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ABSTRACT The ubiquitous 5G-enable industrial Internet of Things interconnects a great number of
intelligent sensors and actuators. Network management becomes challenging due to massive traffic data
generated by industrial equipment. However, the conventional single traffic factor is insufficient for the
increasingly complicated network engineering tasks due to the poor representation capability. Besides, the
insecure equipment with open communication access easily brings irregular network fluctuations to network
traffic which interferes with the primary traffic factor. The simple and interfered traffic factor decreases the
networkmanagement efficiency andmisleads the operators.Motivated by that, we construct a comprehensive
tensor model representing multi-dimension traffic factors to describe the network traffic beneficial charac-
teristics. Meanwhile, an adaptive and generic low-rank tensor recovery (AG-LRTR) algorithm in the tensor
singular value decomposition (t-SVD) framework is proposed for denoising. For effective tensor recovery,
the alternating direction method of multipliers is employed to theoretically solve the partial augmented
Lagrangian function of our objective with a closed-form solution. Numerical experiments on both synthetic
data and real-world traffic data in IIoT validate that our proposed algorithm outperforms other state-of-the-art
of tensor recovery algorithms.

INDEX TERMS Adaptive nuclear norm, generic noise, IIoT traffic factor, noise interference, low-rank
tensor, tensor recovery.

I. INTRODUCTION
The Industrial Internet of Things (IIoT) is rapidly developing
with the emerging 5G-enable communication technology.
The 5G communication technique provides coinstantaneous
broadband access [1], and thus the IIoT network expands
the scope of various intelligent equipment extensively. Effec-
tive network management becomes increasingly critical for
operators. However, with the tremendous growth of traffic
data, one challenge is to abstract the beneficial characteristics
from the massive traffic data. Nowadays, the traffic volume
is still the basic factor in the IIoT network management
[2], [3] and only reflects the flow-based correlations in
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successive slots. It loses the other intrinsic correlations in
the traffic data, such as the packet-based correlation. For
example, the packet interval arrival time is preferable to the
routing program than traffic volume. As the IIoT network is
more complicated, only a flow-based model is insufficient
to represent network traffic characters completely. Besides,
another challenge is the irregular network fluctuations due
to the insecure equipment with open communication access.
Parts of the network engineering tasks are susceptible to noise
interference, so the irregular network fluctuations degenerate
network management efficiency. For example, the network
intrinsic resilient capacity should have avoided route repro-
gramming in instant network congestion, but this fluctuation
is likely to cause once redundant reprogramming. To enhance
the representation capability and improve the network
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management efficiency, a new network traffic model is
needed to represent the valuable factors, and precise denois-
ing is essential to reduce unnecessary operations.

The supervisory control and data acquisition (SCADA)
system is the central platform in the industry for aggregating
and coordinating the network traffic transaction from edge
equipment. The irregular network fluctuations are caused
by network congestion, equipment failure or operator error
as Fig. 1 shows. Many researchers have proposed net-
work traffic modeling and denoising algorithms. The vector
[4], [5], matrix [6], [7] and tensor [8] models are pro-
posed respectively to recover the original traffic volume in
which the tensor-based model outperformed the other mod-
els. As mentioned above, the volume only represents one
single traffic factor, and the model representation capability
is deficient. Inspired by the tensor recovery performance,
we naturally choose the tensor to construct a novel traffic
factor model.

FIGURE 1. SCADA framework and the interference.

The essence of successful recovery is the low-rank prop-
erty due to the multiple types of correlations in the traffic.
Tensor recovery aims to realize low-rank tensor approxima-
tion from the noisy traffic factors. The regular optimization
object of tensor recovery is to minimize the sum of the tensor
nuclear norm and the reconstruction error. The same ampli-
tude shrinkage for the tensor nuclear norm introduces addi-
tional bias and variance by the thresholding estimator in the
recovery procedures. The reconstruction error only assumes
the noise satisfies the zero-mean and ignores the non-zero
mean influence. Both deficiencies result in the sub-optimal
solution for the regular optimization object. To improve the
optimization performance, our tensor recovery strategies in
this paper are summarized as follows:

1) To enhance the tensor representation capability, we con-
struct a compact and comprehensive traffic tensor model with
ten factors: traffic volume, packet number, inter-arrival time
(IAT), etc. Moreover, we further reveal that such a tensor
satisfies the low-rank property.

2) We propose an adaptive and generic optimization object
for precise denoising by minimizing the sum of the weighted

tensor nuclear norm and the noise variance. The weighted
tensor nuclear and generic noise Frobenius norm respectively
alleviate the influence of the estimator and the non-zero mean
noise.

3) The adaptive and generic optimization object is solved
by the alternating direction method of multipliers (ADMM)
algorithm. Each optimization procedure has a closed-form
solution in ADMM. We further perform numerical experi-
ments on synthetic data and a real SCADA traffic dataset as
an IIoT example to validate the effectiveness of our algorithm.

The rest of this paper is structured as follows. Section II
introduces the preliminaries of an effective low-rank tensor
recovery procedure and the tensor singular value decomposi-
tion (t-SVD) framework. Section III details the tensor model,
adaptive nuclear norm formulation, and solver algorithm for
ADMM. Numerical experiments conducted on synthetic and
real-world data are presented in Section IV, and we conclude
this work in Section V.

