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ABSTRACT Anomaly detection (AD) is a crucial task in various industrial sectors where large amounts of
data are generated from multiple sensors. Deep learning-based methods have made significant progress in
AD, owing to big data and deep neural networks (DNN). Most methods for deep anomaly detection (DAD)
utilize reconstruction error (i.e., the difference between the original and reconstructed values) as a measure
of abnormality. However, AD performance can be improved by diversifying the source of anomaly score.
To support this, we introduce the concept of anomaly source diversification and provide mathematical proofs
to support this idea. In this regard, we propose a quantile autoencoder (QAE) with abnormality accumula-
tion (AA) as a novel DAD approach that leverages data uncertainty and iteratively obtains reconstruction
errors as additional sources. The anomaly score with QAE is derived from both the reconstruction error and
the uncertainty term which is the range between the two quantiles. In addition, AA aggregates the errors
obtained from the recursive reconstruction of the input, after which calculates the anomaly score based on
the Mahalanobis distance. This process induces the score distributions of both the normal and abnormal
samples farther apart by narrowing the width of the distributions, which contributes to the improvement
of AD performance. The performance of the proposed QAE-AA was verified through the experiments on
multi-variate sensor datasets in various domains; QAE-AA achieves 4-23% higher AUROC score on average
compared to the other AD methodologies.

INDEX TERMS Deep learning, anomaly detection, autoencoder, quantile regression, anomaly score.

I. INTRODUCTION
Anomaly detection (AD), which is also known as novelty
detection or outlier detection, is a task that involves identify-
ing abnormal cases in a pool of collected data or a data stream.
Since the 1960s, it has been widely studied [1] and utilized
in broad range of applications, such as, fraud detection
[2]–[4], network security [5]–[7], video surveillance
[8]–[10], medical diagnosis [11]–[13] and multiple sensor
data [14]–[18]. In particular, as IoT and big data technologies
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have become common, acquiring meaningful features for
performing AD from massive sensor data becomes more
challenging. Under these circumstances, recent advance-
ments in neural networks and deep learning have significantly
influenced the field of AD. Deep anomaly detection (DAD)
methods have demonstrated improved performance in many
complicated AD tasks [19].

DAD framework can be classified into supervised, unsu-
pervised, and semi-supervised AD based on the problem and
data formulation. Supervised AD can be achieved when both
normal and abnormal samples are sufficient and labeled [20].
However, in general, abnormal samples are neither sufficient
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nor labeled in many real-world applications [19]. This is the
reason why semi-supervised and unsupervised AD methods
have been applied widely in DAD. Unlike supervised AD,
which directly determines whether the input is normal or
not, both the semi-supervised and unsupervised AD methods
learn the features of normality, after which they calculate the
anomaly score to measure a degree of abnormality.

A recent review of [21] further categorized DAD according
to the role of deep neural network (DNN) in AD process. Two
major branches among them are generic normality feature
learning and anomaly measure-dependent feature learning.
The former is based on general feature extraction methods
including autoencoders and generative adversarial networks
(GAN). In doing this, networks learn generic representations
to well reconstruct/generate/predict normal data. Typically,
these methods utilize reconstruction error as an anomaly
score. Feature extraction of the latter approach is more depen-
dent on the anomaly scoring function. By designing a loss
function for specific anomaly measures, deep learning model
could learn score-dependent latent features, e.g., nearest
neighbor distance, one-class classification (DSVDD [22]),
and clustering-based scores (DAGMM [23]).

We focus on the former approach, in particular,
autoencoder-based methods with semi-supervised AD set-
tings which are easy to implement and have straightforward
intuitions in detecting anomalies [21]. Deep autoencoders
perform dimensionality reduction, such as principal com-
ponent analysis [24]–[26] and random projection [27]–[29].
By training an autoencoder with normal samples, the network
shows lower reconstruction error on normal data, but poor on
abnormal data that are not exposed during the training. This
difference allows us to separate two classes by reconstruction
error. However, AD performance can be further improved
because the objective function of minimizing reconstruc-
tion error is not identical to maximizing anomaly detection
performance. In this regard, one approach to improve DAD
performance is leveraging additional sources for anomaly
scoring (i.e., anomaly source diversification), and here we
exploit aleatoric uncertainty and recursive reconstruction
errors.

