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ABSTRACT Recently, as deep learning has been applied to various fields, deep-learning-based side-channel
analysis (SCA) has been widely investigated. Unlike traditional SCA, it can perform well independently of
the attacker’s ability. In this paper, we propose deep-learning-based profiled and non-profiled SCA of PIPO,
(Plug-In Plug-Out), which is a bitslice block cipher that can effectively apply a countermeasure for SCA. Our
datasets were captured from three different boards (XMEGA128D4, MSP430F2618, STM32F303) running
PIPO-64/128. For profiled SCA, the identity (ID) labeling method exhibited better performance than the
most significant bit (MSB) and hamming weight (HW) labeling methods. That is, even if each bit of the
S-Box output was distributed in the power traces by the bitslice implementation, the neural network trained
well each bit of the S-Box output by itself. For non-profiled SCA, we proposed a novel labeling technique
that considers bitslice characteristics. We compared our proposed labeling method to MSB and HW labeling
by analyzing the three aforementioned datasets. For non-profiled SCA, the proposed labeling method was
more effective than the MSB and HW labeling methods on all datasets.

INDEX TERMS Side-channel analysis, deep learning, bitslice implementation, block cipher, PIPO, profiled
SCA, non-profiled SCA.

I. INTRODUCTION
Recently, with development of IoT devices, studies of
light-weight block cipher that can be used in a limited envi-
ronment are growing, and then traditional analysis has been
observed accordingly [1]. Also, A light-weight block cipher
used in an embedded environment such as the IoT devices
may have weaknesses in the side-channel analysis. Side-
channel analysis (SCA) was proposed by Kocher in 1996 [2]
and obtains secret information (e.g., secret keys) by exploit-
ing the side-channel information (e.g., sound, electromag-
netic leaks, power consumption) generated when encryption
is performed on the target device. Power consumption-based
SCA is divided into two categories: profiled SCA and non-
profiled SCA.

The associate editor coordinating the review of this manuscript and
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Profiled SCA creates a profile using a controllable pro-
filing device similar to the target device, and obtains secret
information by matching the power traces obtained from the
target device with the profile, e.g. template attacks (TA) [3].
Non-profiled SCA obtains secret information through statisti-
cal analysis on power traces generatedwhen a fixed secret key
and random plaintext are encrypted on the target device, e.g.
correlation power analysis, differential power analysis [4].

In traditional SCA, effectiveness is largely dependent on
the attacker’s ability, such as selecting PoI (Point of Inter-
esting) related to the secret information or the application
of additional preprocessing techniques. Therefore, recnetly,
SCA techniques using neural networks such as multi layer
perceptron (MLP) and convolutional neural network, have
recently been proposed to reduce the dependency on the
attacker’s ability [5]–[7]. Deep-learning (DL)-based profiled
SCA predicts the secret key from attack power traces using
trained neural networks, while DL-based non-profiled SCA
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determines the secret key using the learning level (e.g., accu-
racy, loss) of neural networks for each candidate key.

DL-based profiled SCA uses the intermediate value to
which the labeling method is applied as the label of the
profiling dataset. Labelingmethods are generally divided into
the hamming weight (HW) [8] and identity (ID) methods [7],
[9], [10]. In [11], [12], the performance of the two labeling
methods (HW, ID) was compard. The results indicated that
HW performed better than ID for fewer layers. However,
HW had the problem of imbalanced data for each class, and
its performance was lower on datasets with countermeasures.

DL-based non-profiled SCA was proposed by Timon in
2019, and analysis was performed on the AES ASCAD
dataset using the most significant bit (MSB), least signifi-
cant bit (LSB), and HW labeling of the S-Box output [13].
In addition, in other studies, DL-based non-profiled SCAwas
also performed using the MSB, LSB, or HW label of the
target block cipher’s S-Box output [14]–[18]. Unlike tradi-
tional non-profiled SCA, in DL-based non-profiled SCA, bit
models such as MSB and LSB exhibited better performance
than HW models.

Existing related studies have focused on the lookup
table (LUT) implementation of block ciphers [7]–[18]. So,
the labeling method in related studies considers the data char-
acteristics of the LUT implementation, may not be suitable
for the bitslice implementation. To the best of our knowledge,
there have been no studies on DL-based SCA for the bit-
slice implemented block ciphers. Therefore, we propose DL-
based profiled and non-profiled SCA suitable for the bitslice
implementation of block ciphers through analysis of the latest
bitslice block cipher, PIPO (Plug-In Plug-Out).