II. PRELIMINARY OF TENSOR RECOVERY
Tensor recovery is realized on the basis of the tensor low-rank
property and decomposition approach. The low-rank property
is embedded in the structure of entity arrangement, and the
decomposition approach affects the recovery performance.
This section summarizes an effective low-rank tensor recov-
ery procedure and then introduces the tensor singular value
decomposition framework involved in this paper.

A. TENSOR RECOVERY
Multi-dimensional data is becoming prevalent in many areas,
such as computer vision [9], [10] and information science
[11]. Tensor as a multi-dimensional extension of the matrix is
a natural choice in these cases and has the capability of captur-
ing these underlying multi-linear structures. Although often
residing in extremely high-dimensional spaces, the tensor of
interest is frequently of low rank, or approximately so [12].
Lying at the core of high-dimensional data analysis, tensor
decomposition serves as a valuable tool for revealing when
a tensor can be modeled as lying close to a low-dimensional
subspace [13].

As for data analysis by tensor decomposition, the first
step is to construct an appropriate tensor that could contain
intrinsic correlations in the data. Except for some kinds of
natural tensor data, such as the hyperspectral data, the seismic
data, or the colorful picture, other data need to be rearranged
as some regulation based on the intrinsic correlation. For
example, in some applications for video backgroundmodel in
[9], [14], the original 4-dimensions video data was reshaped
to a 3-dimension tensor through matricization of the color-
ful frame along the time mode. However it would degen-
erate the performance due to the information loss of frame
matricization. Furthermore, the IT traffic tensor constructed
in [8] gains periodic pattern in addition to temporal stability
and spatial correlation only for traffic volume. Although the
tensor entries can be substituted by other network traffic fac-
tors, this model intrinsically ignores the multiple correlations
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between the factors and could not represent the complete
traffic properties. Therefore, the constructed tensor model
should contain the necessary correlations asmuch as possible.

The second step is to select a practical tensor decomposi-
tion approach to approximate the low-rank tensor. However,
the best low-rank tensor approximation [15] can’t be achieved
by the convenient two most popular tensor decompo-
sition approaches, namely CANDECOMP/PARAFAC(CP)
[16], [17] and Tucker decomposition [18]. Compared with
them, tensor singular value decomposition(t-SVD) [19] is
based on the tensor-tensor product operator [20] and the
calculation procedure needs to transform a tensor from the
original domain to the Fourier domain along a fixed mode by
discrete Fourier transform(DFT).As a newly emerged tensor
decomposition paradigm, it has several properties similar to
the traditional matrix SVD and decomposes any tensor with
less prior information, so it is the optimality of the truncated
t-SVD for data approximation. Therefore in this paper, the
task of IIoT traffic denoising lies in the t-SVD framework.

The last and most important step is defining the tensor
rank based on the tensor decomposition approach and solving
the optimization object by corresponding rank relaxation as
the tensor nuclear norm. In the t-SVD framework, the basic
tensor rank is called tubal rank [20] which is defined as
the number of nonzero singular tubes in the original domain
and relaxed by the sum of all singular values in the Fourier
domain. Due to the lack of considering the relations of the
singular values in the original and Fourier domain, the basic
algebra calculation is more complex and computational. For
simplicity and elegance, the average tubal rank is defined
as the mean rank of the block circulant matrix in [14]. Its
rank relaxation is to sum the singular values of the first
frontal slice in the original domain. It is rigorously deduced
theoretically as a new tensor nuclear norm and has similar
theorems with the matrix SVD. The other approaches are
either extension [10], [21] or combination [22] underlain by
the rank definition and relaxation in [20] or [14]. In this paper,
we have the same rank definition and relaxation with [14],
because the adaptive coefficients to shrink the nuclear norm
needs to be calculated by the unique singular values.

B. TENSOR SINGULAR VALUE DECOMPOSITION
T-SVD operation as an extension to matrix SVD is based
on the tensor-tensor product(t-product). For simplicity,
we mainly introduce the correlation between the original
domain and the Fourier domain caused by DFT. The basic
definitions related to the t-SVD framework are given in
Appendix.

Let A ∈ Rn1×l×n3 and B ∈ Rl×n2×n3 . The Fourier
transformations along the third mode are denoted as A =
fft(A, [], 3) and B = fft(B, [], 3). Then the t-product C =
A∗B is defined as a tensor of size n1×n2×n3 and represented
in the original and Fourier domain as follow

Original domain : C = A ∗ B = fold(bcirc(A) · unfold(B))
Fourier domain : C = A · B (1)

where fold(·), bcirc(·), unfold(·) denote the fold,block cir-
culant and unfold operation for a tensor respectively and
A,B,C is block diagonal matrix of A,B, C. In the origi-
nal domain, a 3-mode tensor can be regarded as a matrix,
with each entry being a tube that lies in the third mode.
Thus, the t-product is analogous to the matrix multiplication,
except that the circular convolution replaces the multiplica-
tion operation between the entries. In the Fourier domain,
the t-product is equivalent to the matrix multiplication. The
t-product enjoys many similar properties to the matrix-matrix
product.

Then for any 3-mode tensors, A ∈ Rn1×n2×n3 the t-SVD
is defined in the original and Fourier domain as follows:

Original domain : A = U ∗ S ∗ V∗

Fourier domain : A = U · S · V
∗

(2)

where U ∈ Rn1×n1×n3 ,V ∈ Rn2×n2×n3 are orthogonal, and
S ∈ Rn1×n2×n3 is an f-diagonal tensor. See Fig. 2 for an
intuitive illustration of the t-SVD operation.

