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ABSTRACT Emotion perception is critical for behavior prediction. There are many ways to capture
emotional states by observing the body and copying actions. Physiological markers such as electroen-
cephalography (EEG) have gained popularity, as facial emotions may not always adequately convey true
emotion. This study has two main aims. The first is to measure four emotion categories using deep learning
architectures and EEG data. The second purpose is to increase the number of samples in the dataset.
To this end, a novel data augmentation approach namely the Extreme Learning Machine Wavelet Auto
Encoder (ELM-W-AE) is proposed for data augmentation. The proposed data augmentation approach is
both simple and faster than the other synthetic data augmentation approaches. For deep architectures,
large datasets are important for performance. For this reason, data multiplexing approaches with classical
and synthetic methods have become popular recently. The proposed synthetic data augmentation is the
ELM-W-AE because of its efficiency and detail reproduction. The ELM-AE structure uses wavelet activation
functions such as Gaussian, groove gap waveguide (GGW), Mexican, Meyer, Morlet, and Shannon. Deep
convolutional architectures classify EEG signals as images. EEG waves are scalograms using Continuous
Wavelet Transform (CWT). The ResNet18 architecture recognizes emotions. The proposed technique uses
GAMEEMO data collected during gameplay. Each of these states is represented in the GAMEEMO data
collection. The visual data set created from the signal was divided into two groups 70% training and 30%
testing. ResNet18 has been fine-tuned with augmented photos, training images only. It achieved 99.6%
classification accuracy in tests. The proposed method is compared with the other approaches on the same
dataset, and an approximately 22% performance improvement is achieved.

INDEX TERMS Auto-encoder, data augmentation, deep learning, emotion recognition, emotion
measurement.

I. INTRODUCTION
Emotion is an abstract term that is described as a reaction
to external and internal stimuli and expresses human con-
sciousness. In recent years, emotion detection has been a
popular research area. However, the concept of abstraction
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contained within it has made it difficult to comprehend peo-
ple’s emotional states [1]. When the studies are examined,
there is a tendency for two headings in emotion recogni-
tion. The first is a discrete model that distinguishes between
positive and negative emotions. Joy, anger, anticipation, sur-
prise, disgust, sadness, confidence, and fear are the eight
primary emotions in the discrete models [2]. The second one
is the dimensional model. The dimensional model has been
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looked at under Russell and Plutchick model. The first is
Russell’s arousal-valence coordinate system, which divides
emotions into four sections on the coordinate plane, with the
left side representing negative emotions and the right side
representing positive emotions. On the other side, the arousal
axis shows the progression of emotions from sedentary to
active [3]. The wheel of emotion described by Plutchick
is another dimensional paradigm [4]. Emotions are ranked
according to their intensity on the emotion wheel. In addition,
in this concept, emotions combine to form complex emotions.
However, the difficulty of some languages to convey every
feeling generated by this wheel calls into question themodel’s
universality.

While several studies have been conducted on emotion
detection based on facial expressions, its reliability has been
questioned. The fact that facial expressions can be imitated,
meaning that the real emotion felt on the inside is conveyed
or silenced differently with gestures and facial expressions,
has harmed the studies’ accuracy [5]. This has conducted
emotion detection toward physiological signals like EEG and
electrocardiogram (ECG) [6]–[8]. EEG records the electrical
activity via electrodes on the scalp in the brain. The monitor-
ing of conscious brain activities obtained from EEG signals
and the identification of human emotions has been facilitated
using Brain-Computer Interface (BCI) technology [9].

While the researchers have focused on deep learning in
emotion recognition, the data sets’ scarcity has become a
significant limitation. Today, studies in many disciplines are
carried out on data sets obtained from research areas. In some
cases, data sets are sufficient for modeling the situation,
while sometimes they are insufficient in terms of the number
of samples. The number of samples in the data set is sig-
nificant for many classification methods [10]. This number
has a significant impact on classifier generalization capacity
and accuracy. The term ‘‘data augmentation’’ is come up to
describe methods for creating iterative optimization or sam-
pling algorithms using unobserved data or hidden variables
as a result of this need [11]. Various methods for increasing
data are available in the literature.