There are two types of uncertainty in deep learning
depending on its causes: epistemic uncertainty and aleatoric
uncertainty [30]. Epistemic uncertainty, also called model
uncertainty, originates from the difference between training
results (difference between the models). Epistemic uncer-
tainty can be reduced by acquiring more data. On the other
hand, aleatoric uncertainty, which is also called data uncer-
tainty, is attributed to the data itself. Therefore, it is inherent
and irreducible. Recently, epistemic uncertainty has been
considered in DAD, because the reconstruction for the abnor-
mal sample has a significant variance depending on the
model [31]–[35]. On the other hand, aleatoric uncertainty has
received less attention in the field of DAD and is used as a
threshold for the classification of normal and abnormal [36].

In this study, we propose a novel DAD framework that
considers aleatoric uncertainty by introducing a quantile

autoencoder (QAE). We leverage aleatoric uncertainty under
the assumption of channel-wise consistency in normal con-
ditions; that is, the inherent deviation of normal data would
be less than abnormal data. Aleatoric uncertainty in terms
of the range between two quantiles is used in the proposed
framework with reconstruction errors. In addition, we pro-
pose the abnormality accumulation (AA) technique, which
aggregates and calculates the anomaly score based on the
errors of recursive reconstructions. This makes the difference
between normal and abnormal distributions more evident.
We verified the proposed framework with multi-variate sen-
sor datasets in different domains. Each of the two methods
contributes to anomaly source diversification. We further
provide theoretical grounds that support the idea of anomaly
source diversification under the assumption of Gaussian error
distribution.

The main contributions of this study are as follows:
• We propose QAE for uncertainty-based DAD. Aleatoric
uncertainty term, which is the range between the two
quantiles, is additionally considered in anomaly scoring.
To the best of our knowledge, it is the first time to utilize
QAE and quantile range in AD as the source of anomaly
score.

• We propose AA, in which recursive reconstruction
error is additionally considered in anomaly scor-
ing. AA decreases the overlapping region between
anomaly score distributions on normal and abnormal
data. Therefore, the two score distributions become
more distinguishable, which facilitates the determina-
tion of the normal and anomalies. The performance
of the proposed QAE-AA is tested using various
multi-variate sensor datasets, and it demonstrates a sig-
nificant improvement in AD performance in terms of
AUROC.

• We introduce the concept of anomaly source diversi-
fication, which means it becomes easier to distinguish
normals and abnormals as we diversify and gather more
error sources in calculating anomaly scores. We provide
mathematical proofs of why anomaly source diversi-
fication is helpful in reconstruction error-based DAD
methods under the assumption of Gaussian error distri-
bution. This explains the utilization of QAE, AA, and
Mahalanobis distance in the proposed framework, and
we further show that the empirical error distributions can
be modeled by a mixture of Gaussians.

This paper consists of five sections, including the introduc-
tion. In Section II, we introduce the related DAD methods.
Section III describes the proposed framework, QAE-AA, and
concept of anomaly source diversification. The experiments’
results and conclusions are presented in Sections IV and V,
respectively.

II. RELATED WORKS
A. RECONSTRUCTION ERROR BASED METHODS
In DAD by generic normality feature learning, the difference
between an input and the reconstructed output (e.g., mean
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FIGURE 1. Structure of the QAE for AD. The QAE predicts the median value and two quantiles. The reconstruction error and the aleatoric
uncertainty are used for anomaly scoring.

