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ABSTRACT Transient stability-constrained optimal power flow (TSCOPF) models comprehensively
analyze the security and economic operation of power systems. However, they require a high computational
effort and can suffer from convergence problems when applied to large systems. This study analyzes
the performance of eleven numerical integration algorithms applied to ordinary differential equations that
represent power system dynamics in a TSCOPF model. The analyzed algorithms cover a range of explicit
and implicit methods, including the recently published semi-explicit and semi-implicit Adams-Bashforth-
Moulton formulas, together with several initialization techniques. The integration methods are applied to a
model of the Iberian Peninsula power system, and their performance is discussed in terms of convergence,
accuracy, and computational effort. The results show that most implicit methods converge to the solution,
even for large time steps. In particular, the Adams-Moulton method of order two and Simpson’s rule, both
initialized with RK4, outperform the trapezoidal rule, which is the default method in TSCOPF models.

INDEX TERMS Numerical methods, optimal power flow, power system stability, transient stability,
TSCOPF.

NOMENCLATURE
z Generation cost (in eh ).
Ng, Nb Number of synchronous generators and

buses, respectively.
ci Cost coefficient of the synchronous gener-

ator at bus i (in e
MWh ).

Pg,i,0, Qg,i,0 Steady-state active and reactive power
generated by the synchronous generator at
bus i (in p.u.).

Pg,i,t , Qg,i,t Active and reactive power generated by the
synchronous generator at bus i and time t
(in p.u.).

Pd,i,t , Qd,i,t Active and reactive load at bus i and time t
(in p.u.).

Pe,i,t , Qe,i,t Electric output active and reactive power in
the rotor of the synchronous generator at
bus i and time t (in p.u.).

The associate editor coordinating the review of this manuscript and

approving it for publication was Siqi Bu .

Pm,i Mechanical input power of the
synchronous generator at bus i
(in p.u.).

Vi,0, αi,0 Steady state voltage magnitude and angle
at bus i (in p.u. and rad, respectively).

Vi,t , αi,t Voltage magnitude and angle at
bus i and time t (in p.u. and rad,
respectively).

Ibr Steady state current of branch br (in p.u.).
Yi,j, θi,j Magnitude and angle of the element (i, j)

in the bus admittance matrix Y (in p.u. and
rad, respectively).

YL,br,j, θL,br,j Magnitude and angle of the element (br, j)
in the line admittancematrix YL (in p.u. and
rad, respectively).

δi,t Rotor angle of synchronous generator i at
time t in synchronously rotating reference
frame (in rad).
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δCOI ,t The rotor angle corresponds to the center
of inertia (COI) at time t (in rad).

ωs Synchronous rotor speed (in rad
s ).

1ωi,0 Steady-state rotor speed deviation of the
synchronous generator at bus i (in p.u.).

1ωi,t Rotor speed deviation of the synchronous
generator at bus i and time t (in p.u.).

x ′d,i Direct axis transient reactance of the syn-
chronous generator at bus i (in p.u.).

E ′I ,i Internal voltage of the synchronous gener-
ator at bus i (in p.u.).

Hi Inertia constant of the synchronous gener-
ator at bus i (in s).

Di Damping factor of the synchronous gener-
ator at bus i (in p.u.).

Vmin, Vmax Lower and upper limits of the bus voltage
magnitude (in p.u.).

Imaxbr Limit of the current in branch br (in p.u.).
Pmaxg,i Limit of the active power generated by the

synchronous generator at bus i (in p.u.).
Qming,i , Q

min
g,i Lower and upper limits of the reactive

power generated by the synchronous gen-
erator at bus i (in p.u.).

δmax Limit of the rotor angle (in rad).
1t Integration time step (in s).

I. INTRODUCTION
Transient stability-constrained optimal power
flow (TSCOPF) is an optimization problem that offers
a comprehensive approach to power system optimization
by simultaneously addressing economic and operational
objectives while considering both static and dynamic stability
constraints. TSCOPF has recently received increasing
attention [1], [2] because system operators are forced to
operate power systems close to their operational limits owing
to the high penetration of non-programmable renewable
generation, liberalized electricity markets, and environmental
restrictions.