FIGURE 2. An illustration of tensor singular value decomposition.

In this paper, we refer to the rank definition and relaxation
in [14]. LetA = U ∗S ∗V∗ be the t-SVD ofA ∈ Rn1×n2×n3 .
The entries on the diagonal of the first frontal slice S(:, :, 1)
have the decreasing property as follow

S(1, 1, 1) ≥ S(2, 2, 1) ≥ · · · ≥ S(n′, n′, 1) (3)

where n′ = min(n1, n2). It holds since the inverse DFT gives

S(i, i, 1) =
1
n3

n3∑
j=1

S(i, i, 1) (4)

and the entries on the diagonal of S(:, :, j) are the singular
values of A(:, :, j), so the tensor tubal rank is determined by
the first frontal slice S(:, :, 1) and equivalent to the number of
non-zero singular values ofA. Based on the above properties,
tensor average rank defined in [14] is the slice mean of the
total rank in Fourier domain as ranka(A) = 1

n3
rank(A) and

proved that the low average rank assumption is weaker than
the low Tucker rank and low CP rank assumption, so it is
more convenient to decompose a low rank tensor. Then the
relaxation of tensor average rank can be rigorously deduced
as summation of the singular values in the first frontal slice
S(:, :, 1) and denoted as ||A||∗ =

∑r
i=1 S(i, i, 1) where r is

tensor tubal rank.
The discrimination between the tubal and average rank is

the coefficient 1
n3

that is crucial to guarantee the convex enve-
lope of the average tensor rank in a specific scope. Therefore,
adopting an adaptive strategy for IIoT traffic denoising is
possible based on the above-defined tensor nuclear norm.
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III. TENSOR-BASED MODELING AND DENOISING FOR
IIoT NETWORK TRAFFIC
To improve the IIoT networkmanagement efficiency, we con-
duct a novel tensor model with ten traffic factors based on
the periodical transaction mechanism to enhance the rep-
resentation capability firstly. We further validate that such
a representation model has a low-rank property that under-
lies the effective denoising. Then an adaptive and generic
optimization object is reformulated to improve the denoising
performance, and finally a closed-form ADMM algorithm is
proposed to solve the object.

A. TENSOR MODELLING AND LOW-RANK ANALYSIS
It is impossible to analyze the per packet due to the massive
amount of traffic data in the industrial internet of things.
Effective network management relies on multiple statistical
factors which could represent the complete data exchange.
In IIoT, SCADA systems are the central platform and auto-
matically coordinate and manage the equipment actions to
ensure that the infrastructure operates correctly and safely.
The primary transaction mechanism [23] is polling field
information and sending corresponding control commands
periodically, as Fig. 3 shows. The acquisition and control
data are transmitted at the determined time of one period.
In addition, the same equipment category has stable opera-
tion logic and generates similar traffic data. Therefore, the
total network traffic data can be characterized by periodic
throughput patterns, clear statistics of packet size, predictable
flow direction, and expected connection lifetime [24].

FIGURE 3. SCADA network traffic transaction interfered by noise.

However, irregular network fluctuations will be caused
by package loss, data delay or retransmission and payload
changes as depicted in Fig. 3. These fluctuations finally
reflect the variances in traffic volume, packet number, and
packet interval arrival time (IAT). To enhance the represen-
tation capability, ten statistical factors listed in Table 1 are
calculated periodically by the way provided in [25]. These
factors are sufficient to represent the data exchange at the
flow-based and packet-based levels and can be applied in
most network engineering tasks. In all factors, the traffic
volume and packet IAT contain four factors: maximum value,
minimum value, mean value, and variance.

Therefore, a novel low-rank tensor model can be con-
structed based on the factors to represent the beneficial char-
acteristics of IIoT network traffic. In this paper, a testbed

TABLE 1. The comprehensive factors of SCADA traffic.

SCADA traffic data named Electrical Power and Intelligent
Control (EPIC) [26] is used as the real IIoT network traf-
fic dataset, and it mimics a real-world power system in
small scale smart-grid. This SCADA system interacts with
six categories of equipment which are access point(AP),
programmable logic controller(PLC), intelligent electronic
equipment(IED), switch(SW), history database(HIST), fire-
wall(FW), and the others. Obviously, the most prominent
traffic volumes are periodic as Fig. 4(a) shows, and the least
common multiple periods can be set to 30s with the 1s time
slot. For each traffic factor, we calculate each statistical value
per second as a row vector and continuously repeat 30 times
to form a factor matrix as the frontal slice, then stack the ten
factor frontal slices along the third mode to construct a traffic
tensor model with the size of 30×30×10 as Fig. 4(b) shows.
We decompose the traffic tensor of each category of equip-

ment by t-SVD and illustrate the tensor singular values of the
first frontal slice as Fig. 5 shows. If the traffic has the same
period, such as AP, IED, SW and FW, most of the singular
values of the traffic tensor are relatively small, which means
the optimum low rank. However, when the traffic is random as
HIST or with various periods as PLC, the low-rank property
is relatively weak due to the uniform dispersion in the Fourier
domain caused by random. As for sparse traffic such as the
others, it has the worst low rank due to the independent and
poor intrinsic correlation.