TABLE 1. Summary of literature on the recent relevant anomaly detection models.

squared error) is typically used as a measure of abnormality.
In general, the autoencoder (AE) [45]–[47] and the varia-
tional autoencoder (VAE) [37], [48], [49] have been utilized
because of their superior capability to learn latent representa-
tions. Once a neural network is trained using normal samples
to minimize its reconstruction error, the normal samples are
reconstructed effectively from lower-dimensional latent fea-
tures, but the abnormal samples are not. Therefore, anomalies
produce larger reconstruction errors and can be distinguished
by properly specifying a threshold for the normal cases.
In a recent work of [39], a novel DAD methodology namely
reconstruction along projection pathways (RAPP) was intro-
duced which leverages reconstruction errors in latent spaces.
It first collects the latent features in each layer of the encoder
from the first forward path. By inputting the output into the
encoder network again, the difference in the latent features of
the second forward path is used as an anomaly score.

Another branch is based on generative adversarial net-
works (GANs) [11], [38], [43], [50], [51]. By utilizing GAN
architecture, a neural network can model the distribution of
normal samples. Anomaly scoring in GAN approaches is also
based on the reconstruction error, and discriminator loss is
additionally used with the reconstruction error [11], [43],
[50], [51]. GANomaly [38] performs anomaly scoring based
on the reconstruction error of bottleneck features. Thus, the
score is defined in the latent space. The unified framework of
GAN-based DAD is well summarized in [43], and it shows

that the ensemble of anomaly scores from GAN variants
further improves detection performance.

Previous studies show the utilization of the latent recon-
struction errors, discriminator loss, and ensemble of recon-
struction errors has improved the AD performance. This
can be explained by the concept of anomaly source diver-
sification. Similarly, uncertainty can also be an additional
source, and contribute to the improved performance of DAD
methods.

B. ANOMALY DETECTION WITH UNCERTAINTY
There are variousmethods for dealingwith uncertainty within
a deep learning framework, such as Bayesian deep learn-
ing, the Monte-Carlo (MC) dropout technique, and deep
ensembles [52]. In particular, the MC dropout technique is
adopted in uncertainty-based DAD applications [31]–[35].
MC dropout utilizes dropout in both the training and infer-
ence stages. Therefore a single neural network can gener-
ate different outputs based on the probabilistic connections
between neurons. The statistical information of the outputs
can be obtained through MC sampling, where the dropout is
activated during the inference stage. This approach mainly
aims to exploit epistemic uncertainty. The following exam-
ples use the MC dropout technique for epistemic uncertainty
quantification: [31] conducted a study on a deep learning-
based time-series prediction with a confidence interval for
the Uber dataset in which AD was performed by triggering
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an alarm when the observed value fell outside the 95% pre-
dictive interval. Uncertainty in terms of the variance of the
reconstruction errors was utilized as a weighting factor for the
anomaly score [32]. In the field of medical imaging, uncer-
tainty was adopted to diagnose diabetic retinopathy from fun-
dus images in [33]. In the study conducted by [34], pixel-wise
variations in retinal optical coherence tomography images
were derived and utilized for the segmentation of abnor-
mal areas. Similarly, the uncertainty of abnormal images in
the MVTec-AD dataset was derived, after which the area
under the receiver operating characteristic (AUROC) scores
between the residual-based and uncertainty-based detection
results was compared [35].

In this study, we consider aleatoric uncertainty via QAE
and use the uncertainty term to diversify the sources for
anomaly scoring. Our approach is different from the previous
methods in terms of the method for measuring uncertainty
(aleatoric uncertainty with multiple quantile regression) and
the way in which uncertainty is used for anomaly scoring
(Mahalanobis distance-based anomaly score).