The amount of data available, particularly in medical
fields, is limited, and obtaining it is expensive. Furthermore,
the amount of data obtained is inadequate and inconsistent
for most scientific fields due to factors such as the inability
to access previously generated data and the time-consuming
data collection process. In addition to these limitations, the
amount of data is of great importance in achieving the
desired goal in deep architectures, which have increased their
popularity day by day. There are several different ways to
acquire new data pieces using conventional data augmenta-
tionmethodologies, such as taking the symmetry of the image
based on various axes, cutting out a random sample piece
from the image, changing the axes’ location, changing the
color ratios in the image, noise addition and so on [12], [13].
The model’s propensity to memorize has been avoided thanks
to this multiplication/increment. Although these methods can
be used to perform operations like object detection, they don’t

always produce beneficial results in photos. Recently, some
methods such as Variational Auto-Encoder (VAE), Genera-
tive Adversarial Nets (GAN), and Extreme LearningMachine
Auto Encoder (ELM-AE) have attracted attention in terms of
generating real data [11], [14], [15].

The key objective of this study is to present a reliable
method for EEG-based emotion recognition. The proposed
method is based on the conversion of signals to images, data
augmentation, and deep learning. Additionally, the approach
is predicated on two major scenarios. In the first scenario,
signal-to-image conversion and deep learning steps are used
to transform the original data. In the alternative scenario,
images obtained following the signal-to-image conversion
step are synthetically enhanced and then subjected to deep
learning steps. Separate scenarios of retesting the data follow-
ing synthetic enhancement were examined. The CWTmethod
is used to convert the signal to the image. The synthetic data
were obtained using the wavelet-based ELM-AE structure,
which will be referred to as ELM-W-AE throughout the
remainder of the article. In the experiments, the proposed
approach is validated against a variety of wavelet functions,
including Gaussian, GGW, Mexican, Meyer, Morlet, and
Shannon. Six different wavelet functions were used to gen-
erate synthetic data, and the effect of wavelet structure on
performance was investigated. For classification, deep learn-
ing is preferred. The advantage of synthetic data acquisition is
that it enables learning and training for the desired deep archi-
tectural structure. The proposed method has been validated
against the GAMEEMO dataset. In the GAMEEMO dataset,
EEG signals were collected while subjects participated in
emotional evaluation games. The GAMEEMOdataset is used
to detect emotions using the ResNet18 architecture. The
ResNet18 model is used in a fine-tuned transfer learning
format. The final three layers of the pre-trained ResNet18
model are altered to address our issue.

So, in this study, a different data augmentation approach
namely ELM-W-AE is presented for data augmentation. The
proposed data augmentation method is both uncomplicated
and faster compared to previous synthetic data augmenta-
tion methods. Furthermore, the proposed method produces a
higher accuracy score than the other approaches due to the
proposed data augmentation methodology.

The rest of the paper is organized as follows. Section II
includes the literature review on emotion recognition, data
augmentation and the most commonly used datasets in the lit-
erature. Section III consists of a detailed explanation of the
proposed method. Section IV includes the dataset used in the
study experimental studies, their results, and a comparison
of its with other studies, Section V provides results for the
conclusion of the study.

II. RELATED WORKS
The related works are arranged in threes sub-section. The
related works about emotion recognition are detailed in the
first sub-section. The second sub-section listed AEworks that
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used data augmentation. Emotion recognition data sets are
briefly described in the final sub-section.