The size and complexity of interconnected power sys-
tems make large-scale TSCOPF problems challenging, with
several authors following different approaches [3], [4]. One
approach, followed in [5], formulates TSCOPF as a nonlinear
programming problem (NLP) in which, the dynamic behavior
of the power system is obtained using PSS/E, an external
power system simulator independent of the optimization
problem. In this sequential technique, the generation dispatch
changes at each iteration based on simulation results and
constraint violations. This method has the problem of falling
into numerical instabilities and convergence problems when
simulating transiently unstable cases.

A more common approach followed in this work is to
use a simultaneous discretization algorithm [6] that directly
incorporates the dynamic simulation in the optimization
problem. In [2], [7]–[13], differential equations describing
power system dynamics are transformed into corresponding

algebraic equations using a numerical integration algorithm.
They are then added to the power flow equations. The
resulting optimization problem is then solved using an NLP
solver. This technique is robust and can handle unstable
cases; however, it becomes computationally demandingwhen
applied to large power systems.

A. LITERATURE REVIEW
Although there are different families of numerical methods
for integrating differential equations [14]–[22], the trape-
zoidal rule is practically the only method used in TSCOPF
studies based on simultaneous discretization [2], [8], [9],
[11], [14], [23], [24], because it is easy to program and
numerically stable. To the knowledge of the authors, there
are no previous studies on the performance of numerical
methods in TSCOPF models, except for [7] and [25], which
investigated a limited number of methods in a relatively small
system. This study explores a broader range of integration
methods to reduce the computation time in large-scale
TSCOPF models.

Numerical methods can be classified as explicit or implicit.
The explicit algorithms use known quantities from past steps
to directly obtain the solution to the current step, whereas
the implicit methods require current and prior steps for
the calculation. Most commercial power system simulators
use explicit numerical methods because they are easier to
implement. PowerWorld, for instance, uses second-order
Runge-Kutta [26], whereas PSS/E and PSLF use second-
order Adams-Bashforth [27]. The implicit methods are
numerically more stable and better suited to stiff systems
than the explicit methods, but this comes at the cost
of solving nonlinear equations at each step, resulting in
higher computational time. In general, there should be a
trade-off between numerical stability and computational cost.
Predictor-corrector methods combine some advantages of
implicit and explicit methods. A predictor-corrector method
uses two sets of equations, one for prediction and the other
for correction. In [21] and [22], the conventional predictor-
corrector Adams-Bashforth-Moulton (ABM)method is mod-
ified to construct semi-explicit and semi-implicit ABMs,
improving the computation accuracy.

Numerical methods can also be classified based on the
number of steps required for each iteration. Single-step
methods are based solely on the previous step; for example,
the Runge-Kutta fourth-order (RK4) method has an accuracy
of order four but at the cost of significant computation time
because four function evaluations are required at each time
step [28], [29]. As the computation time is a critical issue in
TSCOPF models, it is preferable to use multistep methods
that require only one function evaluation at each step and
improve the accuracy by using data from several previous
steps. The number of steps in this study is limited to two
because, while increasing the number of steps improves
accuracy, it also threatens numerical stability [30].

Moreover, two-step methods require two successive start-
ing points for the initialization. The initial condition provides
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the first starting point, and the second starting point can
be calculated using another one-step method, such as Euler,
trapezoidal rule, or RK4. Therefore, it is important to consider
the error incurred when approximating this extra initial point
because it may affect the final solution.