III. PROPOSED METHODOLOGY
In this section, we describe the proposed QAEmodel and AA
technique in detail.

A. QUANTILE AUTOENCODER FOR ANOMALY DETECTION
The aleatoric uncertainty is utilized for AD with QAE. Its
basic concept is that the reconstruction of normal samples
produces stable outputs within a certain range of variations
for each input channel. In other words, normal cases recon-
structed using normal-fitted latent features are likely to have
low variability compared to the abnormal cases (due to the
loss function that induces minimizing the variance of output).
The consistency of normal samples is independently valid for
each channel. To leverage aleatoric uncertainty, we propose
a QAE which predicts multiple quantiles with a single neural
network. Then, the range between two quantiles (upper and
lower) is used as a degree of uncertainty. Then, the anomaly
score is derived by Mahalanobis distance from both the
reconstruction error and the uncertainty term, as illustrated
in Fig. 1.

1) QUANTILE AUTOENCODER
The basic AE performs a single-value reconstruction, which
is the mean of Gaussian distribution by minimizing the mean
squared error (MSE). The proposed QAE is a variation of
the AE that predicts the different quantiles of the output
distribution by minimizing the sum of pinball losses. Thus,
the QAE performs multiple quantile regressions through a
single neural network, which can be regarded as multi-task
learning.

Let X be a random variable with a cumulative distribution
function FX (x). Next, the τ -th quantile xτ is F

−1
X (τ ), where

τ ∈ (0, 1). The proposed QAE Q comprises an encoder Qenc

and a quantile decoder Qdec as follows:

Qenc(x) = z,

Qdec(z) = [x̂τl , x̂τm , x̂τu ] = x̂τ , (1)

where τl < 0.5, τu > 0.5, and τm = 0.5, that represent the
lower, upper quantiles and median.

Quantile regression can be performed by minimizing the
pinball loss [53]. For the τ -quantile, the pinball loss is defined
as follows:

Lτ (x, x̂τ ) =

{
τ (x − x̂τ ) if x ≥ x̂τ
(1− τ )(x̂τ − x) if x < x̂τ

(2)

where x represents an input and x̂τ represents a prediction
of τ -quantile. The pinball loss function is a tilted absolute
error function weighted by the target τ . Intuitively, the pinball
loss results in a higher penalty of overestimation (x̂τ ≥ x) for
low quantiles (τ < 0.5). Therefore, the network is trained
to underpredict. Similarly, the network overpredicts for high
quantiles τ > 0.5. Finally, the loss for the proposed QAE, LQ,
is a summation of the pinball losses with multiple τ s:

LQ(x, x̂τ ) = Lτl (x, x̂τl )+ Lτm (x, x̂τm )+ Lτu (x, x̂τu ) (3)

By training multiple quantiles at once, QAE could alleviate
crossing quantiles problem [54].

2) QUANTILE-BASED ANOMALY SCORING
In the proposed approach, anomaly scores are derived from
the reconstruction error and the aleatoric uncertainty term
which is the range between the predicted upper and lower
quantiles. From the output of the QAE x̂τ , the reconstruction
error εrec and the uncertainty term εunc in the form of row
vector are defined as follows:

εrec = x − x̂τm ,

εunc = x̂τu − x̂τl . (4)

Then, typical MSE-based anomaly score Ar (x) and a simple
version of the quantile-based anomaly score Aq(x) with ε =
[εrec, εunc] is expressed as follows:

Ar (x) = ||εrec||2/dεrec , (5)

Aq(x) = ||ε||2/dε (6)

where d is the dimension of corresponding vector. Because
εrec and εunc exist in different domains, the difference
between their magnitude ranges has a significant impact on
anomaly scoring. This problem can be alleviated through
normalization. Previous work of [39] reported a similar prob-
lem when utilizing reconstruction errors in both the origi-
nal space and the latent spaces. To match the range of the
error terms, a normalized distance with orthogonalization and
scaling was proposed which is identical to the Mahalanobis
distance. We also calculate the Mahalanobis distance-based
normalized anomaly score Anq(x) as follows:

Anq(x) = (ε − µ)S−1(ε − µ)T , (7)
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where µ and S represent the channel-wise mean and covari-
ance matrix obtained from ε of the training set, respectively.
This approach is also adopted in the AA technique described
below.