A. LITERATURE REVIEW ON EMOTION RECOGNITION
The authors of [16] wanted to see if brain signals might
be exploited to discern emotions. 28 people were asked to
play five-minute games with an EMOTIV EPOC + wear-
able 14-channel EEG interface. These games monitored
participants’ EEG data for 20 minutes and contained four
emotions: boredom, calm, horror, and fear. The discrete
wavelet transform (DWT) was used to analyze the signals’
time frequency. A Second-order Daubechies filter was used
to recover D1-D4 data and A4 approximation coefficients.
Feature extraction included detrended fluctuation analysis,
Shannon entropy, standard deviation, variance, and zero tran-
sitions. The EEG channels were categorized using Support
Vector Machine (SVM), K-Nearest Neighbors (k-NN), and
multilayer perceptron neural network (MLPNN) classifiers
based on positive-negative emotion prediction and arousal-
valence dimension conditions. The best classification accu-
racy rates were 75.0 for k-NN, 72.2 for SVM, and 82.2 for
MLPNN. In [5], the researchers used a 32-channel EEG
equipment to capture signals from 44 subjects to establish a
new dataset. The EEG signals were recorded throughout 12
films, three of which were happy, scary, sad, or neutral. The
signals are then adjusted to zero mean and unit variance using
a DWT. The retrieved parameters such as average amplitude
change, absolute square root sum, and root mean square
were used to classify the four emotions. The FP1-F7 chan-
nel’s gamma sub-band had the best ELM performance, with
94.7% accuracy. [17] used an online semi-supervised learning
method to recognize emotions from EEG signals. 14-channel
EEG data from 28 subjects playing four distinct video games
were analyzed using the Fourier spectrum. The collected
features showed the Evolving Gaussian Fuzzy Classification
(eGFC)’s efficiency in real-time learning of EEG data, with
72.2 percent performance for four category classifications
using the arousal-valence method. According to [9], BCI
technologies are employed as an interface between sensors
and the brain. A Spiking Neural Network (SNN) was used
to analyze the Database for Emotion Analysis using Physio-
logical Signals (DEAP) data [18] and 60 EEG samples. The
method is recommended because the SNN neuron structure
is more realistic than the Artificial Neural Network (ANN).
On average, 84.6% of the valence mood level was correctly
identified using the SNN architecture NeuCube. [19] cre-
ated an EEG-based emotion identification system using frac-
tal pattern feature extraction. The 14-channel GAMEEMO
data collection was decomposed using a fractal design and
Tunable Q-factor Wavelet Transform (TQWT). An Iterative
Chi-square Selector (IChi2) was utilized for feature extrac-
tion. The model was tested using 10-fold cross-validation
using linear discriminant analysis (LDA), k-NN, and SVM.
The SVM classifier had the greatest accuracy of 99.8%.
[20] proposed an arousal-valence-based real-time emotion
classification system for four emotional classes. DEAP’s

10-channel EEG recordings were acquired by first dividing
them into overlapping intervals of 2-4 seconds duration. With
k-NN (k = 3), arousal classification accuracy is 86.8% and
valence is 84.1. The study also claims it is more accurate
than higher frequency bands, especially the gamma band.
The authors used EEG signals from their own GAMEEMO
data set in [21]. The data were utilized to distinguish positive
and negative emotions. The investigation began with deter-
mining the signals’ spectral entropy. Then the classifier gets
the values. The deep bidirectional long-short term memory
(BiLSTM) architecture was employed as a classifier. The
approach yielded 76.91 percent accuracy and a 90% Receiver
operating characteristic (ROC) score.

