ2t + 2πλ(i)/n2)
−ρ2τ2 sin (τ2t + 2πλ(i)/n2)

 , i ∈ Vb,

νi(t) =

[
−ρ1τ

2
1 sin (τ1t + 2πλ(i)/n1)

−ρ1τ
2
1 cos (τ1t + 2πλ(i)/n1)

]
, i ∈ Va,

νi(t) =

[
−ρ2τ

2
2 sin (τ2t + 2πλ(i)/n2)

−ρ2τ
2
2 cos (τ2t + 2πλ(i)/n2)

]
, i ∈ Vb,

where λ(i) = i− 1.

FIGURE 3. The trajectories curves of u.

TABLE 1. Setting of system parameters.

The system satisfies the one-sided Lipschitz condition
when the constant k = 1 in Assumption 4 or there exists
a region M =

{
xi ∈ R2, ‖xi‖ ≤ m̄

}
. The m̄ can be expressed

as m̄ = min
(

4
√
η2 +

η21
4 ,

√
−
η1
4

)
. Due to the bipartite for-

mation characteristics, the nature of the one-sided Lipschitz
condition and (24), (47), (48),we can select scalars as shown
in Table 1. Where n1 and n2 represents the number of follow-
ers in Va and Vb, respectively.

The solution to inequality (23) is obtained by using the
LMI toolbox of MATLAB:

P = I2 ⊗
[

2.0051 −0.6684
−0.6684 0.6684

]
,

Q = I2 ⊗
[

1.5715 −0.0352
−0.0352 1.4763

]
,
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The gain matrix is given as:

K = I2 ⊗
[
−0.7481 −2.2443

]
,

F = I2 ⊗
[
−0.6518
−0.6929

]
.

The Fig.4 illustrates the final formation achieved by bipar-
tite formation control algorithm and the path curve of the
leader and followers over time in the absence of external
disturbances. At that time the system equations in (4) and (5)
without 8ω(xi), (i = 0, . . . ,N ). The asterisk ‘‘∗’’ represents
the position of the eight followers in formation, and a red
pentagram represents the position of the leader. In Va, four
followers surround the leader and move forward to keep a
specific angle and distance from the leader. InVb, four follow-
ers move forward to keep a specific angle and distance from
the virtual leader. The leader and virtual leader have opposite
states. It is clear from Fig.5 that the agents in different teams
finally evolve into two opposite states. The agents in Va
converge to x, while those in Vb converge to the opposite−x.
Fig.6 illustrates the observation error between xi and x̂i, which
indicates that ei and e0 converge to zero asymptotically.

FIGURE 4. The snapshots of the multi-agent formation.

Next, the influence of external disturbance on the bipartite
formation of theMAS is considered. The external disturbance
for each agent is assumed as:

ω0 = [0.5 cos(6t); 0.4 sin(8t)]T,

ω1 = [0.5 cos(3t); 0.8 sin(4t)]T ,

ω2 = [0.4 cos(2t); 0.3 sin(5t)]T ,

ω3 = [0.3 cos(4t); 0.5 sin(3t)]T ,

ω4 = [0.4 cos(6t); 0.6 sin(7t)]T ,

ω5 = [0.5 cos(7t); 0.3 sin(7t)]T ,

ω6 = [0.6 cos(7t); 0.3 sin(7t)]T ,

ω7 = [0.4 cos(6t); 0.6 sin(7t)]T ,

ω8 = [0.4 cos(6t); 0.5 sin(7t)]T .

The Fig.7 illustrates the final formation achieved by bipar-
tite formation control algorithm and the path curve of the
leader and followers over time in the presence of external

FIGURE 5. (a), (b) The velocity variation of of all agents. (c), (d) The
position of all agents.

FIGURE 6. The observation error between and of the system without
nonlinear term.

FIGURE 7. The snapshots of the multi-agent formation under nonlinear
disturbance.

disturbance. It indicates that the MAS can ultimately reach
the desired formation under disturbances. Fig.8 presents the
velocity variation of all the agents under disturbance. It can
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FIGURE 8. (a), (b) The velocity variation of all agents under nonlinear
disturbance. (c), (d) The position of all agents under nonlinear
disturbance.

FIGURE 9. The observation error between and under nonlinear
disturbance.

be seen that the agents in the two sets Va and Vb converge
to two opposite states. The curve of the observation error
between xi and x̂i for the MAS under nonlinear disturbance
is plotted in Fig.9. It is obvious that external nonlinear dis-
turbances have a certain influence on the error of the system,
but their fluctuations are stable within a certain range. This
phenomenon verifies the validity of the above-mentioned
theory for adaptive bipartite tracking formation of MASs
under external disturbances. The comparison of Fig.5 and
Fig.8 indicates that external disturbances affect the speed and
trajectory of the AUV at a given moment, but no influence
on the formation of the AUV at that moment, which further
demonstrates the suppression of external disturbances by the
adaptive control strategy based on output feedback.

VI. CONCLUSION
This paper investigates the network model with cooperation-
competition relationships. First, positive and negative
edges are adopted represent the cooperative behavior and

competition behavior between agents, respectively. Then an
adaptive control protocol is proposed for nonlinear MAS for
the leader-follower BTVF, and the corresponding algorithm
proofs are given. The main advantage of this solution is that
the global state of all agents does not need to be known. Next,
the Lipschitz property is exploited to solve the nonlinear
terms in this system. Subsequently, the stability of system
is analyzed and verified by the Lyapunov candidate function
associated with the error function. Finally, we analyze the
AUV fixed-depth motion model, simplify this model to a
mass point model, construct a MAS containing nine AUVs,
and validate the effectiveness of the proposed strategy. The
analysis of the numerical simulation results show that the
MASs can achieve the expected formation with external
disturbance. The further work will focus on the application of
this algorithm to multi-AUV cooperative control for complex
ocean environment observations.
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