
Received 22 May 2022, accepted 16 June 2022, date of publication 29 June 2022, date of current version 22 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3187088

Siamese Network Based Multiscale
Self-Supervised Heterogeneous
Graph Representation Learning
ZIJUN CHEN 1, LIHUI LUO1, XUNKAI LI 1, BIN JIANG 1, QIANG GUO 2, (Member, IEEE),
AND CHUNPENG WANG1
1School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai 264209, China
2School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan 250014, China

Corresponding author: Chunpeng Wang (wcp@sdu.edu.cn)

This work was supported in part by the Shandong Provincial Natural Science Foundation under Grant ZR2020MA064, in part by the
National Natural Science Foundation of China under Grant 61873145, in part by the Natural Science Foundation of Shandong Province for
Excellent Young Scholars under Grant ZR2017JL029, and in part by the Science and Technology Innovation Program for Distinguished
Young Scholars of Shandong Province Higher Education Institutions under Grant 2019KJN045.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

ABSTRACT Owing to label-free modeling of complex heterogeneity, self-supervised heterogeneous graph
representation learning (SS-HGRL) has been widely studied in recent years. The goal of SS-HGRL is
to design an unsupervised learning framework to represent complicated heterogeneous graph structures.
However, based on contrastive learning, most existing methods of SS-HGRL require a large number of
negative samples, which significantly increases the computation and memory costs. Furthermore, many
methods cannot fully extract knowledge from a heterogeneous graph. To learn global and local information
simultaneously at low time and space costs, we propose a novel Siamese Network based Multi-scale
bootstrapping contrastive learning approach forHeterogeneous graphs (SNMH). Specifically, we first obtain
views under the meta-path schema and the 1-hop relation type schema through dual-schema view generation.
Then, we propose cross-schema and cross-view bootstrapping contrastive objectives to maximize the
similarity of node representations between different schemas and views. By integrating and optimizing the
above objectives, we can extract local and global information and eventually obtain the node representations
for downstream tasks. To demonstrate the effectiveness of our model, we conduct experiments on several
public datasets. Experimental results show that our model is superior to the state-of-the-art methods on
the premise of lower time and space complexity. The source code and datasets are publicly available at
https://github.com/lorisky1214/SNMH.
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INDEX TERMS Heterogeneous graph, graph representation learning, self-supervised learning, Siamese
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I. INTRODUCTION19

As a method of analyzing and mining rich information in20

graph structural data, graph representation learning (GRL)21

has attracted wide attention in recent years. GRL aims to22

learn the high-order embeddings of nodes or graphs that pre-23

serve the information of node attributes and graph topological24

structure, which can be used for a wide variety of downstream25
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tasks. Benefiting from the development of deep learning, 26

most successful GRL methods extend neural networks to 27

graph data, classified as graph neural networks (GNNs). They 28

have obtained significant results on many tasks, such as node 29

classification [3]–[5], recommendation system [6]–[8], and 30

link prediction [9]–[11]. 31

Despite the fruitful progress, GNNs are mostly applied in a 32

supervised manner [3], [4], [12], [13], which requires a large 33

number of labeled nodes for training. Moreover, the acquisi- 34

tion of label information in the real world is very costly and 35
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often requires domain-specific expertise, which is difficult to36

obtain. To address these problems, self-supervised GRL is37

presented, aiming to spontaneously extract supervised signals38

from the data itself without any label information. Following39

the concept of mutual information (MI) [18], a series of40

contrastive learning methods have recently achieved promis-41

ing results in learning representations by contrasting positive42

and negative samples. For example, DGI [19] maximizes MI43

between the global summary representation and the local44

patches to generate a low-dimensional representation of each45

node using the embedding framework in the homogeneous46

graph, such as GCN [13]. On top of DGI, MVGRL [20] intro-47

duces multiple views to learn the representations of nodes and48

graphs by maximizingMI between the node representation of49

a view and the graph representation of the other view. After50

graph augmentation, GRACE [21] maximizes the similarity51

between the representations of the nodes on the two random52

perturbed views of the same original graph. Adopting dif-53

ferent graph augmentation methods, GROC [22] improves54

robustness to adversarial attacks, and GCA [23] improves55

adaptive capacity. It is worth noting that all of the above56

methods are applied in homogeneous graphs that contain only57

one type of nodes and relations.58

FIGURE 1. An example of a heterogeneous graph from the ACM dataset
and relative illustrations of meta-path and relation based 1-hop
neighbors. Nodes with red frames indicate that information is discarded
during the encoding process.

