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ABSTRACT Reconfigurable manufacturing systems are complex systems that are prone to malfunctions
and performance decay. Thus, such systems need to be safeguarded against quality issues and decline
in production efficiency to ensure the optimal health of machines. The product quality and health of
a reconfigurable manufacturing system can be analyzed by using the diagnosability characteristic. This
study examines the diagnosability characteristic in a multi-stage reconfigurable manufacturing system.
The aim is to understand the impact of time-based diagnostics on the functionality performance of a
reconfigurable manufacturing system and the level of inventory used during production. The diagnosability
is analyzed regarding product variation and system diagnosability. A mathematical model is proposed, and
it is subsequently applied in deterministic and stochastic settings. The deterministic setting is examined
through a set of two problem-specific heuristics. The stochastic setting, subject to the gamma process,
is examined by using a simulation-based optimization approach. The results suggest that the use of line
replacement units can restore a reconfigurable system to optimal functionality, reduce the level of inventory,
and complete production in a minimum time at the expense of additional cost. These findings apply to the
context of healthcare emergency response systems, reconfigurable supply chains, reconfigurable integrated
manufacturing systems, etc. Finally, a conclusion and future research avenues are provided.

INDEX TERMS Reconfigurable manufacturing system, quality, cost, diagnosability, inventory, optimiza-
tion, multi-objective, heuristic.

I. INTRODUCTION
Reconfigurable Manufacturing System (RMS), as an
advanced manufacturing system, has addressed many chal-
lenges facing modern practices. It offers a novel Recon-
figurable Manufacturing Tool (RMT) which enhances its
functionality and changeability attributes. Besides this, RMS
possesses a set of characteristics i.e., modularity, scalability,
integrability, diagnosability, etc. which distinguishes it from
other manufacturing systems [1]. It has become the focus of
researchers as well as practitioners in the context of Industry
4.0 (I4.0) and as part of the Next Generation Manufacturing
Systems (NGMSs) [2].
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The RMS is built on the core characteristics of scalability,
customization, integrability, modularity, and diagnosability
[3]. These characteristics play an important role in mak-
ing the production system responsive and reconfigurable.
A close relationship exists between the design of a recon-
figurable manufacturing system and its performance met-
rics. Few authors have considered the economic aspects of
configuration design while ignoring other beneficial aspects
such as the diagnostics of configuration design. There is a
need to consider several other factors to assess the perfor-
mance of a reconfigurable manufacturing system [4]. The
RMS is still an emerging manufacturing paradigm; hence,
it offers enough opportunities for exploration, improvement,
and investigation.

Quality is an important attribute to gauge the perfor-
mance of any manufacturing system. An ill-quality-based
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manufacturing system impacts profitability and can cause dis-
tress for the customer. RMS is a complex manufacturing sys-
tem as it offers several machine configurations, modules, and
tools to perform the same operation. Thus, several production
routes can be formed depending on several possible combi-
nations of machine configurations, modules, and tools [5].
A product may pass through any of these routes, enhancing
the difficulty in tracking and examining the product quality in
each route. In addition, RMS contains information at multiple
levels i.e., at the level of machine configuration, modules,
tools, and axes of motion. This aspect further elevates the
difficulty of analyzing the quality and pinpointing a specific
level that causes the deterioration in quality. A poor-quality
production can have manifold consequences. For example,
it will decrease the number of optimal quality products and
hence a reduced level of products will be delivered to cus-
tomers. As a result, either back-ordering will be exercised,
or inventory will be used to meet the demanded quantity.

The quality-related diagnostic of a reconfigurable manu-
facturing system can be performed by using the diagnosabil-
ity characteristic. In this sense, a trade-off analysis between
diagnostic and inventory decisions in a reconfigurable manu-
facturing system can be made, i.e., diagnostic can impact the
level of inventory needed to fulfill the customer’s demand.
A well-diagnosed reconfigurable system will enhance pro-
duction efficiency and will warrant higher customer satisfac-
tion. Thus, from a cost viewpoint, a well-diagnosed RMSwill
result in fewer defects, will require fewer inventory items,
and will be more cost-efficient from the production point
of view. However, the diagnostic itself is a costlier process
and managers may want to assess the cost of diagnostics
as opposed to the savings attained by implementing a well-
diagnosed manufacturing system.

The functionality or production profile of any manufactur-
ing system cannot indefinitely remain in an ideal condition
due to decay, wear and tear, and malfunctions. This means
that the manufacturing system will produce optimal quality
products in the beginning and this quality will start deterio-
rating with time. This deterioration will increase the chances
of failure and the production of failed products [6]. Con-
sequently, the total cost of manufacturing will increase [7].
The existing literature on RMS considers machines with
a constant/optimal manufacturing functionality which is an
assumption and against the real manufacturing practices. It is
more appropriate to investigate the functionality of a recon-
figurable manufacturing system during different phases of
its operation. Each phase will have its quality attributes and
fitness for use. The sum of functionalities of all phases of
reconfigurable machines will help in selecting such config-
urations which result in maximum utility. The utility of a
manufacturing system can be defined in terms of its produc-
tion of conforming products, production of failed products,
cost, or total manufacturing functionality throughout the pro-
duction. If more configurations are selected with compro-
mised functionality, this will imply that more failed products
are produced and hence inventory items may be used to

replace the failed quantity of products. More deterioration
of machines and less functionality will ultimately result in
the use of a higher inventory of products. The functionality
degradation can be viewed as a deterministic as well as
stochastic phenomenon. The stochastic/random degradation
can be modeled by using the gamma process which is more
suitable for modeling the deterioration of manufacturing sys-
tems [8], [9].

To summarize, this study addresses the research questions
concerning the quality of manufacturing, functionality decay,
line replacement units, and the use of inventory. More specif-
ically, this study addresses the following research questions:
— Is it cost-effective to replace the defective units and

restore the functionality of a reconfigurable manufactur-
ing system?

— What is the behaviour of reconfigurable machines in
different phases of functionalities?

— What is the trade-off between the use of inventory, line
replacement units, and the total cost of manufacturing?

— Does the considered problem behave similarly under
deterministic as well as stochastic working conditions?

To address these research questions, this study proposes a
reconfigurable manufacturing system framework by mod-
elling the diagnosability characteristic. The diagnosability
characteristic is analyzed from the viewpoint of the prod-
uct as well as the manufacturing system. The latter is
further divided into the detectability, predictability, and dis-
tinguishability of a manufacturing system. The functionality
of RMS is assessed in each phase of its working condi-
tion, i.e., detectability, predictability, and distinguishability.
An emphasis is given to understanding the role of inventory
decisions in the diagnostic of a reconfigurable manufacturing
system. The analysis is performed by using deterministic and
stochastic working conditions. The deterministic setting is
examined by using a set of two problem-specific heuristics
whereas the stochastic setting subject to the gamma pro-
cess is examined by using a Simulation-Based Optimization
(SBO) framework. An extensive analysis of the proposed
approaches, compared to the published approaches, is pre-
sented by using different criteria.