We apply our analysis to several datasets to evaluate the
soundness of our experimental results. We use open-source of
PIPO code [19] and three datasets collected from AVR, MSP,
and ARM-based microcontroller units (MCUs), respectively.
Our contributions are as follows:

• DL-based profiled SCA

1) Investigating the labeling method that is most
suitable for bitslice block ciphers.
The previous works on DL-based profiled SCA
have focused on the LUT implementation. But the
data characteristics of the LUT and bitslice imple-
mentation are different, we investigate the suitable
labeling method for bitslice block cihpers. Also,
We compare the ID, MSB, and HW labeling by
analyzing three datasets on the latest bitslice block
cipher PIPO. Our results indicate that ID label-
ing requires approximately 22 times fewer attack
traces to derive the secret key than MSB and HW
labeling.

• DL-based non-profiled SCA

1) Proposing a novel labeling method considering
the structure of bitslice block ciphers.
To characteristic of the bitslice implementation,
8 bits of the S-Box output is computed at different

times. So, we propose binary encoding label-
ing that is considering these characteristic. Also,
we compare our proposed labeling to traditional
MSB and HW labeling methods by analyzing three
datasets. Our results indicate that the proposed
labeling method requires approximately 2.5 times
fewer traces to derive the secret key than the
MSB labelingmethod and approximately 3.7 times
fewer traces than the HW labeling method.

The remainder of this paper is organized as fol-
lows. Section 2 explains the background of our paper,
and Section 3 explains the datasets of our experimental.
In Section 4 and 5, we propose the DL-based profiled SCA
and DL-based non-profiled SCA on the bitslice implemen-
tation, respectively, and verify the performance of ID label-
ing method (profiled SCA) and proposed labeling method
(non-profiled SCA) by compare with other labeling methods.
Finally, we provide a conclusion and our future works in
section 6.

II. BACKGROUND
A. BITSLICE BLOCK CIPHER PIPO
PIPO is a bitslice lightweight block cipher considering the
bitslice implementation that was proposed in 2020 [20].
Since it has fewer non-linear operations than other block
ciphers, it can be used as an effective countermeasure against
SCA (e.g., higher-order masking). In addition, PIPO provides
excellent performance in 8-bit AVR software with the bitslice
implementation [21].

The block size is 64-bit, and the number of rounds varies
depending on the key size. PIPO-64/128 with a 128-bit key
size has 13 rounds, and PIPO-64/256 with a 256-bit key size
has 17 rounds. The notations used in this paper are shown in
Table 1.

TABLE 1. Notations used in this paper.

The key schedule is simple. The master key K is divided
into 64-bit subkeys. For PIPO-64/128, it is divided into
K = K1||K0, and each round key is RKr = Kr mod 2
where r = 0, 1, · · · , 13. Similarly, for PIPO-64/256, K =
K3||K2||K1||K0, and RKr = Kr mod 4 where r = 0, 1, · · · , 17.
Each round consists of the S-Layer, P-Layer, and Key-
Addition, and the structure of PIPO is illustrated in Figure 1.
Since the S-Layer uses a bitslice implementation, each

S-Box output is computed in parallel using bitwise operations
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FIGURE 1. PIPO structure.

FIGURE 2. S-Layer structure.

without a LUT. Accordingly, as shown in Figure 2, the S-Box
output is stored in different registers and consists of opera-
tions of the i-th bits of each S-Box output in the j-th byte
(0 ≤ i, j ≤ 7).

B. DL-BASED SCA
1) DL-BASED PROFILED SCA
Profiled SCA is a technique that recovers the secret key
by matching the power trace on target device to the profile
generated from a controllable profiling device. DL-based
profiled SCA uses neural networks for this process [9], which
is divided into two phases as follows:

• Profiling phase (training phase)
The neural network is trained using profiling traces as
the input and intermediate values corresponding to the
profiling traces as the labels.

• Attack phase
The attack trace is used as the input of the trained
neural network, and the output of the neural network
is obtained. Then, the secret key is derived by calcula-
tion with a known value (e.g., plaintext, ciphertext) and
output.

