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ABSTRACT Accurate estimation of Reference Evapotranspiration (ET0) is important for efficient man-
agement and conservation of irrigation water. Existing methods of ET0 rate determination are complex
for application at the farmer level. Apart from standard methods of ET0 determination, many data-driven
soft computing approaches were also proposed to determine the ET0 with limited data set. We proposed a
temperature and humidity-based ML approach for ET0 rate determination on directly sensed environmental
conditions of the crop field. Crop field environmental conditions for (ET0) rate determination are sensed by
the proposed Internet of Things (IoT) architecture. Crop field environmental conditions from the year 2015 to
2021 in Pakistan are used for the training and testing of the proposed model. Gaussian Naive Bayes (GNB),
Support Vector Machine (SVM), k-Nearest Neighbours (KNN), and Artificial Neural Network (ANN) based
models are compared for performance. Crop fields directly sensed temperature and humidity pass to the
model to train and predict the ET0-rate of crop fields. The 10-fold cross-validation technique is applied for
the evaluation of the proposed approach. The accuracy of the proposed solution for the ET0 rate is compared
against the Food and Agriculture Organization (FAO) recommended Penman-Monteith method for ET0 rate
determination. As concerned of the ML-based models the KNN model is more accurate as compared to
SVM,GNB and ANN models with 92% accuracy. The KNN model of ET0 is more efficient in reducing the
Root Mean Squared Errors (RMSE) by 16% and Mean Absolute Errors (MAE) by 3% against the state of
the art approach.

INDEX TERMS Internet of Things (IoT), reference evapotranspiration (ET0), support vector machine
(SVM), Gaussian Naive Bayes (GNB), K-nearest neighbour (KNN), artificial neural network (ANN),
Penman-Monteith.

I. INTRODUCTION
Agriculture is the source of major necessities of life for
human beings. 60% of irrigation waters used for irrigation
purposes is wasted due to poor agronomic activities [1].
In recent years, the agriculture sector has been suffering
from many challenges to feed the ever-increasing human
population [2]. Low productivity, urbanization, shortage of
fresh irrigation water, and land degradation are the significant
issues of agriculture across the world [3]. Agriculture is
under immense pressure to improve productivity, to feed the
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ever-increasing human population, that would be six billion in
2050. To improve agriculture productivity efficient manage-
ment of irrigation water is important to support sustainable
developments. The application of irrigation water according
to the ET0 rate is the foundation of irrigation water conserva-
tion. ET0 is the major element of the hydrological cycle and
foundation of irrigation water planning [4], [5]. ET0 is the
key element of water resource management for the improve-
ment in water productivity [6]. ET0 accounts for more than
one-third of the global precipitation losses [7]. ET0 adjusts
the irrigation according to the prevailing petrological condi-
tions while maintaining the yield. Spatio-temporal distribu-
tion of ET0 is the key to irrigation water management [6], [7].
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Therefore, the ET0 rate is a very important part of irrigation
water scheduling [8]. ET0 is an important part of irrigation
water management [7]. Efficient irrigation water manage-
ment is important to support the conservation of irrigation
water by ET0 rate whilemaintaining yield. ET0 is themeasure
of water loss from the earth and plant surface. ET0 adjusts the
amount of irrigation water according to the meteorological
conditions. ET0 is the most important issue in water resource
management and planning [9]. Irrigation water schedule
according to the ET0 rate supports the conservation of irri-
gation water while maintaining yield [10]. ET0 is impor-
tant for efficient irrigation water scheduling for effective
irrigation water utilization [5] There are different methods
for ET0 measurements like field measurements, experiment
methods, and mathematical equations, measurements like
meteorological data named, Blaney Criddle, Pan Evapora-
tion, and Penman-Monteith methods [7]. These models are
well accepted by agriculture communities but required a lot
of meteorological data [7]. In general, these models require
temperature, humidity, wind speed, solar radiation, the slope
of vapor pressure, altitude, latitude, and rainfall for accurate
calculation of the ET0 rate of a location. Applications of these
models are complex and are unsuitable for application at the
farmers’ level for irrigation water scheduling [7]. ET0 esti-
mation with limited meteorological conditions is important
for the successful implementation of the ET0 in precision
irrigation applications. Determination of ET0 from limited
environmental conditions is important for the implementation
purpose. Moreover, the accurate prediction of the ET0 is also
equally important. Therefore, the proposed solution aims to
determine the ET0 rate according to the prevailing crop field
by directly sensing the environment conditions from crop
field. The IoT-assisted crop field environmental condition
sensing is important for accurate predictions of the ET0 rate.
Therefore the proposed solution aims to determine the accu-
rate ET0 from limited environmental conditions by directly
sensing of crop fields.