The remaining study is organized as follows. Section II
offers a literature review on the RMS design, diagnosability
analysis in RMS, solution approaches used in RMS problems,
and deterioration inmanufacturing processes. Section III pro-
vides the assumptions related to the mathematical model.
Section IV discusses the problem formulation and mathemat-
ical model. Section V discusses the solution approaches for
deterministic and stochastic settings. Section VI implements
the model to demonstrate the findings. Section VII discusses
the implications for managers. Section VIII concludes the
study and offers future research directions.

II. LITERATURE REVIEW
A. RMS DESIGN
The RMS is custom-designed to offer exact functionality and
production capacity by using the reconfiguration aspects [10].
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The design problems are integrated at the outset of a recon-
figurable system design i.e. before the RMS is implemented
for production purposes. Detailed reviews on the RMS design
problems can be found in [11] and [12]. The RMS is designed
to be responsive to market and product changes and to cost-
effectively react to production system failure. Though the
RMS literature addresses the market and product-based con-
cerns, there is a dearth of literature focusing on the reactivity
of RMS subject to failure and functionality decay. The RMS
design problems can be broadly classified into architecture
design [13], decisions taken at the reconfiguration level [14],
layout and spatial analysis [15], [16], process planning prob-
lems [17], and other problems.

An overwhelming number of articles on RMS design
problems have focused on the process planning aspects.
Process planning is the assignment of machine configura-
tions to various operations while optimizing the Key Perfor-
mance Indices (KPIs) or objective functions. The literature
has considered the KPIs of cost, time, and responsiveness
in the design of RMS process planning. In a recent effort,
Khan et al. [5] considered the aspect of quality in the process
planning problem. The RMS was subject to deterioration
and quality decay; however, the diagnostic aspect and phase-
wise analysis of production system performance were not
conducted. To the best of our knowledge, none of the studies
focused on RMS design problems has studied the function-
ality performance of RMS in different phases of production.
The sub-section below presents an overview of the diagnostic
analysis in a reconfigurable manufacturing system.

B. DIAGNOSTIC OF RMS
The ultimate job of a production manager is to deliver the
products at an optimal quality level. However, it will become
difficult to produce optimal quality products if there are
reliability and quality issues. In such events, diagnosability
enables the RMS to quickly identify the sources which cause
reliability and quality issues [18]. Diagnosability can be used
at multiple levels i.e., system, machine, and product-level
to ensure its effectiveness. Once the system is reconfigured,
diagnosability helps in the rapid detection of products that
compromise quality [19]. Thus, these problematic products
and production system units can be removed to ensure the
optimal performance of a manufacturing system.

In [4], the authors proposed nine industrially relevant
factors to assess the product flow in RMS. A metric was
defined, based on these factors, in the form of a composite
performance metric. The user can assign subjective as well
as objective weights to each performance metric. Koren and
Shpitalni [10] examined the relationship between configura-
tion design and reliability, productivity, quality, scalability,
and cost analysis. In another study [20], the availability,
reliability, andmaintenance analysis of a reconfigurable man-
ufacturing systemwere performed. However, the diagnostics-
based analysis of RMS was not performed in different phases
of production. The integrated design and scheduling in a

reconfigurable manufacturing system both at the stages of
initial design and reconfiguration were studied in [21].

Amixed-integer programmingmodel was proposed in [22]
for a reconfigurable flow line. The equipment cost was opti-
mized for RMS containing turrets, spindles, and modules.
Bortolini et al. [23] provided a linear programming model
to study the alternative part routing in a cellular recon-
figurable manufacturing system. The objective function of
time was optimized for alternative part routing. Prasad and
Jayswal [24] proposed an approach based on the Shannon
entropy and evaluation technique for optimizing effort, profit,
and due date in a reconfigurable manufacturing system.
Kumar et al. [25] considered a tri-objective model to analyse
the optimal sequence of product family in RMS. Khan [26]
examined the impact of modularity and scalability character-
istics on the efficiency of a vehicle routing problem and RMS.
A multi-objective model was proposed and implemented by
using a set of heuristic approaches.

Gumasta et al. [27] proposed a reconfigurability index to
assess the performance of a reconfigurable manufacturing
system. This index was based on RMS characteristics such as
diagnosability, scalability, modularity, and convertibility. The
diagnosability characteristic was modeled keeping in view
the system indication and checking the line replacement units
of a system. A system can be readily assessed by using the
proposed index. A multi-attribute utility theory was used to
calculate the overall index of reconfigurability.

Khezri et al. [28] studied the diagnosis of energy and
preventive maintenance in a reconfigurable manufacturing
system. A mixed-integer non-linear model was proposed to
analyze the energy loss due to the use and energy consumed
due to maintenance. A bi-level decomposition approach was
used to examine the behavior of the model. Napoleone
and Andersen [29] considered the role of digitization as an
enabler to increase diagnosability and the role of a human
operator in the shop floor diagnostic. As a result of the
literature review, a theoretical 3-e model (error reduction,
easiness, and ergonomics) was proposed.

Though product/component failure is central in examining
the ramp-up, there is a lack of a systematic mechanism to
carry out diagnosability in a reconfigurable manufacturing
system [1]. The authors believedmore focus needs to be given
to identifying the root causes of failure/variation. Artificial
intelligence techniques can be used to diagnose faults and
select modules in RMS.

C. SOLUTION APPROACHES USED IN RMS PROBLEMS
Several solution approaches have been used to solve
the RMS problems. These approaches can be divided
along different dimensions, among which the notewor-
thy dimension is scalarization vs. posteriori approaches
[30] whereas scalarization approaches are exact and pos-
teriori approaches are non-exact/evolutionary, resulting in
Pareto-optimal solutions [31]. The prominent exact solution
approaches adapted to RMS problems are weighted goal pro-
gramming, ε-constraint, and CPLEX solver-based solutions.
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The RMS problems are complex and non-polynomial hard
in nature and thus evolutionary approaches are more often
applied to solve such problems.

Among the evolutionary approaches, the family of non-
sorting genetic algorithms (GA, NAGA, NSGA-II, and
NSGA-III) has predominantly been adapted to RMS prob-
lems. Other noteworthy approaches applied to solve the RMS
problems are Archived Multi-Objective Simulated Anneal-
ing (AMOSA),Multi-Objective Particle SwarmOptimization
(MOPSO), Tabu Search (TS), Strength Pareto Evolutionary
Algorithm (SPEA-II), etc. These approaches have proved
to be adequate in solving complex RMS problems in ade-
quate computation time. However, these are not tailor-
made/designed for RMS problems and are modified to some
extent before applying them to the considered problems.
There has been a trend of using problem-specific/tailored
solution approaches/meta-heuristic in RMS literature. A brief
review of the problem-specific approaches is provided in the
following paragraph.

Saliba et al. [32] presented a heuristic to identify the mod-
ules at the beginning of RMS design. A heuristic method,
based on the design structure matrix (DSM), was used for
module synthesis in a reconfigurable manufacturing envi-
ronment. Azab et al. [33] studied the semi-generative pro-
cess planning problem in a reconfigurable manufacturing
system. The authors tailored a random-based heuristic with
simulated annealing to solve the problem. In another study,
Bensmaine et al. [34] considered integrated process plan-
ning and scheduling in a reconfigurable manufacturing sys-
tem. A heuristic approach was proposed which considered
the multi-configuration-based aspects of different machines
while integrating the process planning with scheduling. The
heuristic started by calculating the availability time of each
machine, and then it computed the selection index of each
operation. Following this, an operation with the highest selec-
tion index was scheduled on a machine with minimum avail-
ability time. There are other applications where exhaustive
search-based heuristics [35], and hybrid heuristics [36] have
been used to solve the RMS problems concerning machine
layout and machine availability, respectively.