That is, the neural network is trained on profiling traces
with a label (intermediate value), and the label is predicted
by inputting unlabeled attack traces into the trained neural

network. Similar to traditional SCA, intermediate value is
generally the output of a non-linear function (e.g., S-Box).
The performance of DL-based SCA is determined according
to the neural network model, labeling method, and key deter-
mination metric. In this paper, we focus on the performance
of different labeling methods.

Most of previous studies focused on the LUT implemen-
tation of the block cipher AES [7]–[11] and bitslice cipher
PRESENT [12], the performance of attack was compared
using the ID or HW labeling method. However, in [22], since
there are fewer classes in HW than in the ID, data imbalance
occurs in the class, and there is less information about the
secret key because different intermediate values are mapped
to the same HW class. Thus, the HW is less discriminant than
the ID. However, the HW (with 9 classes) is more resistance
to noise than the ID (with 256 classes), and there are thus
fewer misclassifications. Therefore, it is necessary to select a
suitable labeling method according to the training data.

2) DL-BASED NON-PROFILED SCA
Non-profiled SCA is a technique that recovers the secret key
by analyzing multiple power traces collected during encryp-
tion of random plaintexts with a fixed secret key on target
device. The analysis process of DL-based non-profiled SCA
is as follows:

• Training phase
The neural network is trained using attack traces as
the input and intermediate values (e.g., S-Box output
of first round) for the arbitrary guessed key as a label.
By repeating this step for each guessed key, the neural
network is trained for each key.

• Attack phase
The learning level of each neural network is determined
by a metric (e.g., training loss). The guessed key of
the neural network with the highest learning level is
considered the secret key.

A label calculated by the right key is actually a value related
to the attack traces; therefore, the neural network is trained
well. However, a label calculated by an wrong key is a value
unrelated to the attack traces; therefore, the neural network
is not trained well. Thus, we assume that the guessed key
training the neural network as the highest learning level is the
right key. In DL-based non-profiled SCA, the intermediate
values of wrong keys should have a low correlation with
the intermediate value of the right key, as in traditional non-
profiled SCA. Therefore, we take the output of a non-linear
function, such as S-Box, as the intermediate value. As with
DL-based profiled SCA, we focus on the difference in per-
formance due to different labeling methods.

In [13], Timon set the LSB, MSB, or HW of the S-Box
output as the label and performed DL-based non-profiled
SCA for AES. The results indicated that binary labeling
(MSB, LSB) led to better performance than HW labeling.
In addition, according to [13], if the ID of the S-Box output is
used as the classification label, then the learning levels of all
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TABLE 2. Related work vs. our paper.

guessed keys’ neural networks are equivalent. Thus, ID label-
ing is not used in DL-based non-profiled SCA. Later studies
also performed DL-based non-profiled SCA using MSB or
LSB labeling on the LUT implementation of AES [14]–[17].
In [18], Xiangliang et al. performed DL-based non-profiled
SCA on SM4 andDES using theMSB, HW labeling, and they
got the result that the MSB labeling has better performance
than HW labeling.

Table 2. shows summary of related works and our paper,
all of related works is analyzed the LUT implementation of
block ciphers. In this paper, we propose the DL-based SCA
on the bitslice implementation of block cipher. Furthermore,
we compare the performance of the MSB and HW labeling
methods with that of the ID (DL-based profiled SCA) and
proposed (DL-based non-profiled SCA) labeling method by
analysis on bitslice block cipher PIPO.

III. EXPERIMETAL OF DATASETS
We obtained power traces when PIPO’s first-round S-Layer
and P-Layer operated on three MCUs XMEGA128D4,
MSP430F2618, and STM32F303 with open-source of PIPO
code [19]. For the profiling phase, 50,000 profiling traces
of random keys and plaintexts were collected, and 10% of
the profiling traces were used for validation in the profiling
phase. For the attack phase, 5,000 attack traces of a fixed key
and random plaintexts were collected, and DL-based profiled
and non-profiled SCA used 1,000 of them as attack traces.
The experimental environment is shown in Table 3.

A. 8-BIT MCU XMEGA128D4
ChipWhisperer-Lite [23] was used as the capture board with
a sampling rate of 29.538 MS/s, and AVR XMEGA128D4
(8-bit MCU) was used as the target board as Figure 3. The
XMEGA128D4 traces are illustrated in Figure 4.

B. 16-BIT MCU MSP430F2618
As shown in Figure 5, SCARF-MSP430 V1.5 board pro-
vided by ETRI [24] was used and MSP430F2618 (16-bit
MCU) was used as the target board. Traces were collected
using the Lecroy HDO610 oscilloscope with a sampling rate

FIGURE 3. ChipWhisperer-Lite and 8-bit MCU XMEGA128D4.