However, real-world graphs often contain multiple node59

types and relation types represented by edges, which are60

called heterogeneous graphs with more comprehensive infor-61

mation and richer semantics. As a typical characteristic of62

heterogeneous graphs, meta-path [24] can capture seman-63

tic information in a graph by representing the composite64

relation between two nodes. Fig. 1 shows an example of a65

heterogeneous graph from the ACM dataset, which contains66

three types of nodes (Author, Paper and Subject). There are67

Write and Belong-to relation types between them. Mean-68

while, the meta-paths between two papers can be divided69

into two types, i.e., Paper-Author-Paper (PAP) and Paper-70

Subject-Paper (PSP). PAP means that two papers belong to71

the same author, and PSPmeans the same subject. DMGI [25]72

and HDGI [26], two current self-supervised heterogeneous 73

GRLmethods, generate node embeddings for each meta-path 74

type first and then integrate the embeddings with different 75

semantic information using a consistent regularization frame- 76

work. HeCo [27] conducts a further step by proposing a 77

collaborative contrastive learning mechanism that encodes 78

nodes to handle heterogeneity from both network schema 79

and meta-path views. Although the aforementioned methods 80

have achieved significant success, they are all subject to one 81

of the following problems: 1) Ignoring local neighborhood 82

information. If we only focus on semantic information, the 83

representations will fail to extract useful information from 84

direct neighbors. With this end, it is necessary to design a 85

mechanism to simultaneously learn the rich local and global 86

information in a graph. 2) Dependance on a large number 87

of negative samples. In this case, it leads to high time and 88

space complexity. At the same time, it is difficult for graphs 89

to define negative samples in a principled way. 90

To solve the aforementioned problems, inspired by boot- 91

strapping in the Siamese network [1], we propose SNMH, 92

a novel multi-scale self-supervised heterogeneous GRL 93

method to comprehensively extract rich information from 94

heterogeneous graphs at low time and space costs. Specifi- 95

cally, distinct from current methods, we propose dual-schema 96

view generation to obtain the meta-path based views and 97

relation type based 1-hop views, which represent global 98

and local information, respectively. Furthermore, we con- 99

struct cross-view and cross-schema variant Siamese architec- 100

tures. By maximizing the similarity of node representations 101

between different views under the same schema and between 102

two schemas, we can obtain node representations containing 103

abundant node attributes and topological information without 104

negative samples. Experimental results on various datasets 105

demonstrate the excellent performance of our model. 106

Our contributions can be summarized as follows: 107

• SNMH is the first trial to apply bootstrapping in 108

the Siamese network to self-supervised heterogeneous 109

graph representation learning, which can reduce time 110

and space costs by avoiding negative samples. 111

• The multi-scale optimization objective of SNMH, 112

namely, cross-schema and cross-view contrastiveness, 113

facilitates simultaneous learning of local and global 114

information to ultimately obtain high-quality represen- 115

tations of nodes. 116

• We perform extensive experiments on different public 117

datasets. Comparative results with state-of-the-art mod- 118

els demonstrate the superiority of our model with the 119

premise of lower time and space complexity. 120

II. RELATED WORK 121

A. SIAMESE NETWORK 122

Siamese network is a network architecture that contains two 123

identical structures. Initially, as a supervised learningmethod, 124

it is often used on tasks such as forged signature detection [1] 125

and face validation [2]. Recently, BYOL [30] introduces this 126

structure into self-supervised visual representation learning, 127
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which can provide results competing with state-of-the-art128

contrastive learning methods while avoiding using negative129

samples. BGRL [28] applies Siamese network to the GRL130

domain, which can be seen in Fig. 2. Through two different131

graph augmentationsA1 andA2, two views can be obtained,132

based on which an online encoder εθ and a target encoder133

εφ are employed to generate node representations for each134

view. The predictor pθ makes a prediction Z̃1 of the tar-135

get embedding H̃2 utilizing the online embedding H̃1. The136

ultimate objective is calculated as the similarity of Z̃1 and137

H̃2 with gradients flowing only via Z̃1. The target parameters138

φ are updated to an exponential moving average (abbreviated139

as EMA) of θ . Among them, the additional predictor of the140

online encoder and the non-gradient descent update mecha-141

nism of the target encoder are the keys to achieving supe-142

rior results for the Siamese network without using negative143

samples.144

FIGURE 2. The architecture of the Siamese network applied in GRL. The
orange, green and blue backgrounds indicate the online encoder, target
encoder and prediction generated by the predictor, respectively (similar
to Fig. 3 and Fig. 4).