B. LITERATURE REVIEW ON DATA AUGMENTATION
In [22], three alternative methods were used to attempt to
tackle the problem of insufficient data in EEG emotion recog-
nition: VAE, GAN, and classical. According to the authors,
they achieved the best results with GAN in trials using the
DEAP [18] dataset and Shanghai Jiao Tong University Emo-
tion EEG Dataset (SEED) [23]. They improved performance
by over 10% during the test phase of their networks trained
with SVM and deep architectures. In [24], they aimed to gen-
erate more data to increase the performance of the classifier.
They proposed a model that duplicates data from ELM-AE
images in their paper. They stated that they chose the auto-
encoder approach over other data augmentation strategies
because it was simpler and more efficient. They tested their
methods on The Japanese Female Facial Expression (JAFFE)
dataset [25], which contains Japanese female facial expres-
sions, and looked at the impact of data enhancement on
results, using k-NN, SVM, and Convolutional Neural Net-
works (CNN). They stressed that their approach was a viable
alternative for data enhancement tasks and that it produces
better results in most cases than other common strategies,
according to the findings. In [26], a data enhancement and
feature extraction method using a VAE for acoustic modeling
is described. The authors declared that the VAE was a helpful
model based on variational Bayesian learning and a deep
learning framework. A VAE can generate new information
by extracting hidden values of input variables. VAE was a
popular method for building images and sentences. A VAE
was used to improve speech structure data for acoustic mod-
eling and feature vector extraction from their research. The
size of a speech ensemble was doubled by using a VAE
system to encode the hidden variables extracted from the
original expressions. Latent variables inferred from speech
waveforms are said to have concealed ‘‘meanings’’ of the
waveforms, allowing them to be used as acoustic properties
for automatic speech recognition (ASR). They used a VAE
system to show the efficacy of data augmentation and that
latent variable-based features can be used in ASR in their
research. In [27], a two-stage model is proposed to improve
the recognition rate by examining a data set of documents
containing Japanese letters. The model’s first step was to
figure out how to distribute data and fit the shape vectors of
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the characters on the page, while the second is to generate new
examples. The study’s VAE structure was created to divide
data diversity into regions, create simple examples of in-
classmulti-modality, and avoidmode reduction. They accom-
plished this by organizing the VAE model and proposing a
gradual and unregulated feature extraction structure for the
VAEmodel. The CNN-based classification network achieved
94.02% efficiency for the non-multiplexed data set, while this
rate could be improved to 95.56% for themultiplexed data set.
It is viewed as the study’s focal point, where the recognition
rate was increased by using an enriched data collection.

C. DATASETS ABOUT EMOTION RECOGNITION
With three primary stimuli aspects, it is possible to man-
age the emotion recognition system, whose research and the
application field are expanding by the day. Audio, visual, and
audio-visual are the three types. These categories were used
to build datasets, and the studies’ accuracy was comparable.
• The Belfast facial expression dataset was developed to

explore gender, cultural, and individual variations in emotion
interpretation from TV shows and interview recordings [28].
• The Human-Machine Interaction Network on Emotion

(HUMAINE) dataset has been developed, including vari-
ous scenarios in terms of emotion recognition, audio-visual
recordings, and an expanded version of Belfast [29].
• The MAHNOB physiological dataset was developed,

including sound signals, mimics, and EEG signals [30].
• A 32-channel ECG and a MAHNOB HCI dataset con-

taining EEG signals, which evaluate the participants’ feelings
after the movie according to the valence-arousal scale, were
created [31].
• The Interactive Emotional Dyadic Motion Capture

(IEMOCAP) audio-visual dataset was developed, which
communicates emotional states such as happiness, frustra-
tion, sadness, disappointment, and neutrality and was col-
lected from participants due to a double session [32].
• The VAM (Vera AmMittag) dataset was generated using

audio-visual recordings, including the participants’ natural
responses during a TV show [33].
• The DEAP audio-visual dataset was created based on

32-channel valence-arousal scale using music clips in the
environment [22].
• The eNTERFACE dataset has been developed, which

contains audio-visual recordings from various countries and
includes tags for enjoyment, rage, sadness, surprise, disgust,
and panic [34].

III. PROPOSED METHOD
In this paper, a novel approach is proposed for EEG-based
emotion recognition. Fig. 1 shows the arousal-valence emo-
tion model that is considered. As seen in Fig.1, excited,
happy, and pleased emotions are in the region that is indicated
by high-arousal-positive-valence (HAPV). Annoying, angry,
and nervous emotions are in the region high-arousal-negative-
valence (HANV) and similarly, sad, bored and sleepy emo-
tions are located in the region low-arousal-negative-valence

FIGURE 1. Arousal-valence emotion model.

(LANV). Lastly, calm, peaceful, and relaxed emotions are in
the area low-arousal-positive-valence (LAPV). Through the
arousal axis, the feeling of emotions changes from high to
low. Likewise, in the valence axis, the emotions are changed
trough negative to positive. In addition, the four games
labeled boring (B), calm (C), horror (H), and funny (F) in the
dataset used correspond to LANV, LAPV, HANV, andHAPV,
respectively.