To simplify the ET0 rate determination many ML based
solutions were proposed to estimate the ET0 rate with lim-
ited meteorological conditions. ML has emerged as a pow-
erful tool for modeling ET0 with limited meteorological
conditions [11], [12] [13].Apart from these models mod-
ern Information and Communication Technologies (ICT)
are extensively used for Precision Agriculture (PA) applica-
tions. Internet of Things (IoT) and ML are extensively used
in agriculture to deal with long-lasting problems. IoT has
shown significant success in many areas of life like smart
cities, smart homes, smart health care, and agriculture is no
exception [14] as shown in Fig. 1. IoT is the foundation of
Precision Irrigation (PI) and smart irrigation applications.
IoT is a new paradigm that enables the integration of the
sensor into the application environment to capture the con-
text of services and to adjust the services according to the
context. IoT is a strong candidate to deal with long-lasting
problems in agriculture due to its ability to capture con-
text from remote agriculture fields, at a low cost. IoT can

FIGURE 1. IoT applications.

directly sense parameters from the farmer field to provide
useful information to the farmers for appropriate resource
use and improve agricultural practices. IoT has the potential
to capture the farming data directly from the crop field to
determine the ET0 rate accordingly [15]. Many IoT-assisted
solutions were proposed in agriculture focusing on monitor-
ing and controlling the crop field area, precision irrigation
management, and yield calibrations. In agriculture smart and
Precision Irrigation (PI), applications are extensively used by
sensing the crop field environments. Most IoT-based smart
irrigation water solutions are based on sensing environmental
and soil moisture conditions. The existing IoT-based smart
irrigationwater solution is usually based on soil moisture con-
ditions and ignores the adjustments of irrigationwater accord-
ing to the ET0, due to the complexity associated with ET0
determination.

To simplify the ET0 rate determinations,manyML-assisted
solutions were proposed in recent years. The solutions
attempt to determine the ET0 rate with limitedmeteorological
conditions with reasonable accuracy [15]. Different studies
and solutions address the problem of ET0 rate deamination in
different areas of the world. Due to the inherent complexity of
the process efforts were made to develop different models for
different regions of the world. China, India, and America are
areas where the problem is addressed in many ways. These
approaches use the meteorological conditions of weather
stations rather than crop field environmental conditions. The
use of crop field environmental conditions would calibrate the
ET0 rate according to the crop field and would truly represent
irrigation water estimation. The IoT-assisted directly sensed
crop field environmental conditions can improve the accuracy
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of the ET0 rate and would be a true reflection of the crop field
conditions.

From this perspective, this paper proposes amachine learn-
ing approach for ET0-rate determination to overcome the
complexity associated with standard ET0-rate determination
methods. It captures the temperature and humidity of a crop
field using IoT devices. The directly sensed temperature and
humidity are passed into MLmodels for training, testing, and
validation of the proposed solution. To evaluate the proposed
approach, 10-fold cross-validation technique is applied. The
significant contributions and unique features of the proposed
solutions are as follows:

• A machine learning approach is proposed for ET0-rate
determination with temperature and humidity only to
overcome the complexity associated with standard ET0-
rate determination.

• The proposed approach is based on ET0 rate deter-
mination from directly sensed crop field environment
conditions.

• IoT architecture is proposed for the sensing of the
real-time crop field environmental conditions to accu-
rately estimate the ET0-rate according to the prevailing
crop field environmental conditions.

• The proposed solution estimate ET0 by FAO rec-
ommended Penman-Monteith ET0 rate determination
method. The estimated ET0 would be acceptable for
agriculture communities. The estimated ET0 by the
proposed solution is compared against the Penman-
Monteith method.

• The study also compares the performance of the differ-
ent MLmodels in the determination of the ET0 rate from
directly sensed crop field environmental conditions.

II. RELATED WORK
Accurate estimation of ET0 is important for precise irrigation
water requirements and irrigation water resources manag-
ment [14]. ET0 rate estimation is most important in irrigation
water scheduling [11]. Due to the importance of the prob-
lem many solutions were emerged in recent years regarding
irrigation water recommendations according to prevailing
environmental conditions using modern sensing and commu-
nication technologies like IoT. Many efforts were also made
regarding the estimation of ET0 from limited meteorological
conditions. Renowned bibliographic indices are searched to
find the related work regarding precision irrigation, smart
irrigation, and ET0 rate determination.

Ferreira L et al. proposed monthly ET0 estimation using
Random Forest (RF), ANN, Xboost, and Convolution Neural
Network (CNN) from hourly conditions. The results of the
study indicate that CNN models are accurate with RMSE
reduced up to 28% [11]. Yemac Sevin Seda and Todoravic
Mladen proposed crop potential Evapotranspiration (ETc)
using the Artificial Neural Network (ANN) and K-Nearest
Neighbour (KNN) models [16]. Chen Z. et al. proposed
ET0 determination using the limited environmental condi-

tions, with help of Temporal Convolution Neural Network
(TCN), Long Sort Term Memory Neural Network (LSTM),
and Deep Neural Network Model (DNN). The study assesses
the performance of these models by different combinations
of meteorological conditions. The study compares the pro-
posed model against the Hargreaves (H), Modified Harg-
reaves (MH), Ritchie (R), Priestley-Talor (PT), and Makkink
methods. The study finds that temperature and humiditymod-
els to assess the ET0 rate are better with high R2 (0.048) and
low RMSE (0.096) [17].