Furthermore, we decompose the sum of all traffic, and
the singular values are depicted as Fig. 6. Although the
summation consists of different kinds of traffic, it still has
the property of low rank, which means the periodical traffics
data is overwhelming. Our proposed tensor model is capable
to capture the intrinsic correlations in various aspects. In the
following paper, the IIoT traffic factor tensor is deemed to
contain all traffic by default.

B. ADAPTIVE AND GENERAL OPTIMIZATION OBJECT
We briefly introduce the related denotations before descrip-
tion of the proposed algorithm.L denotes the actual low-rank
traffic tensor that can be decomposed as L = U ∗ S ∗ V
by t-SVD. N denotes the noise with identical distribution
and M denotes the noisy measurement. The denoising pur-
pose is to recover the actual low-rank tensor from the noisy
measurement.
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FIGURE 4. SCADA traffic volume and tensor model.

FIGURE 5. SCADA equipment traffic tensor model singular values.

FIGURE 6. SCADA all traffic tensor model singular values.

The convenient optimization object of the low-rank tensor
recovery is to minimize the sum of tensor rank and recon-
struction error as follows:

min
L,N

rank(L)+
λ

2
||N ||2F

s.t. M = L+N (5)

where λ denotes the penalty coefficient. Because the rank
operator is non-convex, the nuclear norm || · ||∗ as the tightest
relaxation of rank replaces the first term in (5). In the paper,
we define the tensor rank as the average rank and the opti-
mization object can be reformulated as follow:

min
L,N

r∑
i=1

S(i, i, 1)+
λ

2
||N ||2F

s.t. M=L+N , L= U ∗ S ∗ V and ||L||∗ =
r∑
i=1

S(i, i, 1)

(6)

Two terms of the above optimization object have a defi-
ciency in the optimization process. As for the first term∑r

i=1 S(i, i, 1), the solver involving soft-thresholding shrink
would cause some unavoidable biases [27], so the variance of
the estimated tensor would be smaller than the original tensor
when equally shrinking every singular value. Conspired by
the adaptive nuclear norm for low-rank matrix approximation
in [28], we can extend it to the tensor model by assigning
weights to the singular values of a tensor.

Another term ||N ||2F assumes that the noise has zero mean
and ignores the common non-zero mean situation, which
leads to the sub-optimal solution. Assuming the actual mean
µ̂ and variance δ̂2 of noise are unknown and µ is a variable
representing noise’s means distribution, the variance ofN −
µIµ can be expressed as var(N − Iµ) = var(N )+ var(Iµ)
where Iµ is the tensor with the same size of N and its all
entries are µ. The variance of tensor can be calculated by
the Frobenius norm || · ||2F . If µ 6= µ̂, the unbiased variance
will be larger than δ̂2 as the simple proof below where N =
n1 × n2 × n3 − 1 denotes the element number of tensor:

||N − Iµ||2F = ||N − Iµ̂ + Iµ̂ − Iµ||2F
= ||N − Iµ̂||2F + ||Iµ̂ − Iµ||2F
≥ ||N − Iµ̂||2F
= N × δ̂2 (7)

Then the adaptive and generic optimization object is for-
mulated as follow:

min
X ,N ,µ

r∑
i=1

αiS(i, i, 1)+
λ

2
||N − Iµ||2F

s.t. M = L+N , L = U ∗ S ∗ V

and ||L||∗ =
r∑
i=1

S(i, i, 1) (8)

where αi denotes the i-th adaptive coefficient. The optimiza-
tion object (8) can be explained to minimize the sum of the
tensor adaptive nuclear norm and the noise variance.

Then an adaptive tensor soft-thresholding (ATSVT) oper-
ation as a closed-form solution could solve the optimization
object with the adaptive nuclear norm as follows.
Theorem 1: For any λ ≥ 0,Y ∈ Rn1×n2×n3 and 0 ≤

α1 ≤ · · · ≤ αr (r = min(n1, n2)), a global optimal solution
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to the optimization problem

min
X

r∑
i=1

αiσi(X )+
λ

2
||X − Y||2F

s.t. σi(X ) = SX (i, i, 1) (9)

is given by the ATSVT as X̂ := D α
λ
(Y),

D α
λ
(Y) = U ∗ S α

λ
∗ V

S α
λ
= if ft(Diag{(S(i, i, :)−

αi

λ
)+, i = 1, 2, · · · , r})

(10)

where Sτ (·) denotes the adaptive soft-thresholding operation.
Further, if Y has a unique t-SVD, X̂ is the unique optimal
solution. The soft-thresholding operation for tensors shrinks
the singular values in the Fourier domain. Following [29], the
weights can be set as some power of the singular values of
the tensor, i.e., αi = 1

σi(X )γ , where γ ≥ 0 is a predefined
constant. In this way, the order constraint in the Theorem
is automatically satisfied. The fact that a closed-form global
minimizer for the optimization object (9) would be proved as
follows based on vonNeumann’s trace inequality [30] and the
properties of t-SVD.