FIGURE 4. XMEGA128D4 trace.

FIGURE 5. SCARF-MSP430 V1.5 board with 16-bit MCU MSP430F2618.

of 500 MS/s. The MSP430F2618 traces are illustrated in
Figure 6.

C. 32-BIT MCU STM32F303
ChipWhisperer-Lite was used as the capture board with a
sampling rate of 29.538 MS/s, and ARM STM32F303RCT7
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TABLE 3. Experimental environment.

FIGURE 6. MSP430F2618 trace.

FIGURE 7. ChipWhisperer-Lite and ChipWhisperer-308 UFO board with
32-bit MCU STM32F303.

FIGURE 8. STM32F303 trace.

(32-bit MCU) was used as the target board combined with
a ChipWhisperer-308 UFO board [25], as displayed in
Figure 7. The STM32F3 traces are illustrated in Figure 8.

IV. DL-BASED PROFILED SCA ON PIPO
A. ATTACK SCENARIO
1) PROFILING PHASE
The profiling phase is the process of generating a profile by
training the neural network using power traces obtained from

the profiling device. In this paper, the neural network was
constructed using an MLP model. In the PIPO S-Layer, the
S-Box output was not stored in the same register because
each byte was implemented in parallel due to the bitslice
structure. Therefore, an MLP with a fully-connected layer
was used to train each bit of the S-Box output distributed in
the power traces. The power traces were used as the input of
the neural network. In addition, we used not only the ID and
HW labeling, but also the MSB labeling considering the 1-bit
model. Thus, the ID, MSB, or HW value of the PIPO S-Box
output was used as the label. The experimental results of the
three labeling methods were then compared.

The ID labeling method used the intermediate value as the
label; thus, it had 256 classes for 8-bit. The MSB labeling
method uses the MSB of the intermediate value; thus, it has
two classes (0, 1). Finally, the HW labeling method used the
number 1 for binary representation of the intermediate value.
In the case of 8-bit, there were nine classes.

2) ATTACK PHASE
The attack phase is the process of recovering a secret key by
inputting the power traces collected from the attack device
into the trained neural network in the profiling phase. Since
the output of the neural network is the S-Box output, the
secret key is recovered by performing an inverse S-Box and
an XOR operation with the plaintext.

B. EXPERIMENTAL RESULTS
1) MLP ARCHITECTURE
This section describes the MLP model used in DL-based
profiled SCA. It had two hidden layers consisting of 100 and
50 nodes, and ‘‘Leaky ReLU’’ was used as the activation
function of the hidden layer. The output layer consisted of 2,
9, or 256 nodes according to the labeling method and used
‘‘Softmax’’ as the activation function. Each hidden layer
and input layer include batch normalization and dropout to
prevent over-fitting.

Figure 4 shows our MLP architecture, where x is the
number of points in the power traces, and y is the number
of possible intermediate values (2, 9, or 256). The details of
the hyperparameters are presented in Figure 5.

2) EXPERIMENTAL RESULTS
We used guessing entropy (GE) to evaluate the attack per-
formance in SCA [26]. GE is the average rank for the right
key, and the faster GE converges to 0, the more successful the
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FIGURE 9. Profiled SCA results of first byte of three labeling methods.

TABLE 4. MLP on DL-based profiled SCA.

TABLE 5. Hyperparameters of DL-based profiled SCA.

attack is. fig:1 byte analysis of three leakage models shows
the experimental results of the first byte of three labeling
methods for three datasets (XMEGA128D4, MSP430F2618,
and STM32F303). In the graph, the x-axis represents the
number of attack traces, while the y-axis represents the GE.
Table 6 presents the number of traces required for GE to
converge to 0 in each labeling method on three datasets.

TABLE 6. Number of traces required for GE to converge to 0 in DL-based
profiled SCA.

On XMEGA128, MSB and HW required more than
25 traces for GE to converge to 0, whereas ID required only
one trace. On MSP430, GE converged to 0 using 23 or more
traces for MSB and 53 or more traces for HW, whereas
only two traces were required for ID. Finally, on STM32F3,
GE converged to 0 using more than 150 traces for MSB and
120 traces for HW, whereas only six traces were required
for ID.