In Fig.2, the illustration of the ELM-W-AE method is
given. As seen in Fig. 2, the input EEG signals are initially

FIGURE 2. An example of EEG to CWT scalogram images and ELM-W-AE
data augmentation.
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converted to CWT scalogram images. The following formula
is used to transform a function x (t) given a mother wavelet
ψ (t) through CWT:

X (a, b) =
1
√
a

∫
∞

−∞

ψ

(
t − b
a

)
x (t) dt (1)

where a denotes the scale or dilation parameter related with
frequency, and b is the shifting parameter that denotes the
time information in the transform [35].

The wavelet used for CWT is the analyticMorse wavelet as
it has better time-frequency localization. For Morse wavelet
symmetry parameter (gamma) and time-bandwidth product
were kept at 3 and 60 respectively. Voices per octave were
kept 10 [36].

The analytic Morse wavelet is utilized for CWT because it
has greater time-frequency localization [37]. The symmetry
parameter (gamma) and time-bandwidth product for Morse
wavelets were preserved at 3 and 60, respectively. The num-
ber of voices per octave was chosen as 18 which is best
in case of our EEG emotion recognition experiments. Thus,
a scalogram image 222× 38252 sized was constructed from
an EEG signal.

Then, the scalogram images are normalized and resized to
224×224 for being appropriate for the input of the next build-
ing block. Initially, the scalogram images are in grayscale
and are then converted to the color images by assigning the
grayscale image in the color channels of a new image. After
the previous procedure, the dataset is constructed. A data
augmentation procedure comes after the data construction.
To this end, the ELM-W-AE is considered. Various wavelet
kernels are used in ELM-AE architecture. The wavelet func-
tions are briefly explained in Section III.A.

After data augmentation, deep transfer learning is used
in the classification stage of the proposed method. The pre-
trained ResNet18 model, which has 18 layers, is further
trained (fine-tuned) in the classification procedure. The flow
of the process is given in Fig. 3.

FIGURE 3. ELM-AE architecture representation.

A. WAVELET BASED EXTREME LEARNING
MACHINE AUTO-ENCODER
The AE is an unsupervised learning system in which the input
data are often used as output data [40]. It is made up of two

parts: encoder and decoder. The input data are projected to
the hidden layer in the encoder section, and an estimate of
the input data is obtained in the decoder part. In the AE, the
input XN×w is initially encoded to a higher-level space and
then an approximation of the input X

′

N×w is obtained by using
the encoded input X . Figure 4 shows the architecture of the
ELM-AE structure.

FIGURE 4. The residual unit.

By using the wavelet kernel ψ , the hidden layer output
matrix Hψ of size N × K is re-defined as:

Hψ =

ψ
(
aT1 x1 + b1

)
. . . ψ(aTK x1 + bK )

...
. . .

...

ψ(aT1 xN + b1) . . . ψ(aTK xN + bK )


N×K

(2)

where x is inputs of ELM-AE, a and b denote the input
weights and biases of hidden neurons, respectively.N denotes
the training data number and K symbolizes the number of the
hidden neurons. The Morlet, Gaussian, Mexican, Shannon,
Meyer and GGW wavelet activation functions are defined in
Table 1 [41], [42].

TABLE 1. Wavelet kernel types and their functions.

Similar to the ELM algorithm, the output weights β of
the ELM-W-AE are calculated by using the Moore-Penrose
inverse [37], [42]:

β = H ′X (3)

where H ′ is the Moore-Penrose inverse of H and X is given
input data.

B. ResNet18 ARCHITECTURE
In image classification, ResNet18, which was introduced
for the problem of performance degradation with increasing
depth, is frequently preferred [43]. ResNet18 could develop
deep network architectures with this property by using resid-
ual units depicted in Figure 5.
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FIGURE 5. The illustration of the proposed method.