B. CONTRIBUTION
The main contribution of this work is a comprehensive
analysis of numerical methods in an optimization model
based on simultaneous discretization. The model is solved
using a standard interior-point algorithm, which is the main
approach in TSCOPF. The results show that alternative
methods can outperform the trapezoidal rule in TSCOPF
applications. The performance of each method is tested on
a 216-buses, 75-generators model of the Iberian Peninsula
system, including Portugal and Spain, in which six severe
contingencies are evaluated. These methods are discussed
in terms of accuracy, computational time, and numerical
stability. Additionally, the effect of initialization on the
accuracy of two-step methods is analyzed. The result is a set
of suitable methods that can serve as better alternatives to the
trapezoidal rule in future TSCOPF studies.

The remainder of this paper is organized as follows.
Section II develops the optimization model. Section III
describes several numerical methods applied to the TSCOPF
model. Section IV introduces a case study. Section V presents
simulation results. Finally, conclusions are presented in
Section VI.

II. OPTIMIZATION MODEL
The optimization problem consists of an objective function
minimizing the generation cost (1) and a set of nonlinear
equality and inequality constraints (2)-(16):

z = min
Ng∑
i=1

ciPg,i,0 (1)

subjected to

Pg,i,t − Pd,i,t = Vi,t

Nb∑
j=1

Vj,tYi,jcos(αi,t − αj,t − θi,j)

(2)

Qg,i,t − Qd,i,t = Vi,t

Nb∑
j=1

Vj,tYi,jsin(αi,t − αj,t − θi,j)

(3)

Pe,i,tx ′d,i = E ′I ,iVi,tsin(δi,t − αi,t ) (4)

Qe,i,tx ′d,i = (E ′I ,i)
2
− E ′I ,iVi,tcos(δi,t − αi,t ) (5)

Pa,i,t = Pm,i − Pe,i,t (6)
dδi,t
dt
= ωs1ωi,t (7)

d1ωi,t
dt

=
1
2Hi

(Pa,i,t − Di1ωi,t ) (8)

1ωi,0 = 0 (9)

δCOI ,t =

Nb∑
i=1

Hiδi,t
Hi

(10)

Ibr =
Nb∑
j=1

YL,br,jVj,0[cos(θL,br,j + αj,0)

+ jsin(θL,br,j + αj,0)] (11)

Vmin
≤ Vi,0 ≤ Vmax (12)

|Ibr | ≤ Imaxbr (13)

0 ≤ Pg,i,0 ≤ Pmaxg,i (14)

Qming,i ≤ Qg,i,0 ≤ Q
max
g,i (15)

−δmax ≤ δi,t − δCOI ,t ≤ δ
max (16)

Table 1 summarizes the physical meaning of each equation.
Wind power plants are modeled as a fixed generation with
a power factor of one and a cost of zero. The transient
stability limit (16) is determined as the maximum rotor angle
deviation from the center of inertia (COI), as is customary
in TSCOPF studies [11], [13]. Equations (1)-(16) represent a
typical TSCOPF model based on simultaneous discretization
that provides the optimal dispatch with steady-state and
transient stability limits after a severe fault.When the solution
provided by the OPF becomes unstable, the stability limit
imposed by (16) modifies the OPF generation dispatch,
thereby increasing the cost of obtaining a secure operation.

In the TSCOPF model, differential equations (7) and (8)
are discretized using a numerical algorithm and solved
simultaneously with (1)-(6) and (9)-(16) using an NLP solver.
However, in conventional transient stability simulations, (7)
and (8) are discretized and solved sequentially. TSCOPF
provides an optimal dispatch together with the simulation
of the fault included in the model; this simulation coincides
with a conventional transient stability simulation that takes
the optimal dispatch as the initial point.

Fig. 1 shows the procedure used to build and solve
the TSCOPF model. A Python program reads all relevant
data, builds the pre-fault, fault, and post-fault admittance
matrices for each contingency, and writes the TSCOPF
model containing (1)-(16) in the GAMS modeling language.
In this work, at the block marked with an arrow in Fig. 1,
different numerical integration methods are used to discretize
differential equations (7) and (8). For example, applying the
trapezoidal rule, which is the default method in TSCOPF,
to (7) and (8) yields:

δi,n − δi,n−1 =
ωs1t
2

(1ωi,n +1ωi,n−1), (17)(
1+

Di1t
4Hi

)
1ωi,n −

(
1−

Di1t
4Hi

)
1ωi,n−1

=
1t
4H

(Pa,i,n + Pa,i,n−1). (18)

The complete TSCOPF model is then solved in GAMS
using the interior-point optimizer IPOPT, which is an NLP
solver suited for large-scale nonlinear optimization problems.
Themodel is managed directly by IPOPT, and there is no need
for a power system solver outside the GAMS solver.
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TABLE 1. Optimization model constraints.