The problem-specific approaches may not be generalized
to other problems; however, they can provide excellent solu-
tions to the problem for which they are designed [37]. Moti-
vated by the precedence in the RMS literature, this study
designs two problem-specific heuristics for the determin-
istic problem setting and one problem-specific heuristic in
the form of simulation-based optimization for the stochas-
tic problem setting. Each heuristic is designed according
to the mathematical model and the definition of diagnos-
ability reconfigurable manufacturing system characteristic.
A detailed description of these approaches is provided in
Section V.

D. DETERIORATION IN MANUFACTURING PROCESSES
The manufacturing processes have traditionally been sta-
ble with constant processing times and non-deteriorating

functionality; however, the real-manufacturing environment
is based on deteriorating functionality due to decay, wear and
tear, spoilage, etc. [38]. The performance degradation ofman-
ufacturing systems is a well-established stream of research
where the production system partly performs in an in-control
state and partly in an out-of-control state due to deteriora-
tion [39]. The deterioration of a manufacturing system has
been examined in several contexts i.e., Economic Produc-
tion Quantity (EPQ) [40], [41], Condition-Based Mainte-
nance (CBM) [42], Preventive Maintenance (PM) [43], etc.
Though there has been enough emphasis on the deteriora-
tion of several manufacturing systems, the reconfigurable
manufacturing system is yet to be examined in the presence of
deterioration. As the deterioration reaches a specific thresh-
old (called failure threshold), condition-based maintenance
(CBM) is performed to restore the functionality of amanufac-
turing system. In some cases, the maintenance/restoration can
be performed based on the available degradation data before
the system reaches the state of failure (out-of-control) [44].
In the current study, the Line Replacement Units (LRUs),
i.e., replacement of modules/fixtures/tools can be considered
as maintenance tasks where the functionality of RMS is
restored to an optimal performance level.

This study examines the diagnosability RMS characteris-
tic due to deterioration, both in deterministic and stochastic
settings. [45]–[48] are some of the examples where deteri-
oration has been considered a stochastic phenomenon. The
degradation of a manufacturing system is generally mod-
eled as a stochastic, time-dependent phenomenon such as
random deterioration rate, Wiener, Inverse Gaussian, gamma
processes, or Markov processes, each method is known for
its modeling properties and interpretations [49]. This study
assumes that the deterioration is random in time, and it fol-
lows the gamma process. The advantage of using the gamma
processes is that its mathematical formulation is easy [8].

The literature summary of the existing focus on diagnos-
ability in RMS is provided in Table 1.We identified 13 studies
in the existing literature that discusses the diagnosability
RMS characteristic. These studies were analyzed w.r.t dif-
ferent features, i.e., whether diagnosability is mathematically
modeled, the use of objective function, single/multi-period
analysis, the analysis of inventory and cost in the diagnostics
of RMS, examination of variable functionality of RMS in
different phases of its production, the use of LRUs to restore
the functionality of a manufacturing system, and the use of
problem-specific heuristic to examine the problem concern-
ing diagnosability.

It can be observed that though diagnosability is defined
in a few studies and is mathematically modeled as well,
a dedicated objective function for diagnosability is lacking
in the existing literature. Moreover, an ill-diagnosed manu-
facturing system will need additional inventory and will bear
the excessive cost. Diagnosability will necessitate variable
functionality in different phases of manufacturing, up until
the Line Replacement Units (LRUs) are used to restore the
manufacturing system to an optimal functionality level. The
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TABLE 1. The literature summary of diagnosability analysis in RMS.

LRUs are part of the inventory, and their use will increase
the overall cost of production. All these aspects are lacking
in the existing literature on reconfigurable manufacturing
systems. The last row of Table 1 provides the novelty of
current research in filling the literature gaps. The novelty of
the current research is summarized below:

• Through this study, a comparative analysis between
product as well as system diagnostic and inventory
analysis in a multi-stage reconfigurable manufacturing
system is presented.
• A mathematical model is proposed to analyse the diag-
nosability reconfigurable manufacturing system charac-
teristic in a multi-stage manufacturing system.
• The performance of RMS is assessed by considering dif-
ferent manufacturing functionalities in different phases
of its working condition, i.e., during detectability, pre-
dictability, and distinguishability.
• The analysis is performed in the presence and absence of
the distinguishability phase i.e., when the line replacing
units (LRUs) are not added to restore the functionality
versus when the LRUs are added to the manufacturing
system. The replacement of LRUs can be considered a
maintenance policy.
• The analysis is performed for deterministic as well
as stochastic manufacturing systems. The determinis-
tic problem setting is examined by using two-problem
specific heuristics whereas the stochastic problem set-
ting is examined by using a simulation-based optimiza-
tion (SBO) approach.
• The performance of the proposed approaches is com-
pared with the exact and evolutionary approaches, for

small as well as large problem sizes, by using three
performance assessment metrics.

III. MODEL ASSUMPTIONS
The assumptions related to the problem and mathematical
model are provided below:

— Only modules/tools/turrets are considered as the Line
Replacement Units (LRUs) which are the main compo-
nents of the RMS.

— Each reconfigurable machine is subject to performance
decay and degradation. The time at which the decay starts
may change from machine to machine.

— The RMS is designed to work in different phases. Each
manufacturing phase has its functionality and fitness for
use.

— The considered RMS is designed to produce a single
product; however, it can be extended to produce a variety
of products.

— A Just-In-Time (JIT) based inventory approach is
adopted, hence there is no delay in replacing the malfunc-
tioned units.

— The system performs as well as a new system upon chang-
ing the units and there is no loss of functionality.

— The processing time in different stages/functionality pro-
files is known as apriori.

— Each reconfigurable machine works for a specific time
and cannot be indefinitely used for production.

IV. PROBLEM STATEMENT AND MATHEMATICAL MODEL
Diagnosability is the ability of a reconfigurable manufac-
turing system to automatically read the current state of
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FIGURE 1. Classification of diagnosability rms characteristic into
component and system diagnosability.

a system and diagnose the root causes of system failure.
Gumasta et al. [27] classified the diagnosability characteris-
tic into the diagnosability of components/products and the
diagnosability of the system, as shown in Figure 1. The first
part is related to the diagnosis of products whereas detectabil-
ity, predictability, and distinguishability are the three phases
related to the diagnosis of a production system. These aspects
are discussed below:

Diagnosability of component/product
It is related to monitoring and diagnosing the quality of

products and their associated variation.
Detectability
Detectability is related to the perfect quality-based condi-

tion of a manufacturing system. It measures the elapsed time
before the initiation/recognition of a failure/defect. In this
phase, a manufacturing system is capable to process such
product units which do not have any quality issues.