Proof: We first prove that X̂ is indeed a global optimal
solution to (9). Since the weighted coefficients only depend
on the singular values of X , by letting g = {gi}hi=1 =
σ (X ) (which implies the entries of g are in non-increasing
order), (9) can be written as:

min
g:g1≥···gh≥0

{min
σ (X )
{
1
2
||X − Y||2F } +

1
λ

r∑
i=1

αigi} (11)

For the inner minimization, we have the inequality

||X − Y||2F =
1
√
n3
||X− Y||2F

=
1
√
n3
Tr(X− Y)(X− Y)∗

=
1
√
n3
Tr(XX

∗
)−

2
√
n3
Tr(XY

∗
)

+
1
√
n3
Tr(YY

∗
)

=

r∑
i=1

g2i −
2
√
n3
Tr(XY

∗
)+

r∑
i=1

σ 2
i (Y)

≥

r∑
i=1

g2i − 2gσ (Y)∗)+
r∑
i=1

σ 2
i (Y) (12)

The last inequality is due to von Neumann’s trace inequal-
ity. The equality holds when X admits the singular value
decomposition X = U ∗ Diag(g) ∗ V∗ where U and V are
the left and right orthogonal tensor in the t-SVD of Y . Then
the optimization can be reformulated as follow

min
g:g1≥···gh≥0

{

r∑
i=1

(
1
2
g2i − [σi(Y)−

αi

λ
]gi +

1
2
σ 2
i (Y))} (13)

The optimization object is completely separable and takes
minimum when gi = (σi(Y) − αi

λ
)+. This is a feasible

solution because {σi(Y)} is in non-inceasing order, while
{αi} is in non-decreasing order. Therefore, equation (14) is
a global optimal solution to the objection function (10). The
uniqueness follows by the equality condition for von Neu-
mann’s trace inequality when Y has a unique t-SVD, and the
uniqueness of the strictly convex optimization. �

C. CLOSED-FORM ADMM SOLVER ALGORITHM
ADMM algorithm is very efficient for some convex or non-
convex programming problems. The closed-form solution
to each optimization procedure guarantees recovery perfor-
mance. To solve the optimization object (8), the problem
can be reformulated by the partial augmented Lagrangian
function as follows, and we deduce the closed-form solutions
to all formulations.

L(L,N , µ,P, β)

=

r∑
i=1

αiσi(L)
λ

2
||N − Iµ||2F

+ < P,M− L−N > +
β

2
||M− L−N ||2F (14)

where P ∈ Rn1×n2×n3 is the tensor of Lagrange multipliers
and β > 0 is a penalty parameter. So the variables are updated
sequentially in each iteration as follows

min
Lk+1

r∑
i=1

αiσi(L)+ < Pk ,M− L−Nk >

+
βk

2
||M− L−Nk ||

2
F (15)

min
Nk+1

λ

2
||N − Iµ||2F+ < Pk ,M− Lk+1 −N >

+
βk

2
||M− Lk+1 −N ||2F (16)

min
µk+1

λ

2
||Nk+1 − Iµ||2F (17)

Pk+1 = Pk + βk (M− Lk+1 −Nk+1) (18)

βk+1 = min(ρβk , βmax) (19)

where ρ ∈ (1.0, 1.1] denotes the adjustment coefficient to
accelerate the convergence speed and β0 is a small constant.
And there exists a closed-form solution for each component
in (14)-(18).

The term < P,M− L−N > +
β
2 ||M− L−N ||2F can

be merged as β
2 ||M − L − N + P

β
||
2
F . For optimization

problem (15) and (16), they can be rewritten as follow

min
Lk+1

r∑
i=1

αiσi(L)+
βk

2
||M− L−Nk +

Pk
βk
||
2
F (20)

min
Nk+1

λ

2
||N − Iµ||2F +

βk

2
||M− Lk+1 −N +

Pk
βk
||
2
F

(21)
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where the problem (20) has the same format as problem (9)
and can be solved by the closed-form solution (10). For
optimization problem (21), the closed-form solution needs to
be calculated in Fourier domain as follow

Fourier domain :

f (N ) = argmin
N
{
λ

2
||N − Iµ||2F

+
βk

2
||M − Lk+1 − N +

Pk
βk
||
2
F }

∂f (N )

∂N
= λ(N − Iµ)+ βk (N + Lk+1 −M −

Pk
βk

)

= (λ+ β)N − λk Iµ + βkLk+1 − βkM − Pk
= 0

N =
λk Iµ − βkLk+1 + βkM + Pk

λ+ β

Original domain :

N =
λkIµ − βkLk+1 + βkM+ Pk

λ+ β
(22)

Then the problem (17) can be solved in original domain
through calculating the mean of all entries as follow

µ =

∑
i,j,k Nijk

n1 · n2 · n3
(23)

Finally, the pseudocode for low-rank tensor recovery from
noisy measurement by adaptive nuclear norm is described in
Algorithm 1

Algorithm 1 Low-Rank Tensor Recovery From Noisy Mea-
surement by Adaptive Nuclear Norm

Input:M, γ, λ, Iter_max and ε
Output:L, µ
Initialize :L0 = N0 = P0 = 0, β0 = 10e − 6, ρ =

1.1, iter = 0
while not converged do

update Lk+1:
1.decompose the tensor (M−Nk +

Pk
βk
)

2.calculate the adaptive coefficient αi =
1

σi(M−Nk+
Pk
βk

)γ

3.update the tensor Lk+1 by (10)
update Nk+1 by (22)
update µk+1 by (23)
update Pk+1 by (18)
update βk+1 by (19)
iter += 1
check if convergence is meet:
||Lk+1 − Lk ||∞ < ε and
||Nk+1 −Nk ||∞ < ε and
||µk+1 − µk ||∞ < ε and
||L+N −M||∞ < ε

oriter > Itermax
end while
Output: L, µ

IV. PERFORMANCE EVALUATION
We conduct numerical experiments to validate the efficiency
of our proposed AG-LRTR in zero mean and non-zero mean
noise interference scenarios. Three experiments on the syn-
thetic data are about to analyze the noise influence, eval-
uate the recovery performance and discuss the parameters
variation respectively. One more experiment on the EPIC
SCADA traffic data is conducted for practical application.
The Peak Signal-to-Noise Ratio (PSNR) is used as the metric
to measure the quality of the recovery performance and it is
defined as equation (24). All the experiments are conducted
on a PC with a 2.9 GHz CPU and 8 GB RAM.