FIGURE 1. Flowchart showing the implementation of the TSCOPF model.

III. NUMERICAL METHODS
A set of representative numerical methods for the solution of
ordinary differential equations (ODEs) (7) and (8) is selected
to evaluate their performance in the TSCOPF model. These
methods correspond to some of themost commonly used two-
step algorithms [31] and newly constructed semi-explicit and
semi-implicit methods. The ODEs representing the power

system dynamics can be expressed as:

dx
dt
= f(x, t) with x(t0) = x0, (19)

where x is the vector of state variables, x0 is the vector of
initial conditions at t = t0, and f(x, t) is a known function.

A. TWO-STEP METHODS
Most numerical methods described in this section can be
defined using the following generic expression:

α0xn + α1xn−1 + α2xn−2
= 1t(β0fn + β1fn−1 + β2fn−2), (20)

where xn is the vector of numerical approximations of exact
solutions x(tn) at time tn = t0 + n1t; αi and βi are the
coefficients representing different numerical methods; and
fn = f(x(tn), tn). The application of (20) to (7) and (8) results
in:

α0δi,n + α1δi,n−1 + α2δi,n−2

= 1tωs(β01ωi,n + β11ωi,n−1 + β21ωi,n−2), (21)

and

α01ωi,n + α11ωi,n−1 + α21ωi,n−2

=
1t
2Hi

[β0(Pa,i,n − Di1ωi,n)

+ β1(Pa,i,n−1 − Di1ωi,n−1)

+ β2(Pa,i,n−2 − Di1ωi,n−2)]. (22)

Table 2 lists the names and main characteristics of some of
the analyzed methods. A discussion about the accuracy and
numerical stability of thesemethods can be found in [31]. One
method does not have a unique name and is thus referred to
as method A. The specific equation of each method in the
TSCOPF model can be found by substituting parameters αi
and βi in (21) and (22). For example, the Adams-Moulton
method of order two can be formulated as:

δi,n − δi,n−1 = ωs1t
(

5
12
1ωi,n +

8
12
1ωi,n−1

−
1
12
1ωi,n−2

)
, (23)

and

1ωi,n −1ωi,n−1 =
1t
2Hi

(
5
12

(Pa,i,n − Di1ωi,n)

+
8
12

(Pa,i,n−1 − Di1ωi,n−1)

−
1
12

(Pa,i,n−2 − Di1ωi,n−2)
)
. (24)

The trapezoidal rule is the only one-step method in Table 2;
the rest are two-step algorithms. One-step numerical methods
(if α2 = β2 = 0 in (20)) approximate xn using xn−1, the
value obtained in the previous step. The starting point x0 is
calculated from initial conditions, typically solving a power
flow. Two-step methods, on the other hand, require xn−1 and
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TABLE 2. Investigated numerical methods [31].

xn−2 in the previous two steps. Although the value of x0 for
the initial step is calculated from initial conditions, finding
the value of x1 in a two-stepmethod requires another one-step
method such as Euler, trapezoidal rule or RK4.

Two of the methods in Table 2 are explicit, which means
that β0 = 0 and xn can be found explicitly from previous time
steps. Explicit two-step methods are not absolutely stable (A-
stable); however, Adams-Bashforh is a zero-stable explicit
methodwith themaximum possible order [31]. The rest of the
methods in Table 2 are implicit methods, which means that
xn cannot be directly expressed in terms of known quantities
from the previous steps because β0 6= 0.