On all three datasets, the ID labeling method exhibited
the best performance compared to the other labeling meth-
ods. In particular, STM32F3 was analyzed with more than
150 traces by the HW and MSB labeling methods, but only
six traces by the ID labelingmethod. Thus, the neural network
effectively extracts and trains each bit of the S-Box output
distributed in the power traces.

V. DL-BASED NON-PROFILED SCA ON PIPO
A. ATTACK SCENARIO
1) BINARY ENCODING LABELING METHOD
In this section, we propose a new labeling method for DL-
based non-profiled SCA on bitslice block ciphers. Figure 10
illustrates the difference in leakage in the LUT and bit-
slice implementation. In order to illustrate the difference in
leakage, 5,000 traces of the first S-Box (LUT implemen-
tation) and of the S-layer (bitslice implementation) about
PIPO were collected, respectively. Above implementations
was run on XMEGA128D4 and using correlation power
analysis, we analyzed the leakage of each bit of the S-Box
output in each implementation. The upper graph in Figure 10
illustrates the power traces of each implementation, while
the lower graph indicates which bit leaked at which point
in time. Here s0, s1, s2, s3, s4, s5, s6, and s7 represent
each bit of the first S-Box output of the first round, where
s0 is the LSB and s7 is the MSB. And HW is the HW of
S-Box output (s7||s6||s5||s4||s3||s2||s1||s0)2. Let Tsi be the
time point existing the highest leakage about the value si
(i ∈ {0, 1, 2, . . . , 7}). Then, leakage of each implementation
have below properties, respectively.
Property 1 (LUT Implementation): Ts0 = Ts1 = . . . =

Ts7 and the HW has the highest leakage in 9 models (s0, s1,
s2, s3, s4, s5, s6, s7, and HW model).
Property 2 (Bitslice Implementation): Ts0 6= Ts1 6= . . . 6=

Ts7 and the HW has the lowest leakage in 9 models (s0, s1,
s2, s3, s4, s5, s6, s7, and HW model).
Actually, in Figure 10 (a), since 8 bits of the S-Box output

were computed all at once, Ts0 = Ts1 = . . . = Ts7
and 8 bits HW has the highest leakage. On the other hand,
in Figure 10 (b), since 8 bits of the S-Box output were
computed at different time points, Ts0 6= Ts1 6= . . . 6= Ts7
and 8 bits HW has the lowest leakage.
According to the above Property 1, Property 2, it can be

predicted that the HW labeling will have relatively higher
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FIGURE 10. Leakage of the LUT and bitslice implementation traces (s0, s1, . . . , s7 are an S-Box output bit, HW is the HW of the S-Box output).

performance in the LUT implementation and, conversely,
lower performance in the bitslice implementation. In the
case of the single-bit labeling, it can be expected that sim-
ilar performance in both LUT and bitslice implementation,
because the size of leakages is similar. However, single-
bit labeling on the bitslice implementation has a limita-
tion that the power information about the only one time
point of Ts0 6= Ts1 6= . . . 6= Ts7 is used. Thus,
considering these characteristics of the bitslice implemen-
tation, we propose binary encoding (BE) labeling, which
uses all bits of S-Box output and constructs each bit
independently. Algorithm 1 is the proposed BE labeling
algorithm.

Algorithm 1 BE Labeling Algorithm
Input: 8-bit value a

Output: binary encoded label b =

(a0, a1, a2, a3, a4, a5, a6, a7), ai ∈ {0, 1}

1: for k = 0 to 7 do

2: ak ← (a� k) ∧ 1

3: end for

4: Return b = (a0, a1, a2, a3, a4, a5, a6, a7)

2) TRAINING PHASE
The training phase is the process of training the neural net-
work for each guessed key. Since PIPO-64/128 is a block
cipher using an S-Box, DL-based non-profiled SCA can be
performed by applying the analysis described by Timon [13].
For DL-based non-profiled SCA, we set the neural network
model as the MLP, the intermediate value to be used for
the label as the output of the S-Box, and the metric and

FIGURE 11. MLP architecture of the HW, MSB, and BE labeling.

loss function as the mean squared error. Related studies used
the LSB, MSB, or HW value as the label in DL-based non-
profiled SCA [13]–[18]. We then compare MSB, HW label-
ing to BE labeling.