Predictability
In this phase of diagnosability, an error/failure originates

after some time, resulting in optimal quality products and
failed products. Thus, there is some loss of functionality due
to the production of failed products. However, the production
system continues to perform with a continuous decay in

functionality. Predictability measures the time that elapses
before a critical failure occurs. During this phase, managers
can identify the root cause of error/failure. RMS can oper-
ate the same product through the combination of different
machine configurations called routes. Through predictabil-
ity, such production route can be identified which contains
less/more quality variation and defects.

Distinguishability: In this phase, a Line Replacing Unit
(LRU) is identifiedwithin a production route which is respon-
sible for the loss of functionality. The LRU can be any part
of a reconfigurable machine that needs adjustment to restore
the functionality of a system. For example, LRU can be
configurations, basic/auxiliary modules, and/or tools. LRU
can be a complex mechanical component that can be quickly
replaced to restore the performance of a manufacturing sys-
tem. Distinguishability measures the time required to identify
the system’s LRU which causes the loss of functionality.
Subsequently, such LRUs are replaced by using inventoried
machine tools/components.

Figure 2 describes the functionality decay profile of a sys-
tem/machine in the absence of distinguishability (Figure 2(a))
and in the presence of distinguishability Figure 2(b)). From
Figure 2, it can be observed that a system works with
constant functionality in the detectability phase. As time
elapses, the system functionality profile shows a continuous
decay which eventually results in a complete system failure,
unless the LRUs are replaced in the distinguishability phase
(Figure 2(b)).

Figure 3 shows the quantity of production in different
phases of system diagnosability. In Figure 3(a), which is
based on only detectability and predictability, it can be
observed that the Optimal Quality Production Curve (OPC)
decreases in the predictability phase whereas the Failed Pro-
duction Curve (FPC) increases. As distinguishability and
the use of LRUs are not considered here, thus, there is a
considerable proportion of failed products in this case. Con-
sequently, an inventory of optimal quality products will be

FIGURE 2. Diagnosability of machine (a) in the absence of distinguishability, (b) in the presence of distinguishability.
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FIGURE 3. Diagnosability of component/product (a) in the absence of distinguishability, (b) in the presence of distinguishability.

used to ensure the delivery of the required level of demand.
This level of inventory is determined by the multiplication of
production rate and time, as represented by the yellow shape
in Figure 3(a).

This inventory will serve as a replacement for failed
production in the predictability phase. On the other hand,
Figure 3(b) shows the quantity of production in the presence
of the distinguishability phase. As shown, there is a loss of
production in the predictability and distinguishability phases
i.e., once the loss of functionality in the system/machine
configuration starts and when the system is restored to an
optimal functionality level by using the LRUs. However,
the quantity of failed products and the use of inventory is
minimal, as compared to the case discussed in Figure 3(a).
To summarize, a higher level of inventory is posited to be
used in the absence of distinguishability; however, the use of
LRUs will incur additional cost and effort to restore a system
to an optimal functionality level. To this end, a mathematical
model is proposed in this study to examine the diagnosability
characteristic of RMS in different phases of a system.

The problem statement is summarized with the help of
Figure 4. Several reconfigurable machines are designated
to multiple production stages. The product passes through
a combination of different machines to get the final shape.
As can be observed on the left side of Figure 4, the quantity
of conforming products reduces from one stage to another,
up until the Line Replacement Units (LRUs) are used to
restore the system as well as to increase the quantity of con-
forming/optimal quality products. The aim is to understand
the impact of restoration (use of LRUs) on the total cost and
functionality of RMS in different phases.

The model notations and objective functions are given
below. Each phase of the reconfigurable manufacturing sys-
tem (i.e., detectability, predictability, and distinguishability),
as well as the product performance, is assessed through its
respective functionality. The presented model is used for
deterministic settings and the model for stochastic settings is
provided in Section VB.

A. INDICES
i set of configurations i ∈ (1, 2, ..I )
o set of operations o ∈ (1, 2, ..O)

B. PARAMETERS

C. DECISION VARIABLES

D. DETECTABILITY
The relationship of functionality during the detectability
phase is provided in Eq. (1). It is the ratio of the time spent by
configuration i in the detectability phase and the sum of the
processing time of all operations assigned to configuration i.
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FIGURE 4. Summary of problem statement.

The value of Fdet can be maximized by assigning operations
to configurations with a higher profile of the time spent in
detectability before the deterioration starts occurring.

Fdet =
∑
o∈O

∑
i∈I

xio ×
Tdet.i
to

(1)

E. PREDICTABILITY
Predictability is modeled in the absence as well as in the
presence of distinguishability. In the former, the system is not
restored to the optimal working conditions, i.e., the problem-
atic LRU’s are not replaced. The LRUs can be tools, basic,
and/or auxiliary modules in the case of RMS. The functional-
ity during predictability (in the absence of distinguishability)
is described in Eq. (2). It is the product of the probability of
functionality/performance decay and the ratio of the total run
time minus the effective time of production in the detectabil-
ity phase and the processing time of all operations.

Fpred =
∑
o∈O

∑
i∈I

xio × ρdi ×
(
TRTi − Tdet.i

to

)
(2)

The functionality during predictability (in the presence of
distinguishability) is mapped through Eq. (3). Here, the effec-
tive time of a configuration in the running state is prolonged
by the time a system works in the distinguishability phase.
Nonetheless, there is still some loss of functionality defined
by (TRT i−Tdet.i−Tdist.i) as anymanufacturing system cannot
indefinitely work in an ideal working state.

FPreddist =
∑
o∈O

∑
i∈I

xio × ρdi ×
(
TRTi − Tdet.i − Tdist.i

to

)
(3)

F. DIAGNOSABILITY OF PRODUCTS
The loss of functionality of RMS will impact the quality of
products. A perfect quality RMS will only produce optimal
quality products and this quality will start deteriorating as the
manufacturing system starts losing its functionality.

Eq. (4) computes the optimal quality products in the
absence of distinguishability. Eq. (5) calculates the failed
product units which are equal to the difference in quantity
entering the RMS and the optimal quality production. Eq. (6)
calculates the inventory needed to replace the failed products.

OPdet = Fdet =
∑
o∈O

∑
i∈I

xio ×
Tdet.i
to

(4)

FPdet = ℵ− OPdet (5)

Idet = FPdet (6)

The optimal quality production (in the presence of distin-
guishability) is provided by Eq. (7). Due to distinguishabil-
ity, the effective life of configuration is extended, and more
optimal quality products can be produced in this case.

OPdet+dist = Fdet + Fdist =
∑
o∈O

∑
i∈I

xio ×
Tdet.i
to

+

∑
o∈O

∑
i∈I

xio ×
Tdist.i
to

(7)

The failed quantity of products, in the case of distinguishabil-
ity, is provided in Eq. (8). Eq. (9) presents the inventory used
in the presence of distinguishability. LRUs are replaced in the
distinguishability phase to restore themanufacturing system’s
performance. These LRUs are also part of the inventoried
items. Eq. (10) provides the number of LRUs needed in the
distinguishability phase. Each LRU can process ∂ number of
operations and thus the ratio in Eq. (10) provides the number
of LRUs to complete all operations.