The methods with the same order of accuracy can produce
different levels of error, depending on the error constant.
Adams-Moulton with order three gets closer to the exact
solution than Adams-Bashforth with order two but at the
cost of solving a nonlinear equation at each step. However,
the Adams-Moulton is not the highest-order possible implicit
method with zero-stability. Simpson’s rule with order four
reaches the highest order because of its symmetrical structure.

Finally, the trapezoidal rule has the highest possible order
among A-stable implicit methods, with the lowest error
constant. Since the absolute stability is difficult to obtain, the
condition can be lowered to A0-stability [31].

B. PREDICTOR-CORRECTOR METHODS
Predictor-corrector methods proceed in two stages. The first
stage typically uses an explicit method to extrapolate the
value at the next point, and the second stage uses an implicit
method to refine the initial approximation.

Three predictor-corrector methods are tested in this
work: the Adams-Bashforth-Moulton (ABM) method and
its two variants, the semi-implicit and semi-explicit Adams-
Bashforth-Moulton methods (SIABM and SEABM, respec-
tively). The ABM method applied to (7) and (8) yields:

δ
p
i,n − δi,n−1 = ωs1t

(
3
2
1ωi,n−1 −

1
2
1ωi,n−2

)
,

1ω
p
i,n −1ωi,n−1 =

1t
2Hi

(
3
2
(Pa,i,n−1 − Di1ωi,n−1)

−
1
2
(Pa,i,n−2 − Di1ωi,n−2)

)
,

δi,n − δi,n−1 = ωs1t
(

5
12
1ω

p
i,n +

8
12
1ωi,n−1

−
1
12
1ωi,n−2

)
,

1ωi,n −1ωi,n−1 =
1t
2Hi

(
5
12

(Ppa,i,n − Di1ω
p
i,n)

+
8
12

(Pa,i,n−1 − Di1ωi,n−1)

−
1
12

(Pa,i,n−2 − Di1ωi,n−2)
)
(25)

The SEABM method modifies the last equation by
substituting Ppa,i,n with Pa,i,n, and the SIABM method
additionally substitutes 1ωpi,n with 1ωi,n. A discussion on
the numerical properties of ABM, SEABM, and SIABM can
be found in [22] and [32].

C. MERGED TRAPEZOIDAL RULE
In addition to the methods listed in Table 2 and the
predictor-corrector methods, a method called the merged
trapezoidal rule (MTR), is analyzed. The MTR is obtained
by merging (17) and (18) and eliminating the speed, which
yields:

(1+
Di1t
4Hi

)δi,n − 2δi,n−1 + (1−
Di1t
4Hi

)δi,n−2

=
ωs1t2

8Hi
(Pa,i,n + 2Pa,i,n−1 + Pa,i,n−2). (26)

where the rotor angle deviation δi,n is expressed as a function
of the two previous steps. As 1t is squared, MTR does not
follow the general form of the two-step methods expressed
by (20).

IV. CASE STUDY
The numerical methods in Table 2, along with ABM,
SEABM, SIABM, and MTR, are implemented in the
TSCOPF model described in Section II and applied to a case
representing the Iberian Peninsula transmission system. The
case is based on the Bialek European model [33], which can
be downloaded from the link provided in [34].

Fig. 2 shows the single-line diagram of the studied system,
which includes Spain and Portugal and contains 216 buses,
368 transmission lines, 75 generating units, and 143 loads
consuming 50.2 GW. The power systems of the rest of
continental Europe and Morocco are each reduced to a single
equivalent bus connected to a synchronous generator/load.
In this study, the Iberian Peninsula exports 700MW to France
and 497 MW to Morocco before the fault. The voltage limits
in (12) are set at a minimum of 0.9 p.u. and a maximum of
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FIGURE 2. Single-line diagram of the Iberian Peninsula transmission
system model.

1.05 p.u. The maximum rotor angle deviation with respect
to the COI in (16) is 110◦. The complete data, including the
parameters of the power system and the static and dynamic
constraints, can be found as supplementary material to this
document.