B. ABNORMALITY ACCUMULATION
In addition to the QAE, we propose an anomaly scoring
technique, namely abnormality accumulation (AA), to fur-
ther improve AD performance. The basic concept of AA
is calculating the anomaly score based on the aggregated
errors using a single AE. Let the superscript i represent the
number of iterations for AA. Then,Qi is a composite function
Q◦Q · · · ◦Q thatQ is repeated i times; thus,Q1(x) is equal to
Q(x). After the first iteration, x̂ iτm is used as the input for the
next iteration. Consequently, εi contains the reconstruction
error and uncertainty term obtained from the result of Qi(x).
With a predefined number of iterations N , we aggregate εis
into [εi]Ni=1 and calculate normalized anomaly score with AA
as follows:

Anqa(x) = ([εi]Ni=1 − µA)S
−1
A ([εi]Ni=1 − µA)

T , (8)

whereµA and SA represent the channel-wisemean and covari-
ance matrix obtained from [εi]Ni=1 of the training set. The
illustration and algorithm of AA are presented in Fig. 2 and
Algorithm 1.

Algorithm 1 Abnormality Accumulation
1: Input: input sample x, QAE Q, number of iteration N .
2: set initial value x̂0τm = x;
3: for i = 1, 2, 3, . . . ,N do
4: obtain [x̂ iτl , x̂

i
τm
, x̂ iτu ] = Q(x̂ i−1τm

);
5: compute εirec = x − x̂ iτm and εiunc = x̂ iτu − x̂

i
τl
;

6: concatenate εirec and ε
i
unc into ε

i
= [εirec, ε

i
unc];

7: end for
8: aggregate εis to create a concatenated vector
9: [εi]Ni=1 = [ε1, ε2, ε3, . . . , εN ];

10: compute the channel-wise mean µA and the covariance
matrix SA from [εi]Ni=1;

11: Output: anomaly score with AA,
12: Anqa(x) = ([εi]Ni=1 − µA)S

−1
A ([εi]Ni=1 − µA)

T .

C. ANOMALY SOURCE DIVERSIFICATION
As previously stated, the use of QAE and AA with
Mahalanobis distance in the proposed DAD methods can be
supported by the concept of anomaly source diversification
which is based on the following proposition.
Proposition 1: For k i.i.d. zero-mean Gaussian recon-

struction error where the variance of normal is smaller than
that of abnormal, MSE-based anomaly score distributions on
normal and abnormal samples become more distinguishable
as k increases.

Proof: Let Xn and Xa be random variables of normal
and anomaly that follow the distributions of PXn and PXa ,
respectively, where PXn 6≈ PXa . For AD, an AE Q with

its weight θ is trained to minimize MSE between input and
reconstructed output for normal data.

θ∗ = argmin
θ

EXn [||x − Qθ (x)||
2]. (9)

We further assume that the well-trained AE Qθ has a
zero-mean Gaussian distribution on its reconstruction errors,
En = Xn − Qθ (Xn) ∼ N (0, σ 2

n ) and Ea = Xa − Qθ (Xa) ∼
N (0, σ 2

a ) with inequality of σn ≤ σa from minimization of
Eq. 9. Then, the squared errors, E2

n and E
2
a , follow the gamma

distributions of 0(0.5, 2σ 2
n ) and 0(0.5, 2σ

2
a ), respectively.

If we consider multivariate case of k i.i.d . error distribu-
tions E1, · · · ,Ek in addition to the subscripts (n and a), Ē2 =
1
k

∑k
i E

2
i follows the gamma distribution 0(k/2, 2σ 2/k), and

its mean and variance can be obtained by the parameters of
the gamma distribution, i.e., σ 2, and 2σ 4/k . Then, Ē2

n and Ē
2
a

have fixed means which are σ 2
n and σ 2

a . On the other hand,
variances of the two distribution decreases as k increases
because Var(Ē2

n ) = 2σ 4
n /k and Var(Ē2

a ) = 2σ 4
a /k . This

makes the overlapping area between anomaly score distri-
butions Ē2

n and Ē2
a decreases; thus, normal and abnormal

become more distinguishable. �
Fig. 3 shows the changes in the anomaly score distribution

according to different k . As the number of k increases, the
separation between both distributions becomes evident.