PSNR = 10 log10(
||L||2∞

1
n1n2n3

||L− L||2F
) (24)

whereL denotes true ground tensor, andL denotes the recov-
ered low-rank tensor. The larger value of PSNR corresponds
to the higher quality of the results.

Moreover, we compare the AG-LRTR algorithm with the
other four algorithms for tensor recovery. They are abbrevi-
ated as LRMR, LRTR, G-LRTR, and TRPCA. LRMR rep-
resents the low-rank matrix recovery which needs to flatten
the original tensor to a matrix and then recover the low-rank
component by RPCA. The LRTR represents the low-rank
tensor recovery in [31] to restore the hyperspectral image, and
G-LRTR extends the LRTR only by generalizing the noise
formulation. The TPRCA represents the tensor robust prin-
cipal components analysis used in [14] to recover from the
sparse noisy tensor. The results illustrate that our AG-LRTR
algorithm outperforms the other algorithms in tensor
recovery.

A. SYNTHETIC DATA
The synthetic tensor A ∈ Rn1×n2×n3 with rank(A) = r can
be generated by the tensor-tensor product directly as follows.

A = Q ∗R (25)

whereQ ∈ Rn1×r×n3 ,R ∈ Rr×n2×n3 and all entries sampled
in independent and identical uniform distribution of U (0, 1).
Firstly, we summarize the influence of different kinds of
noise on the tensor singular values, then compare the recovery
performance of the five algorithms and finally discuss the
parameters set of the proposed algorithm.

1) NOISE INFLUENCE
As Fig. 6 depicted, the size of SCADA network traffic tensor
is 30 × 30 × 10 and the rank is four. We generate the
synthetic tensor in the experiment with the same tensor size
and rank for simplicity. It is noted that the proposed algorithm
can be generalized to arbitrary size tensors with the low-
rank property. To exploit noise influence on tensor rank, two
major categories are specified: the zero-mean noise and the
non-zero mean noise. For zero mean noise, the noise with
various variances ranging from 1 to 10 is added to the original
tensor as Fig. 7 (a) shows. Because the non-zero mean noise
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can be divided as the sum of a zero-mean noise and a constant
value, only the influence of the constant value is depicted in
the right picture of Fig. 7 (b).

FIGURE 7. Tensor singular values interfered with various kinds of noise.

As we can see, no matter whether the mean of noise is zero
or non-zero, the randomness property of noise increases all
the singular values of the tensor in a similar tendency and
the increment is positively correlated with the variance of the
noise. As for the non-zeromean noise, the constant mean only
affects the largest singular value, as proved as follows. More-
over, the discrepancy between the original tensor and noisy
tensor is diverse from each singular value as Fig. 8 shows. The
influence of noise with different variances on each singular
value of the original tensor differs, so the adaptive nuclear
norm could shrink each singular value to a different extent,
thus improves recovery performance.

FIGURE 8. Discrepancy between original tensor and noise tensor.

Proof: Assume a low rank tensor L ∈ Rn1×n2×n3 and
a constant tensor Iµ ∈ Rn1×n2×n3 , then representation of the

tensor M = L + Iµ in Fourier domain can be calculated as
follow

M = (Fn3 ⊗ In1 ) · bcirc(L+ Iµ) · (F−1n3 ⊗ In2 )

= L+ µ(Fn3 ⊗ In1 ) · bcirc(I1)(F
−1
n3 ⊗ In2 ) (26)

As for the second term in equation (26), all entries of the
tensor I1 are 1 and its block circulant matrix is an ones-matrix
in which all entries are equal to 1. Then any frontal slices in
Fourier domain only have the same value as follow

I1
(i)
= (Fn3 (i, :) · 1)× I1, i = 1, 2, · · · , n3 (27)

where Fn3 (i, :) denotes the i-th row vector, 1 is an ones-vector
and I1 denotes an ones-matrix with size n1 × n2. So each
frontal slice is a rank one matrix and has only one singular
value and its left and right singular vectors are ones-vector
with size n1 and n2. Because the first row and column in Fn3
is ones-vector, both the L

(i)
and I1

(i)
have the same singular

vectors and I1
(i)

is in the subspace of the L
(i)
. Then the

constant tensor only affects the largest singular value of the
original tensor. �

2) RECOVERY COMPARISON
A low-rank tensor with size 30 × 30 × 10 is generated as
the original and interfered with different noise as the mea-
surement to comprehensively compare the recovery perfor-
mance,. The results of recovery performance are listed in
Table 2.We can see that our proposed AG-LRTR outperforms
other algorithms in all cases. Especially when the noise has
low variance, the AG-LRTR could improve recovery perfor-
mance effectively because low variance on small singular
values is much greater than on large singular values, as Fig. 8
shows. The adaptive nuclear norm could retain the informa-
tion of the original tensor inmain singular values and alleviate
the noise influence on others. Besides, the G-LRTR and the
LRTR have similar performance, which is better than the
LRMR that loses the structure information by matricization.
The TRPCA has the denoising capability when the mean of
noise is zero. However, it fails to recover the original tensor
from non-zero noise that dissatisfies sparsity.