The original case was modified to accommodate a total
capacity of 9380 MW of wind power. Before the fault, the
wind power production was 2345 MW, which amounts to
25 % of the total wind capacity and 5.07 % of the total
generation. It has also been modified to account for the
reactive power consumption in the loads. Shunt capacitors
were added to stabilize the voltages and reduce the reactive
power flow in the lines. Six different faults are analyzed.
The first four faults are modeled as a short-circuit in a
transmission line near a substation and cleared after 200 ms
by disconnecting the affected line. Short-circuits are the most
challenging faults to analyze in transient stability studies.
However, other types of faults, such as a generator outage
and the separation of the Iberian Peninsula from the rest of
continental Europe, are also explored in this study. The fault
locations aremarked in Fig. 2. Each fault represents a relevant
incident on the power system of the Iberian Peninsula.
• Fault 1 is near a large nuclear power plant (2000 MW)
operating at full load.

• Fault 2 is close to one of the tie-lines connecting the
Iberian Peninsula to the rest of continental Europe.

• Fault 3 is next to the tie-line connecting the Iberian
Peninsula and Morocco.

• Fault 4 is close to a critical substation called LaMudarra,
which connects several lines carrying power from power
plants to the northwest to loads in the center, where the
capital city Madrid is located.

• Fault 5 is the loss of the largest operating power plant
(2580 MW) in Portugal.

• Fault 6 is the trip of the three tie-lines connecting the
Iberian Peninsula to the rest of continental Europe.

The model is written in GAMS [35] and solved using the
IPOPT solver [36]–[38] on a 64-bit personal computer with

FIGURE 3. Synchronous generator rotor angles. Fault 1.

a 3.60 GHz processor and 24.0 GB RAM. The resulting
nonlinear optimization model contains 141,868 variables
and 167,181 equality and inequality constraints using the
trapezoidal rule and a 10 ms time step.

V. RESULTS
This section compares the performance of the seven methods
listed in Table 2, ABM, SEABM, SIABM, and MTR,
when applied to differential equations (7) and (8) in the
TSCOPF model. The trapezoidal rule, which is the numerical
method used by default in TSCOPF based on simultaneous
discretization, is highlighted in black in the figures to serve
as a term of comparison. The results for Fault 1 in Fig. 2 are
discussed in detail in Subsections V-A to V-C. The remaining
faults are summarized in Subsection V-D.
Fig. 3 shows an example of the solution of the TSCOPF

model in the case of Fault 1. The dispatch provided by
TSCOPF ensures transient stability by restricting the angle
deviation of each synchronous generator with respect to the
COI. Therefore, the total generation cost of the dispatch
provided by TSCOPF is higher than the cost obtained with an
OPF and this difference can be seen as the cost of ensuring
transient stability.

Fig. 4 shows the increase in the TSCOPF total production
cost when different numerical methods and time steps
are applied to the optimization model. Unless otherwise
specified, the trapezoidal rule is used to initialize two-step
methods. The solutions tend to converge at approximately
2.4% as the time step decreases. Most of the results are
reliable with a time step of 10 ms, which is a common value
in transient stability studies.

On the other hand, as the time step increases, the transient
stability cost decreases, indicating that the solution is not
only less accurate but also less secure. This is because some
economic power plants that are more prone to causing a loss
of synchronism tend to increase their production. As a result,
large time steps might result in operating points that can be
transiently unstable during real operations.
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FIGURE 4. Increase in the TSCOPF generation cost compared to the OPF.
Fault 1.

A. TWO-STEP IMPLICIT METHODS
Fig. 4 shows that TSCOPF with the BDF(2) method fails to
converge for small time steps.

The trapezoidal rule, Simpson’s rule, AM(2), ABM,
SEABM, SIABM, and, to a lesser extent, method A produce
good results in terms of accuracy and convergence, and are
deemed suitable for TSCOPF studies. MTR, introduced in
Section III-C, provides similar results to the trapezoidal rule
for 20 ms and larger time steps, but it does not converge for
smaller time steps.