The above proposition emphasizes the importance of
obtaining as many i.i.d Gaussian errors as possible in AD.
Anomaly source diversification aims to obtain different error
sources to achieve the effect of increasing k . Typically,
AD deals with multivariate data x ∈ Rd , and the proposed
AA technique further expands k = d to k = N · d using a
single neural network, whereN indicates the number of itera-
tions. Also, Mahalanobis distance corresponds to Ē2 because
orthogonalization and scaling make rotated axes to be inde-
pendent. Therefore the AD performance can be improved by
the proposed methodology.

Note that Proposition 1 assumes the ideal case of
zero-mean Gaussian error distributions on both normal and
abnormal data. Although normally distributed empirical
errors can be found in the literature [55], the assumption of
zero-mean Gaussianity on untrained abnormal data can be
questioned because empirical errors are more likely to be
skewed and biased. In this regard, we analyze the empirical
error distributions of the real-world datasets used in this study.
Fig. 4 shows histograms of reconstruction errors on abnormal
data with Gaussian mixture model fitting results. As can
be seen, the Gaussian mixture model well fits empirical
error distribution, and we further generalize Proposition 1 to
Gaussian distribution with arbitrary mean and variance as
follows.
Proposition 2: For k i.i.d. non-zero-meanGaussian recon-

struction errors, MSE-based anomaly score distributions
on normal and abnormal samples become separable as k
increases.

Proof: For random variable X ∼ N (µx , 1), Z =∑k
i=1 X

2
i follows non-central chi-squared distribution with
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FIGURE 2. Illustration of AA. Abnormality becomes accumulated by aggregating εi .

TABLE 2. Description of the benchmark datasets.

k degree of freedom and non-centrality parameter λ =∑k
i=1 µ

2
x . The mean and variance of Z is k+λ and 2(k+2λ),

respectively. If we denote reconstruction error with arbi-
trary mean and variance as Y = σyX ∼ N (µy, σ 2

y ) =
N (µxσy, σ 2

y ), then squared mean of k i.i.d Y s can be repre-
sented by Z as follows.

1
k

k∑
i=1

Y 2
i =

σ 2
y

k

k∑
i=1

X2
i =

σ 2
y

k
Z (10)

Then, the mean and variance of 1
k

∑k
i=1 Y

2
i are σ 2

y +

µ2
y and.

2σ 2y
k (σ 2

y + 2µ2
y), respectively. Likewise to the Propo-

sition 1, variance of anomaly score distribution decreases as
k increases but their mean is further apart by the bias of
reconstruction error µ2

y ; mean and variance of mean square
of k i.i.d zero-mean Gaussian N (0, σ 2) are σ 2 and 2σ 4/k . �
Thus, increasing k is still helpful for Gaussian with arbi-

trary mean and variance. In this perspective, the assumption
of zero-mean can be considered the most difficult case in AD,
because it is impossible to classify the normal and abnormal
when σa is equal to or less than σn.

IV. EXPERIMENTS
To verify the effectiveness of the proposed methodology,
we compare the AUROC score which is a well-known evalua-
tion metric for classification models. In binary classification,

the perfect classifier has AUROC of 1, and the uniformly
random classifier has AUROC of 0.5. During the experiment,
we refer to the verification framework and datasets presented
in the work of [39].