Yazid Tikhamarine et al. proposed a monthly ET0 rate
estimation using ANN with whale optimization algorithm
(ANN-WOA), grey wolf optimizer (ANN-GWO), particle
swarm optimizer (ANN-PSO), multi-verse optimizer (ANN-
MVO), and ant lion optimizer (ANN-ALO) in Algeria and
India [18]. Yazid Tikhamarine et al. proposed ET0 estimation
using hybrid Support Vector Regression (SVR) with Whale
Optimizer (SVR-WO)with temperature, solar radiation, wind
speed, and humidity [5]. Behrooz Keshtegar et al. proposed
daily ET0 using subset adaptive neuro-fuzzy inference sys-
tem (subset ANFIS) [19]. Mohammad Zounemat-Kermani
et al. proposed a statistical method of Pan-Evaporation (PE)
as a soft computational model for two weather stations
located in Turkey [20]. Behrooz Keshtegar et al. proposed
an intelligent approach (SVR-RSM) for the calculation of
Pan Evaporation (PE) by combining Support Vector Regres-
sion (SVR) and Response Surface Method (RSM) [21].
Ahmed Elbeltagi et al. proposed green and blue water ET0
rates in ArcGIS regions by using geographic information
for efficient water management [6]. Yazid Tikhamarine et al.
proposed a model for improvement in accuracy estimation.
The model is based on temperature, humidity, solar radiation,
and wind speed. Behrooz Keshtegar and Ozgur Kisi modify
the response surface method (RSM) into a hybrid response
surface method (HRSM) using the exponential approxima-
tion and second-order polynomial estimation. The normal-
ized input dataset is based on the temperature, solar radiation,
humidity, and wind speed with application in turkey [22].
Saggi M. and Jain S. proposed the H20 named approach for
ET0 estimation in India. The proposed solution evaluated the
performance of the deep learning model of daily ET0 esti-
mation. The study shows RMSE from 0.1921 to 0.2691 in
ET0 determination using a deep learning approach [23].
Tikhamarine Y. et al. proposed hybrid ANN-based ET0 esti-
mations for India and Algeria. Different ANN hybrid mod-
els were compared. ANN-Embedded Grey Welf Optimizer
(ANN-GWO) performs better with RMSE of 0.0592 [18].
Patil A. and Deka P. recommend a solution for weekly
ET0 determination by different combinations of environ-
mental conditions. The proposed solution is implemented in
India and the solution is compared against the Hargreaves
(H) model. The RMSE of the proposed solution is 0.43 for
Jodhpur and 0.33 for Patiala [24]. Adnan M. et al. proposed
ET0 estimation with more authenticated and accurate limited
meteorological conditions using Deep Learning Neural Net-
work (DNN) model. The regressive value of the proposed
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solution is 83% [25]. Ali Rashid Niaghi et. proposed ET0
estimation from temporal and spatial data using Genome
Expression Programming (GEP), Support Vector Machine
(SVM), and Linear Regression (LR) models. The perfor-
mance of the fourMLmodels is evaluated for spatial and tem-
poral data, with GEP performing best on spatial and temporal
data [26]. Behrooz Keshtegar et al. explored the feasibility
of the application of polynomial chaos expansion (PCE) and
response surface method (RSM) for modeling ET0 [10]. The
performance of the PCE is evaluated against the M5 model
tree and multi-layer perceptron neural network (MLPNN).
Shufen Pan et al. proposed an ML approach with remote
sensing to assess the temporal and spatial ET0 rate. The
findings of the study reveal that there is a 0.62 mm increase in
ET0 rate after every two years [12].Wang Jing et al. evaluated
ET0 approaches by evolutionary approaches and explored
the prospects of evolutionary computing approaches in ET0
determination [13]. Yu Feng et al. proposed ET0 determina-
tion using ExtremeMachine Learning (EML) approaches and
Generalized Neural networks (GNN). The proposed solution
is implemented in China. The proposed solution is evalu-
ated against the temperature-based Hargreaves (H) and FAO
Penman-Monteith method [27]. Fernandez Lopez et al. pro-
posed ET0 estimation from soil moisture using a regres-
sion model and K* algorithm. The proposed solution is
evaluated against the Penman-Monteith method. The pro-
posed solution shows high accuracy with 0.183 RMSE [28].
Granata F.evaluated the ET0 estimation models of the MSP
regression tree, Bagging Random Forests (BRF), and Sup-
port Vector Machine (SVM) with different combinations of
meteorological conditions [29]. Pan et al. [12] reviewed the
variations in global/territorial approaches of ET0 -rate deter-
mination by remote sensing approaches. Krishnan et al. [30]
recommended Neuro-Fuzzy and Global System for Mobile
Communication (GSM) to assist smart irrigation water con-
trollers by incorporating the temperature and humidity.
Aggarwal and Kumar [31] recommended soil temperature,
moisture, and PH-based irrigation water recommendation.
Petković et al. [32] recommended a Neuro-Fuzzy approach
to determine ET0 -rate. They suggested that temperature and
solar radiations are the most influencing factor of ET0 -rate
determination. Koduru et al. [33] proposed IoT and cloud
framework for intelligent irrigation systems intending to con-
serve irrigation water. Yu et al. [34] automated the ET0 -rate
determination and suggested a machine, learning-based ET0 -
rate determination model. Angelopoulos et al. [35] proposed
a smart irrigation system for the strawberry crop to conserve
the irrigation water with better yield.

Campos et al. [36] proposed smart irrigation water ser-
vices from monitoring to control of the irrigation water sys-
tem. The proposed solution recommends the irrigation water
according to the soil moisture level. Nawandar et al. [37]
proposed an intelligent IoT-based smart irrigation sys-
tem to conserve irrigation water. Fraga-Lamas et al. [38]
proposed IoT-assisted smart irrigation by exploiting the
LoRaWAN-based architecture to avoid the unavailability of

the Internet in remote areas. Leh et al. proposed [39] a soil
moisture-based smart irrigation water system by assessment
of soil moisture conditions for long-distance communication
with reduced power consumption. Shi et al. [40] suggested a
method to determine the Plant Water Deficit Index (PWDI)
based on soil moisture conditions and recommend irrigation
water accordingly.