FPdet+dist = ℵ− OPdet+dist (8)

Idet+dist = FPdet+dist + LRUdist (9)

LRUdist =
∑
o∈O

OLRU
∂

(10)

The mathematical model presents two important research
questions, i.e., Should the RMS be restored by using invento-
ried LRUs so that the optimal quality products and customer
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satisfaction level can be enhanced? and will the reconfig-
urable system bemore cost-effective if its life is not prolonged
through distinguishability by adding/replacing the LRUs?
The cost-effectiveness of RMS can be evaluated by using the
simple functions given in Eq. (11) and Eq. (12) in the absence
and presence of distinguishability, respectively.

Cp × FPdet + CI × Idet (11)

Cp × FPdet+dist + CI × Idet+dist (12)

V. SOLUTION APPROACHES
Reconfigurable manufacturing system problems are non-
polynomial hard [31]. Exact solution approaches may not
provide accurate results, especially with large problem sizes.
Meta-heuristic approaches have predominately been used to
address the RMS problems (e.g., refer to [21], [57], [58]).
There has been a trend of using problem-specific heuristics in
the RMS literature (e.g., refer to [32], [35], [36]). In this study,
two problem-specific heuristics are used for the determinis-
tic problem. In addition, a Simulation-Based Optimization
(SBO) approach is adopted to solve the stochastic problem
setting. These approaches are discussed below:

A. HEURISTICS FOR DETERMINISTIC PROBLEM
Two problem-specific heuristics are designed for determinis-
tic problem settings. The first heuristic is used to examine
the functionality of RMS in the absence of distinguisha-
bility. The second heuristic examines the functionality of
RMS in the presence of distinguishability. In the first heuris-
tic (called HAD hereafter, a heuristic that works in the
absence of diagnosability), the input information regarding
operations processing time, and profiles of configurations
(i.e., detectability, predictability, and diagnosability of prod-
ucts) is fed to the heuristic. A time counter is generated
that tracks the working time of each machine configuration.
The framework and pseudocode of the HAD are provided in
Figure 5 and Algorithm 1, respectively. The detailed steps in
executing the HAD heuristic are provided below:

Step 1: Execute the heuristic for g number of itera-
tions. Input the problem data comprising the order of oper-
ations, processing times, and the diagnosability profiles of
configurations.

Step 2: Initiate a time counter T that tracks the working
time of each configuration.

Step 3: Select a configuration at random and check its
feasibility to process operation o.

Step 4: Continue processing the set of operation o, until
the counter time Ti equals Tdeti. At this point, compute the
functionality during detectability (Fdet).

Step 5: Archive the completed operations OD. These are
the optimal quality units of operations as they are processed
during the detectability phase of configuration i. Eq. (5)
calculates the failed units of operations in the absence of the
distinguishability phase.

FIGURE 5. Flow-diagram for HAD heuristic.

Step 6: For all remaining operations (i.e., ℵ-OD), assign
configurations to operations starting from OD+1 upon ful-
filling the feasibility constraint.

Step 7: Process the operations on the selected configura-
tion up until time counter Ti equals the total processing time
of a configuration (TRTi).
Step 8: As the processing time of a configuration saturates,

increment the configuration to i + 1 until all operations are
completed.

Step 9: Compute the functionality during the predictability
phase (Fpred). Stop the heuristic after exhausting the genera-
tions g.

The second heuristic (called HPD henceforth, a heuristic
that works in the presence of diagnosability) uses the LRUs
to restore the RMS to working conditions. It is used to
assess the diagnosability in the presence of distinguishabil-
ity. The framework and algorithm of HPD are provided in
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Algorithm 1 Algorithm 1 for Had
1: For g=1 to gmax do
2: Input information of configuration profiles
3: Input information of operations
4: For o∈OD
5: i = 1
6: Initiate counter Ti =0
7: While Ti ≤ Tdetido ##( T́i)
8: Compute Fdet
9: o=o+1
10: End While
11: i = i+1
12: End For
13: Archive OD
14: For OD+1→O
15: i = 1
16: While T́i ≤ TRTido
17: Compute Fpred
18: OD+2 = OD+1+1
19: End While
20: i = i+1
21: End For

Algorithm 2 Algorithm 2 for HPD
1: For g=1 to gmax do
2: Input information of configuration profiles
3: Input information of operations
4: For o∈OD
5: i = 1
6: Initiate counter Ti =0
7: While Ti ≤ Tdetido ##(T́i)
8: Compute Fdet
9: o=o+1
10: End While
11: i = i+1
12: End For
13: Archive OD
14: For OD+1 → O′

15: i = 1
16: While T́i ≤ TRTi- Tddi- Tdistido ##(T

′′

i )
17: Compute Fpred
18: OD+2 = OD+1+1
19: End While
20: i = i+1
21: End For
22: Archive OPD = O′

23: For OPD+1 →O (OLRU)
24: i = 1
25: While T

′′

i ≤ TRTido
26: Compute Fdet
27: OPD+2 = OPD+1+1
28: End While
29: i = i+1
30: End For
31: Archive OLRU

Figure 6 and Algorithm 2, respectively. Herein, an additional
loop is created to restore the machine configurations to the

FIGURE 6. Flow-diagram for HPD heuristic.

optimal functionality level (i.e., to the level of predictability).
Steps 1 to 5 are common in Figures 5 and 6. The remaining
steps in implementing the HPD heuristic are provided below:

Step 6: For operations starting from OD+1, assign con-
figurations to each operation upon fulfilling the feasibility
constraint.

Step 7: Process the operations on the selected configu-
ration up until the time counter Ti equals the time when
distinguishability restores the system.

Step 8: Calculate the value of functionality during pre-
dictability and archive all operations completed in this phase.
These operations will comprise the failed units of operations.

Step 9: For remaining operations (i.e., ℵ-OPD+1), assign a
configuration to each operation upon fulfilling the feasibility
constraint.

Step 10: Increment the configuration number up until all
operations are processed, as the total processing time of the
selected configuration saturates.

Step 11: Compute the functionality during this last phase.
In the distinguishability phases, the system works as well as
it was working in the diagnosability phase (Figure 2(b)).
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Step 12: Archive the completed operations processed dur-
ing the distinguishability phase. The total number of optimal
quality operations units is equated by summingOD andOLRU.
Step 13: Stop the heuristic after exhausting the

generations g.