Assuming that the neural network’s input parameter is x
and the target output is h(x), the target output is likely to
be extremely complex. In this case, residual F(x) = H(x)-x
changes the goal output to F(x)+ x to avoid the performance
deterioration problem caused by toomany convolution layers.
This is referred to as a short link. These mentioned linkages,
which can perform identitymatching by avoiding two ormore
levels, are defined as [44];

xl+1 = f [xl + F(xl, kt)] (4)

In this equation, xl and xl+1 represent the input and output
of the first residual unit, respectively, the active function f, the
residual function F, and the convolution kernel k.

IV. EXPERIMENTAL WORKS AND RESULTS
A. GAMEEMO DATASET
The GAMEEMO dataset was developed by Alakus et al.
using EEG signals collected from participants while playing
video games using a wearable-portable system with 14 EEG
channels [16]. The GAMEEMO dataset will be used to test
the methods used in the analysis to achieve the emotion
recognition objective. EEG signals were collected with the
EMOTIV EPOC + Mobile EEG device from 28 students
between the ages of 20-27 in the Software Engineering
Department of Firat University Faculty of Technology. On the
scalp, EEG electrodes were placed in 16 different regions as
AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8,
AF4, P3, and P4. Since P3 and P4 are reference electrodes,
a 14-channel EEG device is used. The device’s sampling
rate was set to 128 Hz, and the signal bandwidth was set to
0.16 - 43 Hz. The participants played four different computer
games categorized as boring, calm, horror, and funny for five

minutes each, yielding a total of 20 minutes of EEG data from
each participant.

The EEG signal is containing 38,252 samples within
the period. In addition, the four games labeled boring (B),
calm (C), horror (H) and funny (F) in the dataset used corre-
spond to LANV, LAPV, HANV and HAPV, respectively.

B. RESULTS
The experimental works were carried out on MATLAB. The
14-channel EMOTIV EPOC+, a wearable and compact EEG
unit, was used to capture EEG signals from 28 different
subjects. Subjects played four separate video games for five
minutes each to catch emotions (boring, quiet, horror, and
funny), with a total of 20 minutes of EEG data available
for each subject. The participants scored every video game
on a scale of arousal and valence. The participants used
the Self-Assessment of Manikin (SAM) type to score each
video game on a scale of arousal and valence [16]. During
the scalogram image construction, the scale parameter of the
CWT is chosen empirically as twelve. The obtained dataset
was randomly divided into two parts, where 70% of it was
used for training, and the rest 30%, was used for testing the
proposed approach and stayed constant in the process of the
experiments. The training images only were augmented with
ELM-W-AE by using Gauss, GGW,Mexican,Meyer, Morlet,
and Shannon wavelet functions.

The training images increased by six times, which is
including the originals. The ResNet18 was fine-tuned by
using the stochastic gradient descent optimizer method
(SGDM), where the input batch size, number of epochs,
and the initial learning rate parameters were set to 32, 30,
and 0.05, respectively. The achievement of the proposed
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method was evaluated based on the various evaluation met-
rics, such as accuracy, sensitivity, specificity, precision,
F1-Score, Mathew correlation coefficient (MCC), and Kappa
[45], [46].

Also, ROC curve, which is defined as a plot of test sen-
sitivity or true positive rate (TPR) as the y-axis versus its
1-specificity or false positive rate (FPR) as the x-axis, is a
useful tool for assessing the quality or performance of medi-
cal diagnostic tests. It’s widely used in radiology to assess the
performance of many classifiers tests [47].

Area Under the ROC Curve (AUC) is a measure of a
diagnostic test’s overall performance, defined as the average
value of sensitivity for all conceivable values of specificity.
AUC can have any value between 0 and 1, with a higher value
indicating greater overall diagnostic test performance [48].

The obtained results were represented in Table 2. The
columns of Table 2 show the performance metrics, and the
rows show the methods that were used. In the first row
of Table 2, the results, which were obtained without data
augmentation, were given. As seen in Table 2, without data
augmentation, 77.66% accuracy, 77.66% sensitivity, 92.55%
specificity, 77.96% precision, 0.78 F1-score, 0.70 MCC and
0.40Kappa valueswere obtained. In the other rows of Table 2,
the results with data augmentation were given. As seen in the
other rows, various activation functions were examined in the
data augmentation case.