3) PARAMETER DISCUSSION
The recovery performance of our proposed AG-LRTR algo-
rithmmainly depends on the parameters of the problem (8) in
which the adaptive coefficients αi, i = 1, 2, · · · , r are deter-
mined by the parameter γ , so we will discuss the influence of
two core parameters λ and γ on recovery performance.

Before that, we make the connection from our algorithm to
other algorithms. If the parameter γ is set to 0, all adaptive
coefficients are equal to 1 and the sum of weighted singular
values can be regarded as the standard nuclear norm, so our
algorithm degenerates to the G-LRTR. Moreover, if the mean
variable of noise µ is fixed to 0, the optimization object
would be the same with LRTR, then if all tensors only have
one frontal slice, the tensor degenerates to a matrix and the
LRTR is the same with LRMR. So based on the connection,
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TABLE 2. The comparison of recovery performance.

we firstly set the parameter γ = 0 to discuss the influence
of penalty coefficient λ as the same as the LRTR and then
explore the optimal parameters (γ, λ) of AG-LRTR by the
grid search strategy.

FIGURE 9. The optimal interval of penalty coefficient when γ = 0.

In the experiments, the size of the original tensor is 30 ×
30× 10 and the rank is 3. When γ = 0, the influence of λ on
recovery performance is depicted in Fig. 9 which is consistent
with the intuition. The penalty coefficient is to balance the
nuclear norm of the tensor and the noise variance, so as the

variance increases, the penalty coefficient needs to decrease
to keep the nuclear norm and the variance in the same order.

FIGURE 10. The optimal parameter of AG-LRTR when the variance of
noise is 1.

As for the optimal parameters (λ, γ ) of AG-LRTR, the λ
depends on the γ due to the adaptive nuclear norm as Fig. 10
shows where the variance of the noise is 1.We can see that the
optimal λ corresponding to the peak PSNR decreases as the
γ increases because more information of the larger singular
values is retained so that there needs a lower λ to reduce the
noise variance and keep the balance. The other variances of
the noise have the same regulation.
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B. TENSOR RECOVERY FOR THE REAL-WORLD DATA
We have introduced the SCADA systems and constructed
a tensor model for the traffic of a testbed called EPIC in
Section III-A, so the recovery performances of all algorithms
are compared based on the low-rank SCADA traffic tensor
as Fig. 11 shows. Obviously, the rank of the SCADA traffic
tensor is 3 in Fig. 6, and the largest singular value is 10 that is
much smaller than the synthetic data, so the variance of noise
needs to be chosen cautiously.

FIGURE 11. The recovery performance for SCADA traffic tensor.

The recovery performances for SCADA traffic are depicted
when the mean of noise is 0, and the noise variance varies
from 0.02 to 0.18. Our proposed AG-LRTR algorithm still
outperforms other algorithms and improves much better than
the observed PSNR. The performances of the LRTR and
LRMR are similar, whichmeans that the correlations between
the frontal slices are weaker than the synthetic data. The
TRPCA performance is the worst even if it has the ability
to denoising. When the mean of noise is non-zero, the recov-
ery performances of all algorithms have the same tendency
except the TRPCA, which fails to denoising.

V. CONCLUSION
Based on the recently developed t-SVD, an adaptive and
generic low-rank tensor recovery algorithm is proposed to
recover the original traffic factor tensor from the irregular
network fluctuations in IIoT scenario. We construct a novel
tensor model to abstract multiple correlations from the traffic
data and retain as many traffic factors as possible by the adap-
tive and general optimization object. Numerical experiments
on the synthetic data and real-world SCADA traffic verify our
algorithm is effective in denoising for network management.

There are some interesting future works left. Because the
increment of each singular value depends on the noise vari-
ance, the adaptive nuclear norm criterion needs to combine
the information of noise with the singular values, which is
ignored in this paper. Besides, the optimal parameters are
short of a theoretical guarantee and found by grid search,
so there needs to explore an effective approach for parameter
selection and save the computational cost. Moreover, deep
learning can be employed if we do not have much prior
information about the original tensor and the noise.

APPENDIXES
PRELIMINARY DEFINITION AND PROPERTIES OF T-SVD
Firstly we briefly introduce the basics of the tensor notion and
related operation. Scalars are denoted by lower-case letters
such as i, j, k and vectors by bold lower-case letters such as
a, b, c. Matrices are denoted by upper-case letters, e.g., X.
Tensors are denoted by a calligraphic letter, e.g., X , and its
entry are denoted by xi1,··· ,in for a N-mode tensor. Identity
matrix with size n × n is denoted as In. The fields of real
numbers and complex numbers are denoted asR and C.

For a 3-mode tensor A ∈ Cn1×n2×n3 , its i-th horizontal,
lateral and frontal slice are denoted as A(i, :, :), A(:, i, :)
and A(:, :, i) respectively and especially for the frontal slice,
it can be abbreviated by A(i). The tube along the third mode
is denoted as A(i, j, :). In the field of complex number, the
complex conjugate of A is denoted as conj(A) which takes
the complex conjugate of each entry of A.
The inner product between A and B in Cn1×n2 is defined

as < A,B >= Tr(A∗B) where A∗ denotes the conjugate
transpose of A and Tr(·) denotes the matrix trace. The inner
product of two same-sized tensor A,B ∈ RI1×I2×···×IN can
be represented as the sum of the inner matrix product of each
frontal slice and equals to the sum of numerical product of
each entry.