Singh et al. [41] proposed IoT andML-based soil moisture
assessment to recommend irrigation water accordingly. They
assessed the soil moisture based on air temperature, humidity,
and radiations from the crop field environmental conditions.
Togneri et al. [42] recommended IoT and ML-based smart
irrigation system that performs a cost-effective customizable
analysis. Thakur et al. [43] recommended smart irrigation
water and integrated it with cloud to convey information
regarding irrigation water requirements to end-users. Cor-
bari et al. proposed irrigation water requirements estimations
based on weather forecasts and satellite-driven water balance
models. Michael et al. recommended Wireless Sensor Net-
work and Actuator (WSAN) based environmental monitor-
ing and irrigation water control to conserve irrigation water
resources [44].

Ajanta Dasgupta et al. proposed temperature, humidity,
and soil moisture monitoring for irrigation water recommen-
dation according to the prevailing conditions [45]. S Akshay
and T K Ramesh proposed an ML-based approach to deter-
mine the irrigation water requirements according to the pre-
vailing environmental conditions [46]. Renkuan Liao et al.
recommend the water uptake depth (WUD) estimation using
spatiotemporal characteristics of soil moisture distribution
for tomato (Lycopersicum esculentum) grown in the green-
house [47]. Kakkanallur Ethirajan et al. recommended
IoT-based smart irrigation water systems for hydroponic sys-
tems by closely monitoring the water and nutrients flow to
improve productivity in these systems [48]. Wang Jing et al.,
proposed Evolutionary Computing (EC) as the model for the
determination of ET0 with assessment and evaluation [13].
After a comprehensive literature review, it is found that

many smart irrigation water application solutions were pro-
posed in recent years with the purpose to conserve irriga-
tion water. Many Wireless Sensor Networks (WSN), and
IoT-based crop field monitoring with a purpose to recom-
mend irrigation water according to the environmental condi-
tions. It is observed that smart irrigation water solutions lack
in their approach to recommend irrigation water according to
the ET0 rate. On the other hand, many ML approaches were
also proposed to determine the ET0 from limited meteoro-
logical conditions. These ET0 rate determination approaches
are not based on real-time crop field meteorological con-
ditions. To accurately determine the crop field ET0 rate,
it must be calculated from directly sensed crop field envi-
ronmental conditions. To address the deficiencies of both
approaches, the study aims to propose ET0 rate determination
with crop field directly sensed temperature and humidity. The
proposed solution determines the ET0 rate by FAO recom-
mended Penman-Monteith ET0 rate determination method.
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FIGURE 2. Flow chart of proposed solution.

The proposed solution is unique in terms of the use of crop
field directly sensed environmental conditions using IoT and
following the Penman-Monteith ET0 method in ET0 determi-
nation using temperature and humidity only.

III. MATERIEL AND METHOD
This section describes the flow chart, the IoT architecture,
the prototype, the site of implementation, the sensors used,
the environmental data, and the machine learning model.

A. FLOW CHART OF PROPOSED SOLUTION
The flow chart of the proposed solution is shown in Fig. 2.
Directly sensed environmental conditions are processed to
determine the mean monthly environment conditions. The
proposed solution determines the ET0 rate from temperature
and humidity. This daily maximum and minim temperature
and humidity are processed to determine the mean tempera-
ture and mean humidity. The mean environmental conditions
are used to develop the ML model and predict the ET0 rate
by the model. The performance of the model is determined by
the test data set. The ET0 rate is predicted by the ML model
and validated by comparing it against the Penman-Monteith
method.

B. THE ARCHITECTURE OF INTERNET OF THINGS (IoT)
DEVICES
The architecture of IoT devices to sense the crop field envi-
ronmental conditions is shown in Fig. 3. The crop field tem-
perature, humidity, and wind speed are sensed from the year
2016 to 2021 with the implementation of the IoT architecture.
It is a simple architecture with seamless integration of sensor
nodes. The data from each sensor node is transferred to the
server with help of intermediated gateway nodes and the
Internet. The directly sensed crop field environmental condi-
tions by the implementation of the proposed architecture are
used to determine the ET0 by the proposed solution and by the

FIGURE 3. Architecture of IoT devices.

Penman-Monteith method. The proposed architecture allows
to sense environmental conditions from different fields and
recommends ET0 rate according to these directly sensed crop
field environmental conditions. Notably, the communication
mode between the gateway and DHT-2 sensor is duplex to
facilitate two-way communication.

C. SITE OF IMPLEMENTATION
The proposed solution is implemented in theMultan region of
Pakistan which is situated in South East Asia. Pakistan is an
agriculture intensive area with arid environmental conditions.
The geographical location of the experiment is shown in
Fig. 4. The site of implementation is situated at a latitude
of 30.1575◦ N, 71.5249◦ E, at an altitude of 122 m from sea
level. The main reason for this site selection is to evaluate
the proposed solutions under a different set of environmental
conditions. The variations in weather in Pakistan are very dis-
tinct and are suitable to evaluate the proposed solution under
different sets of environmental conditions. Pakistan is an agri-
cultural country where 70% of people are linked in agricul-
ture. Pakistan is suffering from irrigation water scarcity. The
major reason for irrigation water is poor agronomic practices
by the farmers. The application of the proposed solution for
irrigation water according to the prevailing ET0 has many
socio-economic implications.