B. SIMULATION-BASED OPTIMIZATION (SBO) FOR
STOCHASTIC SETTINGS
The deterministic model considered the decline in production
functionality subject to the static failure of a manufacturing
system. The real-life processes involving failure and deterio-
ration are stochastic in nature. A stochastic process is a time-
bound function where the random rate of deterioration per
unit of time is considered. For this study, the deterioration
rate is assumed to be random in time and it follows the gamma
process. The advantage of using the gamma processes is that
its mathematical formulation is easy [8]. The notations and
mathematical formulations of gamma processes in different
phases of reconfigurable machines are provided below:

NOTATIONS
u, v parameters of beta distribution
∝ shape parameter of gamma process
γ scale parameter of gamma process
X (t) stochastic gamma process to

demonstrate the funcitonality
degradation of RMS with time t

b ratio of geomatric process

X (TRTi − Tdeti) functionality degradation level
in the absence of distinguishability

X (Tdisti − Tpredi) funcitonality change in the presence
of distinguishability phase

∝ (TRTi − Tdeti) shape parameter in the absence
of distinguishability

∝ (Tdisti − Tpredi) shape parameter in the presence
of distinguishabilityphase

Y (.) gamma function
LAD failure threshold in the absence

of distinghuishability
LD failure threshold in the presence

of distinghuishability

Each machine configuration i is subject to functionality
degradation which follows the gamma distribution function.
The gamma distribution functions for the manufacturing sys-
tem in the absence and presence of distinguishability phases
are provided in eq. (13) and (14), respectively.

f∝(TRT i−Tdeti), γ
(x)

=
γ∝(TRT i−Tdeti).x∝(TRT i−Tdeti)−1

Y [∝ (TRT i − Tdeti)]
e−γ x , x ≥ 0 (13)

f∝(Tdisti−Tpredi), γ
(x)

=
γ∝(Tdisti−Tpredi).x∝(Tdisti−Tpredi)−1

Y [∝
(
Tdisti − Tpredi

)
]

e−γ x , x ≥ 0 (14)

Y (b) =
∫
∞

0
ub−1.e−udu, b > 0 (15)

The time to failure is anticipated once the failure threshold is
crossed. The failure threshold is denoted by L and the failure
time in the absence of distinguishability (once LAD is crossed)
and in the presence of distinguishability (once LDis crossed)
phase are provided in eq. (16) and eq. (17), respectively.

TF = inf{t |X (t) ≥ LAD } (16)

TDF = inf{t |X (t) ≥ LD } (17)

The distribution function for the failure time in the absence
and presence of the distinguishability phase is provided in
eq. (18) and eq. (19), respectively.

FTF (t) = P (TF < Tdet) = P (X (t) > LAD)

=
Y (∝ t,LADγ )

Y (∝ t)
, t > 0 (18)

FTDF (t) = P
(
TDF < Tdist − Tpred

)
= P (X (t) > LD) =

Y (∝ t,LDγ )
Y (∝ t)

, t > 0 (19)

The proportion of failed product units in the absence and pres-
ence of the distinguishability phase are provided in eq. (20)
and eq. (21), respectively. As per the relationships given
in eq. (18-21), the functionality of reconfigurable machines
starts producing failed units once the threshold is crossed.
Accordingly, in the absence of the distinguishability phase,
this threshold is crossed once the detectability phase is
elapsed. On the other hand, in the presence of the distin-
guishability phase, this threshold lasts between the start of
the predictability phase and the time when RMS functionality
is restored by replacing the LRUs. The number of LRUs
used to complete the level of demand in the presence of the
distinguishability phase is provided in eq. (22).

pX (t) =
∑
i∈I

∑
o∈O

X
(TRT i − Tdeti)

to
ℵ (20)

pX (t) =
∑
i∈I

∑
o∈O

X
(Tdisti − Tpredi)

to
ℵ (21)

LRUdist =
pX (t)
∂

(22)

The framework of the simulation-based optimization
approach for detectability and predictability phases is pro-
vided in Figure 7. The main difference between the SBO
and deterministic approaches is that the former considers a
stochastic decay/deterioration in functionality profiles, a phe-
nomenon very well-aligned with modern-day practices.

The performance of different heuristics was assessed by
using the metrics of Hyper Volume (HV), Number of Pareto-
optimal Solutions (NPS), and Inverse Generational Distance
(IGD). TheHV andNPS are described belowwhile themetric
of IGD is discussed later.

HYPER VOLUME (HV)
It calculates the volume of objective space; a higher volume

refers to the closeness as well as the spread of solutions [60].
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FIGURE 7. Simulation-based optimization framework for detectability and predictability
phases.

A higher value of HV refers to a good quality solution. Its
representation is provided in eq. (23).

HV =
⋃N

i=1
a(xi)∀xi ∈ P (23)

a(x i) = the rectangular area covered by a reference point
P= Pareto set

NUMBER OF PARETO-OPTIMAL SOLUTIONS
(NPS)

The NPS metric represents the number of Pareto-optimal
solutions offered by a heuristic. In general, a high-performing
heuristic will have a higher score of NPS.

VI. RESULTS
A. PERFORMANCE ASSESSMENT
Initially, the performance of HAD was compared with the
exact ε- constraint approach. The ε- constraint method has
frequently been adapted to manufacturing system problems.

The ε- constraint approach was applied in CPLEX while the
heuristics were coded in MATLAB 2016a. The computation
time and optimality gap between ε- constraint and the HAD
heuristic is provided in Table 2 for 10 problem sizes. The
problem size is defined by the number of operations of a
product and the number of RMS configurations. The opti-
mality gap is provided as a percentage and ↑ means that
the ε- constraint method is more effective whereas ↓ means
that the HAD has improved performance. The ε- constraint
returns the results in less computation time for the first
three problems. However, as the problem size increases, the
HAD heuristic proves to be more effective. The ε- constraint
approach takes indefinitely large computation time for prob-
lem 7 and onwards, hence it is not a suggested approach for
the problem set 7-10. For such problems, the optimality gap is
at least 100%, meaning that the HAD heuristic is more robust
and suitable.
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FIGURE 8. Convergence efficiency of different approaches.

TABLE 2. Comparison of solution efficiency between exact approach and
HAD for small problem instances.

The convergence of HAD and HPD heuristics and the sim-
ulation framework to the optimal value of cost are provided
in Figure 8. It can be observed that the HAD heuristic takes
minimum iterations (47) in converging to the optimal value of
the objective function. Thus, out of the proposed approaches,
the HAD heuristic is more efficient in fast convergence of the
solution.

The performance of the HAD heuristic was com-
pared to other published algorithms/heuristics in the estab-
lished literature. In this regard, the hybrid framework
of non-sorting genetic algorithm (NSGA-II) and multi-
objective particle swarm optimization (MOPSO) (called
hybrid NSGA-II-MOPSO) was selected from [5]. In addition,
NSGA-II [57] andMOPSO [59] heuristics were also selected.
The results of the convergence efficiency of the HAD heuris-
tic, hybrid NSGA-II-MOPSO, NSGA-II, and MOPSO are
provided in Figure 9. The HAD heuristic outperforms other
heuristics and it converges much faster to the optimal solu-
tion. This is primarily because of its simple structure and
problem adaptiveness which results in quick attainment of
feasible as well as optimal solutions.

FIGURE 9. Convergence of evolutionary approaches to optimal value of
cost.

FIGURE 10. HV values for small problem sizes.

The HV values of HAD, hybrid heuristic, MOPSO, and
NSGA-II for small as well as large problem sizes are provided
in Figure 10 and Figure 11, respectively. The small problem
sizes ranged between 4-11 operations and 6-8 configurations.
On the other hand, the large problem sizes ranged between
12-28 operations and 10-14 configurations. It can be observed
from both figures that theHADheuristic had better HVvalues
for all problem instances. The hybrid heuristic HV values
were better than the corresponding HV values ofMOPSO and
NSGA-II.