3) ATTACK PHASE
The attack phase is the process of determining the right key
by judging the learning level of the trained neural networks.
In this paper, we use the training loss of the last epoch as the
learning level. We sort the training loss of the neural networks
for each guessed key in ascending order and measure the rank
of the right key.

B. EXPERIMENTAL RESULTS
1) MLP ARCHITECTURE
This section describes theMLPmodel used in DL-based non-
profiled SCA. It had one hidden layer, where the number
of layer nodes was 200. The output layer consisted of 1 or
8 nodes according to the labeling method and the activation
function of the hidden layer was ‘‘ReLU’’, while that of the
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FIGURE 12. Non-profiled SCA results of first byte of three labeling methods.

output layer was ‘‘Sigmoid’’.We used themean squared error
as the loss function and key guessing metric. To maintain the
relevance of each class in BE and HW labeling, we did not
apply one-hot encoding in DL-based non-profiled SCA.

Table 7 presents our MLP architecture, where x is the
number of points in the power traces, and y is 1 (MSB and
HW labeling) or 8 (BE labeling). Figure 11 shows MLP
architecture of the HW, MSB, and BE labeling. In the case of
the BE labeling, there are 8 output nodes and whole loss value
is calculated by summation of each loss value of the output
nodes. The details of the hyperparameters are presented in
Table 8.

TABLE 7. MLP on DL-based non-profiled SCA.

TABLE 8. Hyperparameters of DL-based non-profiled SCA.

2) EXPERIMENTAL RESULTS
As in DL-based profiled SCA, we used GE to evaluate the
attack performance. We obtained the GE in 10 iterations
of the analysis for each number of attack traces in each
dataset. Figure 12 presents the DL-based non-profiled SCA
results of the first byte of the three labeling methods for
three datasets. In the graph, the x-axis represents the number
of attack traces, while the y-axis represents GE. Analysis
was performed on 100 unit traces on the XMEGA128 and
STM32F3 datasets, and analysis was performed on 60 unit
traces on the MSP430 dataset. Table 9 presents the number
of traces required for GE to converge to 0 in each labeling
method on three datasets. On XMEGA128, MSB required
600 traces or more for GE to converge to 0, whereas HW
requiredmore than 1,000 traces. In contrast, BE required only

TABLE 9. Number of traces required for GE to converge to 0 in DL-based
non-profiled SCA.

200 traces. On MSP430, MSB required 420 traces or more
for GE to converge to 0, whereas HW required 540 traces
or more. In contrast, BE required only 180 traces. Finally,
on STM32F3, MSB required 700 traces or more for GE to
converge to 0, whereas HW required more than 1000 traces.
However, BE required only 300 traces. On all datasets, the
proposed BE labeling method had the best performance in
DL-based non-profiled SCA.

VI. CONCLUSION
In this paper, we propose DL-based profiled and non-profiled
SCA for three datasets (XMEGA128D4, MSP430F2618, and
STM32F303) of PIPO-64/128. For DL-based profiled SCA,
the experimental results for the three labeling methods (ID,
MSB, and HW) were compared. For our proposed BE label-
ing method, the number of traces require for GE converge to
0 was more than 200, which was greater than that of existing
labeling methods; therefore, the BE labeling method was
excluded from profiled SCA. In summary, the ID labeling
method requires approximately 22 times fewer attack traces
than the MSB and the HW labeling method. This signifies
that since the neural network effectively extracts and trains
each bit of the S-Box output from the power traces, the
performance will be high even if the S-Box output is labeled
without considering the bitslice characteristics of the bitslice
block cipher.

For DL-based non-profiled SCA, we propose the BE label-
ingmethod considering the structure of bitslice block ciphers.
We compared our proposed BE labeling method with the HW
and MSB labeling methods. In summary, the proposed label-
ing method requires approximately 2.5 times fewer traces
than the MSB labeling method and approximately 3.7 times
fewer traces than the HW labeling method on average. Fur-
thermore, BE labeling is more effective than MSB and HW
labeling on all datasets. The results demonstrate that the
proposed BE labeling is more effective than MSB and HW
labeling regardless of the target board.
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We expect that our investigation and proposed method to
also be applied to (high-order) analysis on other bitslice block
ciphers. In futurework, we plan to analyze other bitslice block
ciphers applying SCA countermeasures using the proposed
DL-based profiled and non-profiled SCA. Also, we will
apply a combination of our proposed labeling method and
the proposed methodologies in DL-based SCA (e.g., custom
activation function, loss function. . . ).
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