D. SENSORS USED IN THE PROTOTYPE
DHT-2 sensor is used in the prototype to sense the tempera-
ture and humidity of the crop field. DHT-2 is a low-cost, low-
powered, lightweight, high precision, capacitive type sensor.
This is a calibrated digital sensor with long-term stability
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FIGURE 4. The geographic location of the experiment area.

FIGURE 5. Temperature and humidity sensor.

TABLE 1. Characteristics of DHT-2 Sensor.

without any extra components to measure the surrounding
environment. DHT-2 temperature and humidity sensor is
shown in Fig. 5, with characteristics in Table 1. In order,
to implement the proposed solution the NodeMCU node is
used to transfer data from the sensor node to the server with
help of the Internet. The NodeMCU is a low-cost, Wi-Fi-
enabled module. It is used to transmit data from the sensors
to the IoT server using the Internet. It provides an excellent
solution to transfer data from the field to the base station
using the Internet. The use of NodeMCU makes the archi-
tecture portable to move data easily from one area to another.
NodeMCU is shown in Fig 6, with characteristics in Table 2.
The prototype developed with IoT architecture to sense

the crop field environmental condition is deployed in field
is shown in 7.

E. PENMAN-MONTEITH METHOD
Penman-Monteith is FAO’s recommended method of ET0
rate determination. Initially, the Penman-Monteith method of
ET0 is used to determine the ET0 from prevailing conditions

FIGURE 6. NodeMCU gateway module.

TABLE 2. NodeMCU Characteristics.

FIGURE 7. Sensor node in crop field.

to train the ML model. It is also used to validate the ET0 rate
proposed by the proposed solution. ET0 by penmanMonteith.
Penman-Monteith equation is expressed by Eq. 1 [49]. The
ET0 by the Penman-Monteith method is based on temper-
ature, humidity, wind speed, solar radiations, elevation, and
altitude of the location for which ET0 has to be determined.

ET0 =
(0.4081(Rn − G))+ γ 900

T+273u2(es − ea)

1+ γ (1+ 0.34u2)
(1)

where,
ET0 is the reference Evapotranspiration in mm day−1

γ is psychometric constant in KPaoC−1 expressed by Eq. 2
1 is Slope Vapour Pressure in KPaoC−1 expressed by Eq. 4

u2 is wind speed in m s−1

es is saturated vapor pressure in KPa expressed by Eq. 6
ea is actual vapour pressure in KPa expressed by Eq. 7
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es-ea is vapour pressure deficit in KPa expressed by Eq. 8
G (soil heat flux density) is the energy used for heating

the soil and measured in MJ m−2 day−1 It is very low as
compared to Rn and is ignored for calculating the ET0

Rn is the net radiation in crop field measured in MJ m−2

day−1 expressed by Eq. 9
γ is psychometric constant in KPaoC−1 expressed by Eq. 2

γ =
CpP
ελ

(2)

where, P is the atmospheric pressure in KPa, is the pressure
by evaporation at high altitude and the average value of P is
used due to its small effect. The latent heat of vaporization
(λ) is the energy required to change the unit mass of water
from liquid to vapor state. ε is the ratio molecular weight of
water vapor measured in MJ Kg−1. For simplification, the
value of ε is assumed to be 0.622. cp is the specific heat
at constant pressure and its value is MJ kg −1 oC−1. Mean
monthly temperature (Tmean) is determined from the mean
monthly maximum temperature (Tmax) and mean monthly
minimum temperature (Tmin) by Eq. 3.

Tmean =
Tmax + Tmin

2
(3)

Slope of vapour pressure curve (1) is the relationship
between saturated vapour pressure and temperature expressed
by Eq. 4.

1 =
4098

[
0.6108 exp

(
17.27×Tmean
Tmean+237.3

)]
(Tmean+ 237.3)2

(4)

where, T is the air temperature in oC, and 1 is the slope of
the vapor pressure curve at air temperature in kPa oC.
Saturated Vapour pressure (eo) is obtained from air tem-

perature by Eq. 5, where T is the air temperature in oC.

e0 = 0.6108 exp× p
[
17.27Tmean
T + 237.3

]
(5)

Mean Saturated Vapour Pressure (es) is obtained from Mean
monthly maximum temperature (Tmax) and mean monthly
minimum temperature (Tmin) andwith Saturated Vapour pres-
sure (eo) by Eq. 6.

es =
e0(Tmax)+ e0(Tmin)

2
(6)

Actual vapour pressure (es) is obtained from mean monthly
minimum temperature (Tmin) and mean monthly maximum
humidity (RHmax) by Eq. 7.

ea = e0(Tmin)
RHmax
100

(7)

Vapour pressureDeficit (VPD) is obtained from actual vapour
pressure (es) and mean saturated vapour pressure (es) by
Eq. 8.

VPD = es − ea (8)

Net radiation (Rn) for ET0 determination is obtained by differ-
ence of radiation that falls on earth surface Rns and radiations
that reflected back from earth surface Rnl , expressed by Eq. 9.

Rn = Rns − Rnl (9)

Radiation that falls on earth surface Rns is the fraction of
solar radiation Rs that is not reflected by the earth surface
expressed by Eq. 10. For ET of grass crop, the value of α is
0.23, therefore the value of R(ns) is expressed by Eq. 11.

Rns = (1− α)× Rs (10)

Rns = 0.77× Rs (11)

Solar radiation (Rs) is obtained by Hargreaves model of solar
radiation expressed by Eq. 12, frommean monthly maximum
temperature (Tmax), mean monthly minimum temperature
(Tmin), extraterritorial radiation (Ra), and adjustment constant
(KRs).