The performance of the second metric (NPS) can be
assessed from the non-dominated solutions of all heuristics
for small and large problem sizes in Figure 12 and Figure 13,
respectively. The objective functions of functionality (F) and
the total cost (TC) were used as conflicting objectives. The
functionality function was based on the summation of func-
tionalities in all manufacturing phases (i.e., detectability, pre-
dictability, etc.). The objective function of the total cost was
based on the summation of inventory cost and penalty cost.
A solution with the maximum value of functionality (F) and
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FIGURE 11. HV values for large problem sizes.

FIGURE 12. Non-dominated solutions concerning functionality and cost
for different heuristics (small size problems).

FIGURE 13. Non-dominated solutions concerning functionality and cost
for different heuristics (large size problems).

minimum cost (TC) is preferred and is a potential candidate
for the optimal solution. In other words, any solution in
Figure 12 and Figure 13 that lies at the right bottom will be

FIGURE 14. The boxplot of IGD values using different heuristics.

preferred. According to this criterion, the HAD heuristic has
more non-dominated solutions and it shows more compact-
ness for small as well as large problem sizes. As a result, it has
a higher NPS score compared to all other approaches. The
hybrid heuristic also performs well, and it has a better NPS
score compared to MOPSO and NSGA-II. To summarize,
the HAD heuristic has a good performance w.r.t the HV and
NPS criteria. However, it is custom designed (specific to the
problem) which can impact its generalizability towards other
problems in a reconfigurable manufacturing system.

The performance of all approaches was further assessed
by using the criteria of the Inverse Generational Distance
(IGD). The boxplot of IGD values of several approaches is
provided in Figure 14. A smaller value of IGD is preferred and
it can be observed that the HAD heuristic outperforms other
approaches and it had the lowest IGD average values. This
indicates that the solutions provided by the HAD heuristic
have improved quality and can be trusted to be accurate.

B. CASE STUDY
The deterministic problem setting is discussed at first for
a specific case study and then the results of the stochastic
problem setting are discussed. The heuristics for the deter-
ministic problem and SBO were implemented in MATLAB
2016a by using a system comprising the specification Core
i5, 2.8 GHz processor, and 16 GB RAM. A product from
our previous study [5] (as shown in Figure 15) comprising
17 operations is to be processed by using any combination
of five reconfigurable machines. The time to process an
operation varies between 6-19 minutes. In addition, the total
working time of each configuration (TRTi) is 480 minutes.
The functionality profiles of all machine configurations in
the absence and presence of distinguishability are provided
in Figure 16 and Figure 17, respectively.

It can be observed in Figure 16 that configuration 1 (i = 1)
works perfectly in the detectability phase up until time =
92 minutes. Henceforth, its performance starts deteriorating
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FIGURE 15. Features and operations of a mechanical product (based on
our previous study [5]).

FIGURE 16. Configurations working profiles in the absence of
distinguishability.

FIGURE 17. Configurations working profiles in the presence of
distinguishability.

and a complete system failure is anticipated at time =
315 minutes. The remaining configuration profiles can be
similarly interpreted. In the presence of distinguishability
(Figure 17), i = 1 is restored at time= 287minutes by replac-
ing the LRUs so that the complete failure can be avoided.
This set of figures provides the input data for the deterministic
problem setting.

The results of HAD and HPD heuristics, in the absence and
presence of distinguishability, are provided in Figure 18 and

Figure 19, respectively. The horizontal axis refers to the oper-
ation time of different configurations whereas the vertical
axis shows the functionality. Four alternative solutions are
provided in Figure 18 wherein each solution, several machine
configurations are selected to perform the operations.

For example, in solution #1, configuration five (C5) is
selected twice, in the beginning as well as at the end, to pro-
cess the operations sets {O1, O3, O5, O6} and {O12, O15,
O17}. The colored bars in each solution show the time when
configurations work in the predictability phase, thus pro-
ducing failed products. The summation of colored bars (i.e.,
cumulative inventory to be used) is provided at the top of each
solution. Among the presented solutions (#1 to #4), the #3
solution is a better candidate as it results in the minimum
inventory used during production. The potential reason is
that it makes use of such configurations which have better
functionality profiles. Next to it, the #4 solution has a slight
increase in the level of inventory needed. However, it can
be preferred as it uses only three machine configurations
(C2, C5, and C3) compared to the #3 solution which uses four
configurations (C1, C4, C3, and C5). The existing literature on
RMS emphasizes minimizing the reconfiguration effort (RE)
during production [14], [57], [61]. The value of RE can
be minimized by selecting such a solution that contains a
smaller number of configurations (or less transition between
configurations). A manager may select the #4 solution over
the #3 for its less reconfiguration effort at the expense of a
slight increase in failed products.

The results of the HPD heuristic (for the same case study)
are provided in Figure 19. A smaller quantity of inventory
items is used in each solution. This is due to the distinguisha-
bility phase which uses LRUs as replacement units to restore
the functionality of reconfigurable machines. Hence, fewer
failed units are produced, and consequently small portion of
inventory is needed. Among the given solutions, #4 is the
best solution as not only does it use the minimum quantity
of inventory items but also, #4 completes the total production
in the least time. The presence of the distinguishability phase
though helps inminimizing the use of inventoried items; how-
ever, it is pertinent to examine the cost analysis, especially
when the LRUs are added to the manufacturing system.

The cost analysis of different solutions provided by HAD
and HPD heuristics is provided in Figure 20. The first four
solutions to the left are provided by HAD whereas the last
four solutions are provided by HPD. It can be observed that
in the absence of distinguishability, the penalty cost of failed
units (CP) and inventory cost (CI) have roughly the same
values. This is because an inventory equal to failed units is
used to fulfil the customer demand (eq. 6). The penalty cost
of failed units is reduced in the distinguishability phase due
to the use of LRUs. However, it can be observed that the
inventory costs have drastically increased.

Thus, the combined cost of penalty and inventory is much
higher in the presence of distinguishability as compared to the
cost values in the absence of distinguishability. The invest-
ment and running costs of a reconfigurable manufacturing
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FIGURE 18. Different alternative solutions in the absence of distinguishability by using HAD heuristic.

FIGURE 19. Different alternative solutions in the presence of distinguishability by using HPD heuristic.

system are much higher as compared to the cost of a dedi-
cated manufacturing line or a flexible manufacturing system

[18], [62]. To restore the reconfigurable manufacturing sys-
tem performance, line replacement units (i.e., fixtures, tools,
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FIGURE 20. Cost analysis of different solutions.

TABLE 3. Simulation results for different combinations in the absence of
distinguishability.

modules, etc.) are added which may add to the total cost
value.

The simulation results were replicated for different com-
binations of input values of shape and scale parameters and
failure threshold. Two values of shape parameters i.e., α =
1.3 and 1.5, two values of scale parameters γ = 10 and 12,
and two failure thresholds L = 60% and 75% were used in
the replications. The value of L= 60% means that the failure
occurs once 60% of the configuration run-time is elapsed.
The results of different combinations of input values in the
absence and presence of distinguishability are provided in
Table 3 and Table 4, respectively. The last four columns in
each table comprise the proportion of failed units (pX(t),
in percentage), penalty cost of failed products (CP), cost of
using inventory (CI), and the total cost value (i.e., CP+CI).

Figure 21 shows the cost values in the presence and
absence of distinguishability. The following points can be
extracted from Table 3, Table 4, and Figure 21.