TABLE 2. The classification results for original and augmented images.

When one examined the ELM-W-AE based data aug-
mentation of results, obvious performance improvements
were noticeable. The improvement ratio was almost over
20% for all activation functions. The best evaluation scores,
99.574% accuracy, 99.621% sensitivity, 99.862% specificity,
99.53% precision, and 0.996 F1- score, and 0.994 MCC
and 0.989 Kappa values obtained for the GGW activation
function. Besides, the Meyer activation function produced
the second-best evolution scores, where 99.362% accuracy,
99.444% sensitivity, 99.780% specificity, 99.421% precision,
and a 0.994 F1-score 0.992 MCC and 0.983 Kappa values
were obtained. It is worth mentioning that the Shannon kernel
produced the worst evaluation metrics.

In Fig. 6 and 7, the ROC curve presentation and the confu-
sion matrix were given for the original dataset (without data

FIGURE 6. The ROC curves for original images.

FIGURE 7. The confusion matrix for original images.

augmentation). In Fig. 6, while the x-axis shows the false-
positive rates, the y-axis shows the true-positive rates. Each
ROC curve shows an emotion where different colors were
used.

As seen in Fig. 6, all ROC curves raised through to the
0.8 true positive rate value in the 0-0.1 range of the false
positive rate. Then, they went to the one true positive rate
value when the false positive rate was one.

As mentioned earlier, Fig. 7 shows the confusion matrix
for the original dataset. For the confusion matrix, the rows
show the true class, and the columns show the predicted class.
As seen in Figure 7; 92, 92, 93, and 88, test samples from the
HANV, HAPV, LANV, and LAPV classes were correctly pre-
dicted, respectively. In addition, 27, 28, 34, and 16 test sam-
ples were wrongly predicted for the HANV, HAPV, LANV,
and LAPV classes, respectively.

ROC curves for the HANV, HAPV, LANV, and LAPV
classes are given in Fig. 8. The GGW activation function was
used in ELM-W-AE. Besides, the confusion matrix for GGW
activation function is given in Fig. 9. The illustrations for
GGW activation function are given as that activation function
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FIGURE 8. The ROC curves for data augmentation with GGW activation
function.

FIGURE 9. The confusion matrix for data augmentation with GGW
activation function.

TABLE 3. Individual class results for original images.

yielded the best performance among the other activation func-
tions.When Fig. 8 is examined, it is seen the false positive rate
is around zero, while the curves increased by one true positive
rate for all four classes. This shows an huge area under ROC,
whichmeans high performance. It was observed that the ROC
curves immediately rose along the true positive velocity axis
for all classes, and almost all classes were classified with
100% accuracy, creating a nearly 90-degree gap with the
false-positive velocity axis.

When the confusion matrix that is given in Fig. 9 is ana-
lyzed, it is seen that HANV andHAPV classes were classified
with 100% accuracy scores. Besides, for LANV and LAPV
classes one sample in each was wrongly classified.

TABLE 4. Individual class results for ELM-W(Gauss)-AE images.

TABLE 5. Individual class results for ELM-W(GGW)-AE images.

TABLE 6. Individual class results for ELM-W(Mexican)-AE images.

TABLE 7. Individual class results for ELM-W (Meyer)-AE images.

TABLE 8. Individual class results for ELM-W (Morlet)-AE images.

In Tables 3-9, the evaluation metrics for each class for
original and the examined activation functions are given.
While Table 3 shows the results for the original dataset,
Tables 4-9 show the performance evaluation metrics for an
individual class for Gauss, GGW, Mexican, Meyer, Morlet,
and Shannon activation functions, respectively. In Table 3, the
results for the original dataset are given. As seen in Table 3,
78.63%, 77.97%, 78.81%, and 75.21% correct classification
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TABLE 9. Individual class results for ELM-W (Shannon)-ae images.

rates are obtained for HANV, HAPV, LANV, and LAPV
classes, respectively. Table 3 also gives the other evaluation
metrics for the mentioned individual classes.