< A,B >:=
n3∑
i=1

< A(i),B(i) >=
∑

i1,··· ,in

ai1,··· ,inbi1,··· ,in

(28)

Due to the need for rank relaxation, some norms of matrix
and tensor are used. For a matrix A, the i-th singular value
is denoted as σi(A),then the spectral and nuclear norm are
defined as follows

||A|| := max
i
σi(A)

||A||∗ :=
∑
i

σi(A) (29)

For a tensorA, the l1, infinity and Frobenius norm are defined
as follow

||A||1 :=
∑
i,j,k

|aijk |

||A||∞ := max
ijk
|aijk |

||A||F :=
√∑
i,j,k

a2ijk (30)

Definition 1.1 (DFT): For a vector v ∈ Rn, the Discrete
Fourier Transformation of v is denoted as v and given by

v = Fnv ∈ Cn (31)

where Fn is the DFT matrix defined as

Fn =


1 1 1 · · · 1
1 ω ω2

· · · ωn−1

...
...

...
. . .

...

1 ωn−1 ω2(n−1)
· · · ω(n−1)(n−1)

 ∈ Cn×n
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where ω = e−
2π i
n is a primitive n-th root of unity in which

i =
√
−1. Note that Fn/

√
n is unitary matrix.

Lemma 1.1: Given any real vector v ∈ Rn, the associated
v satisfied

v1 is real and conj(vi) = vn−i+2, i = 2, · · · , b
n+ 1
2
c (32)

Conversely, for any given complex v ∈ Cn satisfying (32),
there exists a real block circulant matrix circ(v) holds

Fn · circ(v) · F−1n = Diag(v)

where circ(v) =


v1 vn · · · v2
v2 v1 · · · v3
...

...
. . .

...

vn vn−1 · · · v1

 ∈ Cn×n and

Diag(v) =


v1 0 · · · 0
0 v2 · · · 0
...

...
. . .

...

0 0 · · · vn

 (33)

To extend similar properties for tensor, some operation
especially for tensor are needed as follow
Operation 1.1 (Bdiag): For any A ∈ Cn1×n2×n3 , the block

diagonal matrix is denoted as A ∈ Cn1n3×n2n3 with its i-th
block on the diagonal as the i-th frontal slice A

(i)
of A.

A = bdiag(A) =


A
(1)

A
(2)

. . .

A
(n3)


Operation 1.2 (Bcirc): For any A ∈ Rn1×n2×n3 , the block

circulant matrix of A is denoted as bcirc(A) ∈ Rn1n3×n2n3

bcirc(A) =


A(1) A(n3) · · · A(2)

A(2) A(1)
· · · A(3)

...
...

. . .
...

A(n3) A(n3−1) · · · A(1)


Operation 1.2 (Unfold): For any A ∈ Rn1×n2×n3 , the

unfold of A is denoted as follow

unfold(A) =


A(1)

A(2)

...

A(n3)

 , fold(unfold(A)) = A

Then based on the DFT of vector, the Lemma 1.1 can be
extended to the tensor as follow
Lemma 1.2: For any tensor A ∈ Rn1×n2×n3 , its DFT

associated as A ∈ Cn1×n2×n3 satisfied

(Fn3 ⊗ In1 ) · bric(A) · (F−1n3 ⊗ In2 ) = A (34)

where⊗ denotes the Kronecker product and (Fn3⊗ In1 )/
√
n3

is unitary. Then, we have{
A
(1)
∈ Rn1×n2

conj(A
(i)
) = A

(n3−i+2)
, i = 2, · · · , b n3+12 c

(35)

Conversely, for any given A ∈ Cn1×n2×n3 satisfying (35),
there exists a real tensorA ∈ Rn1×n2×n3 such that (34) holds.
Moreover, the following properties of tensor DFT are used
frequently:

||A||F =
1
√
n3
||A||F (36)

< A,B > =
1
√
n3
< A,B > (37)

Definition 1.2 (T-Product): Let A ∈ Rn1×l×n3 and B ∈
Rl×n2×n3 . Then the t-prodect A ∗ B is defined to be a tensor
of size n1 × n2 × n3

A ∗ B = fold(bcirc(A)) · unfold(B)) (38)

There are some other concepts on tensor extended from the
matrix as follow:
Definition 1.3 (Conjugate Transpose): The conjugate

transpose of a tensor A ∈ Cn1×n2×n3 is the tensor A∗ ∈
Cn2×n1×n3 obtained by conjugate transposing each of the
frontal slices and then reversing the order of transposed
frontal slices 2 through n3.
Definition 1.3 (Identity Tensor): The identity tensor I ∈

Rn×n×n3 is the tensor with its first frontal slice being the n×n
identity matrix, and other frontal slices being all zeros.
Definition 1.3 (Orthogonal Tensor): A tensor Q ∈

Rn×n×n3 is orthogonal if it satisfies Q∗Q = Q ∗Q∗ = I
Definition 1.3 (F-Diagonal Tensor): A tensor is called

f-diagonal Tensor if each of its frontal slices is a diagonal
matrix.
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