• There are fewer failed units, less penalty, and inventory
cost values for a higher threshold limit (LAD=75%).
From Table 3, it can be observed that LAD=75%
on average results in 3.248% fewer failed product

TABLE 4. Simulation results for different combinations in the presence of
distinguishability.

units and 436.25 USD less penalty cost value as com-
pared to LAD=60%. Though the results are interesting,
it requires more effort and investment to enhance the
failure threshold limit of a reconfigurable manufacturing
system.

• The higher values of shape and scale parameters in the
gamma process result in more deterioration and hence a
higher proportion of defective product units and higher
penalty cost values.

• On average, the penalty cost of failed units is 60% less
in the presence of distinguishability as compared to the
model in the absence of distinguishability.

In addition, the average inventory cost in the presence of
distinguishability is almost 47%more compared to the model
in the absence of distinguishability. As a result, the average
total cost of the model in the presence of distinguishability is
13%more than the model in the absence of distinguishability.
These findings are consistent with the deterministic model
findings. Thus, both models reinforce each other, and the
findings are equally applicable to deterministic and stochastic
problem settings.

VII. MANAGERIAL IMPLICATIONS
The following constitute the list of implications for managers
working in a changeable/reconfigurable manufacturing envi-
ronment:

• The functionality and performance of a reconfigurable
manufacturing system change in each stage. Thus, it is
important to examine the functionality of a reconfig-
urable manufacturing system before putting it into use.

• In the absence of distinguishability, higher inventory
levels are needed which may require storage capacity
and can potentially increase the storage/inventory costs.
However, the use of LRUs though may reduce the level
of inventory, the findings show that the overall costs will
increase.

• Managers are interested in reducing the effort while
changing from one configuration to another. The
diagnosability-driven findings of this study imply that
a solution selected based on minimum cost and/or
inventory levels may not warrant minimum effort in
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FIGURE 21. Cost analysis of different simulation model solutions.

reconfiguration. The results are self-sufficient to help
managers in selecting a solution based on cost, inven-
tory, functionality, or minimum requirement of recon-
figuration.

• #4 solution in the presence of distinguishability com-
pletes the production in minimum time (1860 minutes).
Managers are more often triggered by the time taken
while replace defective/problematic parts. There is a
possible arrangement of reconfigurable machines which
will complete the production in minimum time while
replacing the LRUs during production.

• The model is equally applicable to deterministic and/or
stochastic settings. Modern-day practices are volatile,
and uncertain and can be effectively examined by using
randomness in the processes. The results suggest that
both deterministic and stochastic setting findings rein-
force each other.

The considered problem addressed the diagnostics of
a reconfigurable manufacturing system. This problem
remained unexplored in the concerned literature. The pre-
sented problem has multiple applications in the real-life
situations, ranging from reconfigurable supply chains [63],
single-unit process plans [64], multi-unit process plans [65],
reconfiguration in emergency response systems [66], inte-
grated production scheduling and process control [67], and
performance evaluation of reconfigurable integrated man-
ufacturing system (RIMS) [3]. Table 5 summarizes the
applications of the on-hand problem. The considered prob-
lem can be analyzed in the reconfiguration of healthcare
emergency response systems where ad-hoc production of
emergency units is required, especially in the times of
COVID-19. A well-diagnosed production system can ensure
that the delivered healthcare units are of adequate qual-
ity. Another noteworthy application of this problem is in
integrated production scheduling and process control. More
often, managers are interested in joint scheduling and process

planning. In such events, process control and diagnostics
can enhance production efficiency and can schedule units on
well-diagnosed machines which results in minimum loss and
less use of inventory.

The proposed models and solution approaches have
manifold benefits. Firstly, they will enable the managers to
simultaneously analyze the cost and functionality of manu-
facturing. Secondly, they will help a manager in accessing
the level of required inventory in different phases of pro-
duction. Managers are normally concerned about the cost of
maintenance and downtime during maintenance. Our models
show that the maintenance and replacement of LRUs do not
compromise the production completion time.

To the best of our knowledge, complex decision-making
problems involving cost, functionality, inventory, and dete-
rioration have not been studied in the published literature.
Managers working in a changeable/reconfigurable working
environment can adapt the proposed approaches to their spe-
cific needs. The model is simple and primarily based on the
input information of operations, configurations, and function-
alities. Thus, it can be easily applied to practical problems.
Moreover, the heuristic approaches are also simple and can
easily be implemented. The results suggest that the HAD
heuristic is more effective in offering good solutions in less
time. However, the heuristics are custom designed for the on-
hand problem. Advanced skills in evolutionary approaches
maybe needed to modify these heuristics. The mathematical
model is designed to produce a single product type. RMS
is an expensive manufacturing system, and it is more often
designed to produce a variety of products. This also delimits
the application of the proposed models and approaches to
the RMS part-family design problems. Lastly, the proposed
model uses inventory based on a Just-In-Time (JIT) approach.
Any disruption in the supply chain and inventory policy was
not considered. These results can be replicated for the case of
a disruptive supply chain.
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TABLE 5. Application of the considered problem.

VIII. CONCLUSION
This study examined the diagnosability RMS characteris-
tic both from a system as well as a product perspective.
Mathematical models, heuristic approaches, and simula-
tion frameworks were proposed to study the deterministic,
as well as stochastic behavior of reconfigurable manufac-
turing system performance. The solution efficiency of the
proposed heuristic approaches was compared with the pub-
lished approaches in the literature. The results suggest that
the proposed approaches work effectively in resolving the
problem. The results of deterministic and simulation models
reinforced each other, meaning that the findings are equally
applicable to a manufacturing system working under stable
and/or dynamic/stochastic working conditions. The simu-
lation results are quite sensitive to changes in shape/scale
parameters, and hence any change in the input values of these
parameters can impact the significance of obtained results.

Each manufacturing phase of the RMS offers distinc-
tive opportunities as well as threats. The penalty cost of
failed products and the use of inventory is much less in
the distinguishability phase. A manufacturing system with a
higher threshold of failure worksmore effectively. In practice,
enhancing the threshold limit of the production system needs
more effort and investment. A trade-off between the use of
the Line Replacement Units (LRUS) and inventory needs was
also highlighted. On average, the use of LRUs can potentially
increase the total cost of manufacturing. However, it warrants
optimal quality products in less time. The proposed results
can help practitioners in assessing the performance of a
reconfigurable/changeable manufacturing system in different
phases of production. In addition, these results can address
the concerns of practitioners to examine the trade-off between
inventory, the functionality of manufacturing system perfor-
mance, and costs.

Future research may extend this discussion by simul-
taneously modeling other RMS characteristics with diag-
nosability, such as modularity, scalability, etc. This will
help in attaining a multi-dimensional view of the perfor-
mance of a reconfigurable manufacturing system. These

results can be replicated/validated by using evolutionary solu-
tion approaches such as the advanced versions of genetic
algorithms (NSGA-III/NSGA-IV) and other popular meta-
heuristics. The proposed RMS framework can be extended
toward the production of a variety of products. The findings of
other deterioration processes such as the Markov process and
the Wiener process can be compared with the current results.
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