Rs = KRs
√
Tmax − TminRa (12)

Radiation that reflected from earth surface Rnl is obtained by
the Stefan-Boltzman law expressed by Eq. 13

Rnl = σ
[
TmaxK 4

+ TminK 4 ]
(0.34− 0.14

√
ea)

(1.35
Rs
Rso
− 0.35) (13)

where,
TmaxK is mean monthly maximum temperature in Kelvin

scale,
TminK is mean monthly minimum temperature in Kelvin

scale,
σ is the Stefan Boltzmann constant that is 5.670367× 10-8

kg s−3 K−4

ea is the actual vapour pressure,
Rs
Rso

is the ratio of the solar radiation that reaches to the earth
surface in clear sky (Rs) to the solar radiations that reaches to
the earth surface in cloudy conditions (Rso). It is the relative
shortwave radiation (limited to≤1.0), whereRs is obtained by
Eq. 12, and is obtained by Eq. 14. Notably, Z is the elevation
above sea level measured in meters.

Rso = (0.75+ 210−5Z )Ra (14)

F. ENVIRONMENTAL DATA
In this section, the environmental data of temperature, humid-
ity, and wind speed directly sensed from the crop field is
given. The data from the year 2016 to 2021 is used to train,
test, and validate the model. The temperature data analysis is
shown in Fig. 8, Fig. 9, Fig. 10, Fig. 11, Fig. 12, and Fig. 13
for the year 2016 to 2021 respectively. The daily maximum
temperature, daily minimum temperature and mean monthly
temperature are shown in each figure.

Humidity is also important for the determination of ET0 by
the proposed solution and by the Penman-Monteith method.
Humidity data of the selected area from the year 2016 to
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FIGURE 8. Temperature of 2016.

FIGURE 9. Temperature of 2017.

FIGURE 10. Temperature of 2018.

FIGURE 11. Temperature of 2019.

2021 is sensed from the crop field using an IoT proto-
type. Along with daily maximum humidity levels, the mean
monthly humidity level (Hm) is also plotted in each fig-

FIGURE 12. Temperature of 2020.

FIGURE 13. Temperature of 2021.

FIGURE 14. Humidity level for the year 2016.

FIGURE 15. Humidity level for the year 2017.

ure. Fig. 14, Fig. 15, Fig.16, Fig.17, Fig.18, and Fig.19
shows daily maximum andmeanmonthly humidity from year
2016 to 2021. respectively.
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FIGURE 16. Humidity level for the year 2018.

FIGURE 17. Humidity level for the year 2019.

FIGURE 18. Humidity level for the year 2020.

FIGURE 19. Humidity level for the year 2021.

Win speed is also important for the determination of ET0
by the Penman-Monteith method. Wind speed data of the
selected area from the year 2016 to 2021 is sensed from the

FIGURE 20. Wind speed for the year 2016.

FIGURE 21. Wind speed for the year 2017.

FIGURE 22. Wind speed for the year 2018.

crop field using an IoT prototype. Alongwith daily maximum
wind speed, the mean monthly wind speed is also plotted
in each figure. Fig. 20, Fig. 21, Fig.22, Fig.23, Fig.24, and
Fig.25 shows daily maximum and mean monthly wind speed
from year 2016 to 2021 respectively.

G. MACHINE LEARNING MODEL
For ML model implementation the Support Vector Machine
(SVM), K-Nearest Neighbour (KNN), and Gaussian Naive
Bays (GNB) based models are implemented. The tuple of
environmental conditions is used to classify the ET0 rate in
‘‘low’’, ‘‘medium’’ and ‘‘high’’ as per the ET0 classification
given in the Table 5. The data set is partitioned into pre-
dictive features and response vectors. Each predictive fea-
ture vector is based on temperature and humidity to predict
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FIGURE 23. Wind speed for the year 2019.

FIGURE 24. Wind speed for the year 2020.

FIGURE 25. Wind speed for the year 2021.

the ET0 response vector. The predictive features vector is
also arranged according to the suitable class range given in
Table 3, and Table 4. To implement the machine learning
algorithms, the Scikit-learn libraries of python are used to
preprocess, train and test the ML model. Classes for temper-
ature, humidity, and ET0 rate are given in Table 3, Table 4,
and Table 5, respectively. The data from the year 2016 to
2021 is used to train the ML model.The study use the daily
climatic conditions from year 2016 to 2021. Yellowbrick
library is used for testing theMLmodel. The first step in data
preprocessing is data organization. The directly sensed crop
field temperature and humidity is used to determine the daily
maximum andminimum temperature and humidity. The daily
minimum and maximum temperature and humidity are used
to predict the Eto rate. After data organization, the missing

TABLE 3. Temperature classes.

TABLE 4. Humidity classes.

TABLE 5. ET0 rate classes.

values are identified and handled for data cleaning purposes.
The data cleaning is handled by filling the missing values
through the mean value of corresponding months from the
previous year. This approximation of missing data by mean
produces minimum bias. The next step is the encoding of the
categorical items in the data like months name. After data
partitioning, the dataset is split into training and test dataset.
The ratio of training to test data set is set to 70:30. To avoid
extreme values, the feature scaling is performed by standard-
ization using the preprocessing featured of sklearn libraries
of python. The standardization is performed by Eq. 15 where
missing value ’a’ in dataset is approximated by a′.