A. DATASETS AND PROBLEM SETTINGS
We compare the results of five different datasets; MI-F,
MI-V, EOPT, RARM (binary class), and SNSR (multi class).
Description of datasets is given in Table 2. For experiments,
we set two normality conditions; unimodal normality and
multimodal normality. Unimodal normality indicates a single
normal class, and multimodal normality means a normal
dataset is composed of multiple normal classes. The binary
class datasets have labeled normal class. Therefore, the exper-
iment is performed with unimodal normality. On the other
hand, a multi-class dataset has no explicit labels for normal.
Therefore, we set a target class that is considered normal in
unimodal normality and abnormal in multimodal normality
(thus remaining classes become normal, and in the following
tables, MM is used for the abbreviation of multimodal nor-
mality.) We report averaged results on a different target class.
For the training-test split, randomly selected 60% of the data
in the normal class is used for training, and each half of the
remaining data is used for the validation and normal test sets,
respectively. All input features are normalized with z-score
normalization.
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FIGURE 3. Difference between gamma distributions of normal and
abnormal data based on the increase in k : (a) k = 1 and k = 10,
(b) k = 1 and k = 100. The normal and abnormal distributions of
k = 100 are more distinguishable than those of k = 10.

B. NETWORK STRUCTURE AND EXPERIMENTAL SETUP
We build QAE with the same backbone network structure
in [39] except for the final layer and loss function to provide
the prediction of multiple quantiles x̂τ . The target quantiles
were set to τl = 0.3, τm = 0.5 and τu = 0.7. Each Qenc and
Qdec have 10 dense layers with the Leaky-ReLU activation
function. The dimensions of z = Qenc(x) listed in Table 2
are derived from the PCA results. The networks were trained
using the Adam optimizer [60] and built using Pytorch [61].

We compared the results of the proposed methodology by
following two steps for the ablation study. First, we compared
the QAE with different anomaly score settings: Ar ,Aq,Anq.
In doing so, MSE-based anomaly score from a basic AE
trained to minimize MSE was used as the benchmark result.
Second, we compared the results of Anqa according to differ-
ent numbers of iterations. Finally, we compared the AUROC
score achieved via the proposed QAE with AA to other
AD methodologies, including machine learning-based and
recent deep learning-based methodologies reported in the
works of [39], [40] (OCSVM to XAE); DN2 from [44].
In addition, we also compared the result of DSVDD [22]
and DAGMM [23] models which are non-reconstruction

TABLE 3. AUROC (%) of QAE.

TABLE 4. AUROC (%) of QAE-AA.

error-based DAD methods. The above experimental setups
are identical to those described in the work of [39], and
the two models (DSVDD, DAGMM) are implemented with
the same backbone networks as the QAE. Note that the
experimental results described below are a summary of ten
trials per model setting from different random seeds.

C. EXPERIMENTAL RESULTS
Table 3 compares the mean and standard deviation of the
AUROC results from the QAE with different scoring func-
tions. Utilizing uncertainty terms without normalization (Aq)
induced a performance decrease compared to the Ar scores.
But after the normalization, theAUROCofAnq shows the best
performance for all cases except EOPT. Compared to the Ar
of basic AE, AD performance of Anq is increased by 9% on
average. Specifically, AUROC score is increased by 23% and
17% for MI-F and RARM, respectively.

Table 4 summarizes the AUROC of Anqa (mean and stan-
dard deviation) by changing the number of iterations N from
one to six (N = 1 is equal to Anq). Although the increment
is different for each dataset, the result shows that the AD
performance can be improved by using additional reconstruc-
tion errors through iteration. Compared to the result without
AA (Anq), MI-F and SNSRMM achieved 9% and 11% higher
AUROC scores. Unlike the ideal case in Proposition 1, the
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FIGURE 4. Error distribution with Guassian mixture model fitting results: (a) MI-F, (b) SNSR.