B. TWO-STEP EXPLICIT METHODS
The relatively poor properties of the explicit methods
compared with the implicit ones in terms of numerical
stability are shown in Figs. 4, 5, and 6. Fig. 4 shows that
explicit methods AB(2) and midpoint rule converge with
only small time steps. To illustrate this point, Figs. 5 and 6
show the rotor angles of the three generators near the faulted
bus provided by the TSCOPF solution using method AB(2).
As the contingency is the same, the solution should be very
similar. However, as the time step increases from 20 to 25 ms,
the rotor angles of the two generators exhibit increasing
oscillations. This is problematic because the solution in Fig. 6
can be considered valid if the results are not further inspected.
It is noteworthy that these types of false solutions can be
detected and removed by introducing additional constraints in
the TSCOPF model. On the other hand, when the time step is
sufficiently small, and AB(2) and the midpoint rule converge,
they providemore conservative results than the other methods
because their error constants are positive,as shown in Table 2.

Fig. 7 shows the CPU time required to converge to the
solution. All the methods in this figure require more CPU
time as the time step decreases because the number of
equations and variables increases in the TSCOPF model.
It can be observed that the trapezoidal rule provides the best
performance in terms of CPU time. It can also be observed
that MTR does not save much CPU time compared to the
trapezoidal rule, despite reducing the number of equations

FIGURE 5. Rotor angles of three synchronous generators near the faulted
bus. Fault 1, using method AB(2) with time step 20 ms.

FIGURE 6. Rotor angles of three synchronous generators near the faulted
bus. Fault 1, using method AB(2) with time step 25 ms.

and variables by 7.9 % and 9.25 %, respectively. ABM takes
substantially longer on the CPU than the other methods
because two extra equations are solved at each step. The
SEABM and SIABM methods can save computation time
compared with the ABM by using already computed values
instead of predicting all variables. Therefore, SEABM and
SIABM have fewer equations in their prediction stages than
the ABM. However, the CPU times of SEABM and SIABM
in TSCOPF studies are still much higher than that of AM(2),
indicating that they are not yet appropriate substitutes for
AM(2). It should be noted that all the two-step methods in
Fig. 7 are initialized using the trapezoidal rule.

C. EFFECT OF THE INITIALIZATION METHOD ON
TWO-STEPS METHODS
Different initialization methods can be used to determine the
value of x1 in (20) in two-step algorithms. This section applies
three different initialization methods – Euler’s method,
trapezoidal rule, and RK4 – to the most promising methods,
according to the previous sections. Fig. 8 shows the increase
in TSCOPF cost as a percentage of the OPF in each case.
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FIGURE 7. The CPU time for numerical methods to obtain the convergent
solution. Fault 1.

FIGURE 8. Increase in the TSCOPF generation cost compared to the OPF.
Fault 1, using different initialization methods.

The RK4 initialization offers the most accurate results,
whereas Euler initialization provides the least accurate
results. With the RK4 initialization, the two-step methods
AM(2), Simpson’s rule and method A produce better results
than the trapezoidal rule. The highest accuracy for time steps
between 8 ms and 40 ms is given by AM(2), starting with
RK4.

In addition to the sensitivity of the numerical methods
to the time step, the total CPU time is another important
factor to consider. Fig. 9 displays the CPU time vs. the
absolute value of the convergence error for methods with
different initializations. Each point in the figure corresponds
to a different time step, from 8 ms to 25 ms. To calculate
the absolute error, the generation cost of each method s is
comparedwith the generation cost of a reference solution sref ,
obtained with AM(2), RK4 initialization and a time step of
8 ms:

absolute error =

∣∣∣∣ s− srefs

∣∣∣∣× 100% (27)

The most efficient methods are those in the shaded area on
the bottom left of Fig. 9, with a small error and a short CPU
time. These methods are AM(2) with RK4 initialization and

FIGURE 9. CPU time vs absolute value of the convergence error for
different methods and time steps; Fault 1. The methods in the shaded
area show the best performance.