á =
a− (mean)

sd
(15)

The study also apply the Artificial Neural Network
Model (ANN) to assess the performance of the ML mod-
els. The proposed ANN architecture aims to determine the
ET0 rate from independent variables Tmax, Tmin, Hmax,
and Hmin. Multilayered perception feed forward neural net-
work architecture is used for implementation of ANN for
ET0 rate determination. The number of neurons are equal to
the number of input variables and one neuron at the output
layer. The neuron in each layer is connected to subsequent
layer by weights wi and from hidden layer to output layer
by weight. Each neuron the sum of input variables with their
weights is transformed into output with activation function.
Relu activation function is used at input and hidden layer
and sigmoid at output layer. The inputs are propagated from
input to hidden layer and from hidden layer to the output
layer in forward manner. In order to prevent convergence
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TABLE 6. Accuracy of machine learning models.

FIGURE 26. Confusion matrix of SVM model.

issue all the inputs are normalized before passing them to
ANN architecture. The dataset of the input variables is used as
input and corresponding ET0 is the output of the model. The
input and output variables are standardized before passing
to ANN mode. The number of neurons at hidden layer are
identified by hit and trial method with a purpose to improve
the performance of the model.The best ANN architecture of
ANN for the study is 4-3-1 that means four neurons at input
layer, three at hidden layer and one at the output layer.

IV. RESULTS
The results are given in the form of accuracy of SVM, KNN
and GNB ML models and confusion matrix of each model.
The Root Mean Squared Errors (RMSE) and Mean Absolute
Error (MAE) are used to compare the performance with exist-
ing solution. The ET0 by proposed solution is also compared
against the Penman-Montieth method for validation of the
proposed solution.

A. PERFORMANCE OF ML ALGORITHMS
The training and test data ratio is set to (70:30) for evaluation
purposes. Performance of the machine learning algorithms

FIGURE 27. Confusion matrix of KNN model.

is determined using the accuracy of the different algorithms
with test data is given in Table 6. Accuracy of the KNNmodel
in ET0 determination is 91% that is more than the GNB,
SVMandANN. The confusionmatrices of SVM,KNN,GNB
and ANN is shown in Fig. 26, Fig. 27,Fig. 28 and in 28
respectively. The precision, recall and f-measure of KNN is
better as compared to the SVM and GNB in prediction of ET0
from temperature and humidity. In case of ML models the
accuracy of ET0 prediction is better with KNN model than
the SVM and GNBmodel. Apart from the accuracy the KNN
models also has some inherent advantages that are favourable
to apply it for problem on hand. The advantage of the applica-
tion of KNN is that new data can be added seamless manner
without much impact on accuracy of existing model. This is
very important in case of a problem on hand. New data from
each year can be easily added to improve the accuracy of
predictions made by themodel. The sensed data from the crop
field can be added in a seamless manner. The other advantage
of KNN is that it is easy to implement as compared to other
MLmodels. The KNN also shows good accuracy with limited
dataset as in the case of problem on hand.

B. COMPARISON WITH EXISTING APPROACHES
The result of the proposed solution are compared against
the Al Rashid Niaghi proposed method of ET0 estimation
using three ML algorithm named Random Forest (RF), Sup-
port Vector Machine (SVM) and Multiple Linear Regression
(M-LR) with local and spatial environmental conditions
[26]. The study evaluated the performance of the differ-
ent machine learning algorithms in terms of Root Mean
Squared Error (RMSE) and Mean Absolute Error (MAE)
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FIGURE 28. Confusion matrix of GNB model.

FIGURE 29. Confusion matrix of ANN model.

with different combination of input conditions. TheML algo-
rithms are evaluated using temporal, radiations and mass
transfer based method. The results of the temporal and radi-
ation based method by [26] and by our proposed solution is
given in Table 7. The solution proposed by [26] find out that in
case of temporal method the RMSE by GEP model reduces
by 7% as compared to the SVM and LR models. GEP also
reduce Mean Absolute Errors (MAE) by 7% as compared to

TABLE 7. Comparison with existing approaches.

SVM and 12% as compared to LR in case of tempera data.
In case of radiation approach LR reduces the RMSE 4%more
than the SVM, and 6% more then the GEP. Whereas in case
of radiation based approach the GEP reduces MAE by 1%
from the LR and 4% from the SVM. In case [26] of GEP
reduces RMSE and MAE by temporal and radiation based
approach for ET0 estimation. In case of proposed solution
the KNN model reduces the RMSE by 14% more than the
SVM and 17% more than the GNB model. The KNN model
outperform the SVM and GNB in reduction of the RMSE.
The KNN mode reduces the MAE by 29% more than the
SVM and 28% more than the GNB model. As compared to
existing approach [26], the KNN reduce the RMSE errors
against the GEP models by 16% and MAE by 3%.