TABLE 5. Comparison of AUROCs (%) to other benchmark results.

iteration at which the performance is maximized differs for
each data. But in most cases, significant performance changes
occurred in the initial 2 ∼ 3 iteration, and we compared the
result of Anqa with fixed iteration N = 3 in Table 5.
Finally, Table 5 shows the performance comparison

between the proposed methods and other AD methods. The
characteristics of anomalies are different for each dataset,
thus it is difficult to find a unique model that overwhelms
the others for all cases. However, the proposed QAE-AA
shows the best AUROC score in four out of six datasets;
MI-V, RARM, SNSR, SNSRMM. For these datasets, AUROC
increased 4.6% on average compared to the second-best
result. In addition, in terms of the average score for all

six datasets described at the bottom of the table, QAE-AA
shows 4-23% higher AUROC; AUROC is increased 12% in
overall.

This comparison result to various AD methodologies ver-
ifies the effectiveness of the proposed methodology, and
shows that the concept of anomaly source diversification
could be embodied by utilizing aleatoric uncertainty and
iterative reconstruction errors.

D. VISUALIZATION ON ANOMALY SCORE SOURCES
Fig. 5 shows examples of the QAE output (i.e., square of
anomaly sources εrec and εunc) on different target channels.
The first two columns show the results of a single iteration
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FIGURE 5. Examples of squared anomaly sources ε2
rec and ε2

unc on different target channel. x-axis indicates index of data and y-axis
indicates value of corresponding anomaly source: (a) MI-F, Channel 1, (b) RARM, Channel 3.

FIGURE 6. Examples of anomaly score distribution of normal and abnormal data: (a) MI-F, (b) MI-V.

of QAE, whereas the right two columns show the results
from the fourth iteration. Examples in Fig. 5 indicate that

both aleatoric uncertainty term and reconstruction error after
iterations could be good sources for anomaly scoring. As can
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be seen, abnormal samples are distributed in a higher error
range. Thus, they can be classified according to the anomaly
threshold.

E. ANALYSIS ON SCORE DISTRIBUTION
Fig. 6 shows the changes in anomaly score distributions
for MI datasets. Anomaly score distributions of normal and
abnormal samples are illustrated in blue and orange his-
tograms, respectively. Although the shapes do not perfectly
match the ideal cases presented in Fig. 3, it is observed
that the overlapping region between normal and abnormal
distributions is reduced when applying QAE and AA. There-
fore higher AUROC score can be achieved by the proposed
methodology.

V. CONCLUSION
In this research, we investigate the concept of anomaly score
diversification, and propose QAE network andAA technique.
The effectiveness of the proposed framework is verified with
experiments on real-world datasets. Anomaly source diversi-
fication is inspired by the idea that diversifying error sources
in the calculation of anomaly scores induces performance
improvement in anomaly detection. We provide a theoreti-
cal background for this by showing that the distributions of
mean square error anomaly scores on normal and abnormal
become farther apart as the number of error sources under the
assumption of Gaussian error increases.

In doing this, we propose a QAE that produces not only
median but also quantiles to leverage aleatoric uncertainty as
an additional error source for anomaly scoring. The outputs
reconstructed from the abnormal samples are likely to have
larger channel-wise uncertainty than that of normal samples
likewise to the reconstruction errors. In addition, we intro-
duce the AA technique that aggregates the errors via recur-
sive reconstructions and then calculates anomaly score by
using Mahalanobis distance. As the dimension of the errors
is increased by the recursion, the difference between the
anomaly score distributions of normal and abnormal samples
becomes more apparent. The effectiveness of the proposed
QAE-AA is verified with various datasets in the real world.
QAE-AA obtained the highest AUROC score in four out
of six datasets and achieved an average 4% to 23% higher
AUROC score. These experimental results show that the
proposed methodology can improve AD performance.

Recent works [44], [62] reported notable AD performance
in some benchmark datasets by utilizing adversarial exam-
ples and time series AD setting, which can be additionally
applied to the proposed QAE-AA framework. In this regard,
our future research is moving toward overcoming the limi-
tation and further improving AD performance. For example,
AD performance on image data can be enhanced by addition-
ally considering epistemic uncertainty or latent space errors.
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