B. SELF-SUPERVISED HETEROGENEOUS GRAPH145

REPRESENTATION LEARNING146

For the self-supervised representation learning of het-147

erogeneous graphs, most state-of-the-art methods follow148

a contrastive learning method, which learns low-dimensional149

features of nodes without labels by allowing the model150

to compare similar or different data points. For example,151

DMGI [25] and HDGI [26] utilize GNN encoders to learn152

node representations for each meta-path based view and then153

aggregate them through consensus regularization. Both meth-154

ods conduct contrastive learning to learn node representations155

in heterogeneous graphs by maximizing mutual information156

between local patches and corresponding graph-level sum-157

maries of graphs. However, the limitation of these two meth-158

ods is that they only consider the node attributes and global159

properties while ignoring the impact of local information160

on the quality of node embeddings. Recently, HeCo [27]161

proposes a collaborative contrastive mechanism to address162

this problem. HeCo learns node embeddings from network163

schema and meta-path views to capture both local and global164

structural information simultaneously. Nevertheless, despite 165

the superior results of all the above methods, they all rely 166

heavily on the number of negative samples, which greatly 167

affects the computation and memory costs. Moreover, gener- 168

ating negative samples in a proper way is also a challenging 169

task. To address the above problems, we propose amulti-scale 170

self-supervised heterogeneous graph representation learning 171

model, which aims to consider the rich information of node 172

attributes as well as the local and global structures in hetero- 173

geneous graphs at lower computation and memory costs. 174

III. PRELIMINARY 175

A. HETEROGENEOUS GRAPH 176

A heterogeneous graph is defined as G = {V, E}, where V is 177

a set of nodes, and E is a set of edges. It has a node-type 178

mapping function φ : V → T and an edge-type mapping 179

functionψ : E → R, where T andR represent the node-type 180

set and the edge-type set, respectively, and |T | + |R| > 2. 181

Fig. 1 (a) shows an example of a heterogeneous graph with 182

Author(A), Paper (P) and Subject (S) nodes. There are two 183

types of relations, i.e., Write and Belong-to, which mean 184

that the author writes the paper and the paper belongs to the 185

subject, respectively. 186

In this paper, we represent the attributes of nodes with 187

type φi as the initial feature matrix Xφi ∈ R|Vφi |×Fφi , where 188

|Vφi | is the number of nodes with type φi, and Fφi is the initial 189

dimension. In this paper, we specify the set of target nodes 190

as Vφt for representation learning. 191

B. META-PATH 192

A meta-path 8 is defined as v1
R1
→ v2

R2
→ · · ·

Rl
→ vl+1 (abbre- 193

viated as v1v2 · · · vl+1). It describes the composite relation 194

R = R1 ◦ R2 ◦ · · · ◦ Rl between nodes v1 and vl+1, where 195

◦ represents a combination operator on the relation. Meta- 196

paths can model rich semantic information in heterogeneous 197

graphs. As shown in Fig. 1 (b), two papers can be connected 198

by PAP and PSP meta-paths. PAP means that two papers 199

belong to the same author, and PSP means the same subject. 200

In this paper, we represent the set of meta-paths as 201

{81,82, · · · ,8P}, where P is the number of meta-path 202

types. The topology of the view based on the meta-path type 203

8k can be expressed asA8k ∈ R|Vφt |×|Vφt |. If there is a meta- 204

path 8k between nodes vi and vj, then A8k
ij = A8k

ji = 1; 205

otherwise A8k
ij = A8k

ji = 0. 206

C. RELATION BASED 1-HOP NEIGHBORS 207

For a node v, its relation based 1-hop neighbors can be 208

represented as Sv = {u : d(v, u) = 1}, where d(v, u) is 209

the shortest distance between nodes u and v. As shown in 210

Fig. 1 (c), the relation based 1-hop neighbors of the central 211

nodeP2 areA2,A3 and S3. They are directly connected, which 212

reflects the local structural information in a heterogeneous 213

graph. 214

Based on different relation types in a heterogeneous graph, 215

we can construct |R| relation types based 1-hop views. 216
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FIGURE 3. The architecture of SNMH’s cross-schema mechanism.