C. FIELD OBSERVATIONS
The ET0 rate determined from the proposed solution is
compared against the FAO-recommended Penman-Monteith
method of ET0 determination. The ET0 rate from the pro-
posed solution is named as predicted (ET0) and by the
Penman-Monteith method as actual ET0. The comparison of
predicted (ET0) and actual ET0 rate is compared on monthly
basis for each year from 2016 to 2021. The ET0 rate for the
year 2016, by proposed solution and by Penman-Monteith
method is shown in Fig. 30. There is a very low difference
in predicted and actual ET0 rate by proposed solution and
by the Penman-Monteith method for each month of the year
2016. The maximum difference is observed in March, April
and May that is 1.8 mm day1. The minimum difference of
ET0 rate is observed in October that is of 0.2 mm day1.
The difference in ET0 observation for the year 2016, can be
observed from Fig. 36. The ET0 rate for the year 2017, by pro-
posed solution and by Penman-Monteith method is shown in
Fig. 31. There is also low difference in predicted and actual
ET0 rate by proposed solution and by the Penman-Monteith
method for each month of the year 2017. The maximum
difference is observed in March that is 2 mm day1. The
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FIGURE 30. Actual and predicted ET0 rate of 2016.

FIGURE 31. Actual and predicted ET0 rate of 2017.

FIGURE 32. Actual and predicted ET0 rate of 2018.

minimum difference of ET0 rate is observed in January that
is of 0.5 mm day1. The difference in ET0 observation for the
year 2017, can be observed from Fig. 36. The ET0 rate for
the year 2018, by proposed solution and by Penman-Monteith
method is shown in Fig. 32. There is also low difference in
predicted and actual ET0 rate by proposed solution and by the
Penman-Monteith method for each month of the year 2018.
The maximum difference is observed in February and May
that is 1.4 mm day1. The minimum difference of ET0 rate is
observed in September that is of 0.1 mm day1. The difference
in ET0 observation for the year 2018, can be observed from
Fig. 36. The ET0 rate for the year 2019, by proposed solution
and by Penman-Monteith method is shown in Fig. 33. There
is also low difference in predicted and actual ET0 rate by
proposed solution and by the Penman-Monteith method for

FIGURE 33. Actual and predicted ET0 rate of 2019.

FIGURE 34. Actual and predicted ET0 rate of 2020.

each month of the year 2019. The maximum difference is
observed in February and June that is 1.9 mm day1. The
minimum difference of ET0 rate is observed in May and July
that is of 0.3 mm day1. The difference in ET0 observation for
the year 2019, can be observed from Fig. 36. The ET0 rate for
the year 2020, by proposed solution and by Penman-Monteith
method is shown in Fig. 34. There is also low difference in
predicted and actual ET0 rate by proposed solution and by the
Penman-Monteith method for each month of the year 2020.
The maximum difference is observed in June and November
that is 1.9 mm day1. The minimum difference of ET0 rate is
observed in July that is of 0.8 mm day1. The difference in ET0
observation for the year 2020, can be observed from Fig. 36.
The ET0 rate for the year 2021, by proposed solution and by
Penman-Monteith method is shown in Fig. 35. There is also
low difference in predicted and actual ET0 rate by proposed
solution and by the Penman-Monteith method for each month
of the year 2021. The maximum difference is observed in
January that is 2.1 mm day1. The minimum difference of
ET0 rate is observed in January that is of 0.3 mm day1.
The difference in ET0 observation for the year 2021, can be
observed from Fig. 36.

The proposed solution is accurate in the determination of
the ET0 rate of a location on the directly observed temper-
ature and humidity of that location. The ET0 rate by pro-
posed solution shows accuracy when compared against the
Agronomist recommended Penman-Monteith method of ET0
determination.
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FIGURE 35. Actual and predicted ET rate of 2021.

FIGURE 36. Difference in observations by proposed and
Penman-Monteith method.

Many solutions were proposed to determine the ET0 in
past. These solutions are limited to one or two geographical
areas.There is need of a solution that is applicable at global
scale. The major purpose of the proposed solution is to pro-
pose a global solution that can be applied to any part of the
world by using IoT. The directly sensed environmental con-
ditions help to propose a solution that is easily transferable
and applicable in any part of the world. The proposed solu-
tions sense the crop field environmental conditions to predict
the ET0 rate according to the locations where the solution
is applied. The proposed solution is easily transferable and
applicable in any part of the world to adjust according to
the prevailing conditions. The unique feature of the proposed
solution is the prediction of the ET0 o rate based on directly
sensed environmental conditions that can easily be imple-
mented by the proposed IoT architecture. The direct crop field
sensed environmental conditions-based ET0 o solution make
the proposed solution application on a global scale rather than
confined to any limited geographical areas.

V. CONCLUSION
The directly sensed crop field temperature and humidity
based Evapotranspiration (ET0) prediction in accordance
with Penman-Monteith method is proposed. Machine Learn-
ing (ML) based ET0 rate determination from IoT assisted

directly sensed temperature and humidity from the crop field
is proposed. ET0 determination with limited environmental
condition is important. The proposed solution determines
the ET0 rate according to the Penman-Monteith method.
The crop field environment conditions are captured using
the IoT-assisted proposed architecture. The proposed solution
supports smart irrigation by conservation of irrigation water
while maintaining yield. Three machine learning algorithms
K-nearest Neighbour (KNN), Gaussian Naive Bays (GNB),
Support Vector Machine (SVM) and Artificial Neural Net-
work (ANN) are compared for accuracy in determination of
ET0. It is observed that KNN is more accurate with 92%
accuracy, with high precision, recall and f-measure as com-
pared to the SVM and GNB models. The field observations
from 2016 to 2021 are used to validate the proposed solution.
The proposed solution of ET0 determination by temperature
and humidity is accurate in the determination of ET0 rate
when compared against the FAO recommended Penman-
Monteith method. As concerned of future work the use of
federated learning would be a good contribution to handle on
problem of global scale application and transfer in better way.
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