TABLE 3. Contingencies.

FIGURE 10. Synchronous generator rotor angles. Fault 3.

time steps of 25 and 20 ms, and Simpson’s rule with RK4
initialization and a time step of 20 ms.

D. OTHER CONTINGENCIES
Similar results are obtained when different numerical meth-
ods are applied to other contingencies. Table 3 shows the
increase in the TSCOPF total production cost, CPU time,
and the number of iterations obtained by the Adams-Moulton
method using the RK4 initialization and a time step of 25 ms.

Fault 2 is close to the easternmost tie-line between Spain
and France. This fault results in a cost increment of 2.51 %,
because part of the generation is re-dispatched to ensure that
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TABLE 4. Summary of the investigated numerical methods.

the Iberian Peninsula system does not lose synchronism with
the rest of continental Europe. As shown in Table 3, the
solution to this fault requires significant computational effort
in terms of the CPU time and iterations.

Fault 3 is close to the tie-line between Spain and Morocco.
When the stability limit represented by (16) constrains the
angle of the bus representing Morocco, there is no feasible
solution. As a result, Morocco’s aggregated bus is removed
from (10) and (16), providing a solution in which the transient
stability constraint is not violated, but the Moroccan system
should be disconnected from the Iberian grid, as shown in
Fig. 10. There is no cost increase due to Fault 3 in the case of
the disconnection of Morocco.

Fault 4, regarded as a typical security issue in the Iberian
Peninsula, does not violate the stability limits and, therefore,
does not result in a re-dispatch of power production.
Therefore, this fault is not a critical contingency in the studied
scenario.

Faults 5 and 6 are the only studied incidents that are not
short-circuits. Fault 5 is the loss of the largest operating
power plant (2580 MW) in Portugal, leading to a 5.06 % cost
increase owing to the resulting power imbalance. Fault 6 is
the disconnection of the Iberian Peninsula from the rest of
continental Europe, which increases the cost by 2.82 %.

Finally, the algorithms have been tested for different
convergence starting points in voltages, angles, and active and
reactive powers. The results are identical when different con-
vergence starting points are applied to the same model, and
the CPU time and the number of iterations are very similar.

VI. CONCLUSION
The main result of this study is that two of the stud-
ied methods outperform the trapezoidal rule, which has
been, until now, the default method in TSCOPF models
based on simultaneous discretization. These methods are
Adams-Moulton of order two and Simpson’s rule, both with
RK4 in the initialization stage. The improvement they provide
in terms of computing time and accuracy is best seen in Fig. 9.

The results also show that most methods converge and
provide reasonably good results when a time step of 10 ms is
used, which is typical in transient stability studies. However,
the explicit methods fail to converge for time steps greater

than 20 ms, and their application to the TSCOPF model can
hide numerical instabilities. On the other hand, the implicit
methods, except for the backward differentiation formula
of order 2, converge for time steps as large as 50 ms.
Consequently, the implicit methods with relatively large time
steps can mitigate the computational burden of TSCOPF
problems. Furthermore, it is shown that the newly formulated
semi-explicit and semi-implicit predictor-corrector methods
are not considerably more efficient than AM(2) in TSCOPF
studies. Table 4 summarizes the performance of the numerical
methods throughout the study and their main advantages
and limitations. Finally, applying the TSCOPF model to
the Iberian Peninsula system helped to identify faults
that significantly impact the total generation cost. Three
significant faults are found in the northeastern area of the
analyzed system: one is a short-circuit near a large generator,
the other is a short-circuit near a tie-line connection with
France and the rest of continental Europe, and the third is a
total disconnection of the Iberian Peninsula from the rest of
continental Europe.

More studies on other real power systems could be useful
to confirm these results, but there are no indications that
the results will be different. In the future, new developments
in mathematical integration methods must be evaluated for
application in TSCOPF studies.
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