We represent the neighborhood information pertaining to217

each view as a relation type based adjacency matrix A9k ∈218

R|Vφt |×|Vφk |. If there is an edge of relation type 9k between219

target nodes vi ∈ Vφt and vj ∈ Vφk , then A
9k
ij = 1; otherwise,220

A9kij = 0.221

IV. PROPOSED METHOD222

We propose a Siamese network based self-supervised223

heterogeneous graph representation learning model with224

multi-scale optimization objectives. The cross-schema and225

cross-view architectures are shown in Fig. 3 and Fig. 4.226

First, we perform dual-schema view generation and obtain227

meta-path based views and relation type based 1-hop views.228

Afterward, we deploy variant Siamese networks between229

different views under the same schema and two schemas230

to construct a multi-scale bootstrapping contrastive learning231

mechanism. Finally, we systematically combine and optimize232

the cross-schema and cross-view optimization objectives to233

obtain the final node representations. In the following sec-234

tions, we will introduce our model in detail.235

A. DUAL-SCHEMA VIEW GENERATION236

The factors affecting the representations of nodes in heteroge-237

neous graphs are complex and contain the attributes of nodes,238

global information represented by meta-paths and local infor-239

mation represented by relation type based 1-hop neighbors.240

To simultaneously learn the above information, we innova-241

tively propose a dual-schema view generation mechanism,242

as shown in Fig. 3.243

Assume that the original graph is G. To start with, accord- 244

ing to the first schema, meta-path, we can generate a series of 245

views: 246

G = {Gmp1 ,Gmp2 , · · · ,GmpP }, (1) 247

where Gmpi = (Xφt ,A
8i ), Xφt ∈ R|Vφt |×Fφt is the feature 248

matrix of target nodes, and A8i ∈ {0, 1}|Vφt |×|Vφt | is the 249

adjacency matrix of view Gmpi . 250

Next, for the second schema, i.e., the 1-hop relation type, 251

we can still obtain a series of views: 252

G = {Grt1 ,G
rt
2 , · · · ,G

rt
|R|}, (2) 253

where Grti = (Xφt ,Xφi ,A
9i ), Xφt is the same as formula (1), 254

and Xφi ∈ R|Vφi |×Fφi is the 1-hop neighbors feature matrix 255

based on relation type 9i. A9i ∈ {0, 1}|Vφt |×|Vφi | is the 256

adjacency matrix of this view, which generally is not a square 257

matrix. 258

B. NODE FEATURE TRANSFORMATION 259

Since node types contained in heterogeneous graphs are not 260

singular with different feature spaces or feature dimensions, 261

we need to first project them into the same dimension space to 262

facilitate the processing of subsequent models. Specifically, 263

for the nodes of a certain type φi, we construct a specific 264

type of linear transformation that transforms the initial fea- 265

tures Xφi of the nodes into a unified dimension. The specific 266

formula is shown as follows: 267

X′φi = σ (Wφi · Xφi + bφi ), (3) 268
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where X′φi ∈ R|Vφi |×F , F is the node dimension after the269