Table 4 indicated the evaluation scores for each class
for the Gauss activation function. As seen in Table 4, data
augmentation highly improved the obtained results, where
100%, 97.83%, 97.87% and 99.19% correct classification
rates were obtained for HANV, HAPV, LANV and LAPV
classes, respectively. The other evaluation metrics were also
increased when the ELM-W-AE based data augmentation
was considered.

Table 5 indicated the evaluation scores for each class for
the GGW activation function. As seen in Table 5, using the
GGW activation function, the results of the original dataset
were highly improved. Besides, the GGW activation function
produced better results than the Gauss activation function.
100%, 100%, 99.29%, and 99.19% correct classification rates
were obtained for HANV, HAPV, LANV, and LAPV classes,
respectively.

Table 6 indicated the evaluation scores for each class for
the Mexican activation function. Using Mexican activation
function, 100%, 97.82%, 97.87%, and 98.39% correct clas-
sification rates were obtained for HANV, HAPV, LANV,
and LAPV classes, respectively. The results obtained by
the Mexican activation function were also worse than the
achievements of the GGW activation function.

Table 7 shows the evaluation scores for each class for
the Meyer activation function. The Meyer activation func-
tion produced similar scores to the GGW activation function
where 100%, 100%, 98.58%, and 99.19% correct classifi-
cation rates were obtained for HANV, HAPV, LANV, and
LAPV classes, respectively.

Table 8 shows the evaluation scores for each class for
the Morlet activation function. With the Morlet activation
function 99.12%, 100%, 96.45%, and 99.19%, correct clas-
sification rates were obtained for HANV, HAPV, LANV, and
LAPV classes.

Lastly, Table 9 shows the evaluation scores for each class
for the Shannon activation function. By using the Shannon
activation function, 99.12%, 98.91%, 97.8% and 97.58%
correct classification rates were obtained for HANV, HAPV,
LANV, and LAPV classes, respectively.

C. COMPARISON WITH OTHER METHODS
Existing studies using the same dataset have been compared
to our suggested technique in this section. Alakus et al. [16]

TABLE 10. Studies with the same dataset.

proposed the GAMEEMOdataset used in this study.We com-
pared three research publications utilizing the data set with
our technique [16], [19], [21]. Table 10 shows performance
comparison results.

Alakus et al. [16] was investigated classification accuracy
at the channel level and obtained that the average accuracy
rates for k-NN, SVM, and MLPNN were 75.0%, 72.2%, and
82.2%, respectively. Tuncer et al. [19] reported an average
accuracy of 98.3% for k-NN, 87.2% for LDA, and 98.9%
for SVM in their channel-based research. Alakus et al. [21]
obtained 76.9% success with the Bidirectional long short-
term memory (BiLSTM) approach in their subsequent
analysis with the same dataset. Our method fared better clas-
sification accuracy when compared to the average accuracy
rates of the three current approaches. Our research with the
ELM-AE structure, combined with wavelet function types
individually, yielded a classification success rate of 99.6%
using the ResNet18 design.

V. CONCLUSION
In this paper, a novel approach was proposed for data aug-
mentation. The proposed method was based on the ELM-W-
AE. Various activation functions abilities were examined for
the EEG-based emotion classification. The following conclu-
sions are inferred from the experimental works.

1-) Initially, it was observed that the data augmentation was
quite effective in EEG-based emotion classification. With
data augmentation, almost 20% improvement in accuracy
score was observed.

2-) When the achievements of the various activation func-
tions were examined in the ELM-W-AE structure, it was seen
that GGW activation function produced the best evaluation
scores.

3-) Except Morlet and Shannon activation functions, for
all other activation functions, the HANV class was classified
with a 100% accuracy score. As it is seen that the best emotion
prediction is for the HANV class, which includes annoying,
angry, and nervous emotions. It is seen that the next best
class prediction is in the HAPV class, which includes excited,
happy, and pleased emotions.
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