feature transformation, σ (·) is an activation function, Wφi is270

a linear transformation parameter matrix, and bφi is the bias.271

C. CROSS-SCHEMA BOOTSTRAPPING CONTRASTIVENESS272

In the learning mechanism of cross-schema bootstrap-273

ping contrastiveness, we design a variant Siamese struc-274

ture. Unlike conventional Siamese networks, our proposed275

variation in the cross-schema learning mechanism has an276

online and target encoder with distinct structures. Our online277

encoder and target encoder are shown in Fig. 3 (a) and (b),278

respectively. To distinguish them from the conventional279

Siamese network and intuitively express their characteristics,280

we define them as meta-path guided encoder and 1-hop rela-281

tion type guided encoder, respectively (abbreviated as MP282

encoder and RT encoder).283

The cross-schema learning procedure is shown in Fig. 3,284

where Zmp = pcs(Hmp) is the matrix of predicted node285

representations obtained after the input of the output node286

representations of the MP encoder to its additional predic-287

tor pcs, and Hrt is the output node representation matrix of288

the RT encoder. We form the cross-schema bootstrapping289

contrastiveness by maximizing the cosine similarity between290

the above two. We express the optimization objective as the291

following formula:292

Lcs = −
2
|Vφt |

|Vφt |−1∑
i=0

Zmpi Hrt
i

T

||Zmpi ||||H
rt
i ||
, (4)293

where Zmpi ∈ R1×d and Hrt
i ∈ R1×d are the representa-294

tions of node i output by the predictor pcs and RT encoder,295

respectively.296

For the acquisition of Hmp and Hrt , as well as the update297

of the MP encoder and RT encoder, we will specify them in298

detail in the next two subsections.299

1) META-PATH GUIDED ENCODER300

Here, we aim to learn the characteristics of nodes in the301

high-order meta-path schema. After Sections IV.A and IV.B,302

we obtain multiple views from feature-transformed nodes303

generated based onmeta-path types.We represent these views304

as (X′φt ,A
8i ). To extract the node attributes and semantic305

information contained in each view, we plunge each of the306

above views into a GNN:307

H8i = f8i (X
′
φt
,A8i ). (5)308

For f8i : R|Vφt |×F × R|Vφt |×|Vφt | → R|Vφt |×d , we use a309

meta-path specific single-layer GCN [13]. The node embed-310

ding matrix encoded by the GCN can be expressed as:311

H8i = σ (D̃8
−
1
2

i Ã8iD̃8
−
1
2

i X′φtW
8i ), (6)312

where Ã8i = A8i + I, I is an identity matrix, D̃8i is the313

degree matrix of Ã8i , and W8i ∈ RF×d is a weight matrix314

that is not shared between different views. σ is a nonlinear315

activation function, and here, we use PReLU.316

Each GCN encoder encodes a node embedding under a 317

meta-path. Apparently, the effects of different meta-paths on 318

the quality of the resulting node embeddings are distinct. 319

Intuitively, if target nodes are mostly connected through a 320

certain type of meta-path, this meta-path type affects their 321

representations most. Based on this, we treat the encoder of 322

the view with the largest number of meta-paths contained 323

as the anchor encoder. As shown in Fig. 3 (a), we assume 324

that the top encoder is the anchor encoder, and the bottom 325

encoders are non-anchor encoders. The ellipses in the figure 326

indicate that the number of non-anchor encoders may be 1, 2, 327

3. . . , which depends on the number of meta-path types in a 328

heterogeneous graph (we assume a minimum number of 2). 329

During the learning process, only the parameters of the 330

anchor encoder are updated by gradient descent to reduce 331

the target loss, while the parameters of other non-anchor 332

encoders follow different targets. The intuition behind this is 333

that the slow-moving non-anchor encoders act as a stabilizer 334

to encode the meta-paths that are not the most influential. 335

This guides the anchor encoder to learn to explore richer 336

and better representations on the basis of the most influential 337

meta-paths without relying on additional negative samples to 338

avoid a collapse. The parameters of the non-anchor encoders 339

are updated as an EMA of the parameters of the anchor 340

encoder: 341

δ = τ · δ + (1− τ ) · η, (7) 342

where η and δ are the parameters of the anchor encoder 343

and non-anchor encoders respectively. τ is a decay rate that 344

controls the distance between η and δ, and its update can be 345

seen in formula (19). 346

After the above meta-path specific node representation 347

learning, we obtain a set of node embeddings {H8i}
P
i=1. 348

Now, we need to aggregate the node embeddings above. 349

Considering that the appropriate aggregation methods may 350

change for datasets with different distributions of the number 351

of meta-paths, we implement distinct aggregation methods 352

for different datasets, which are shown as follows: 353

a: AVERAGE POOLING 354

The first aggregation method is average pooling, which cal- 355

culates the average of the set of embedding matrices: 356

Hmp
=

1
P

P∑
i=1

H8i . (8) 357

b: SEMANTIC-LEVEL ATTENTION 358

For the second method, we employ semantic-level atten- 359

tion [31] to fuse the node embeddings into the final embed- 360

ding Hmp in the meta-path schema: 361

Hmp
=

P∑
i=1

β8i ·H
8i , (9) 362
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where β8i weighs the importance of the meta-path8i, which363

is calculated as follows:364

e8i =
1
|Vφt |

|Vφt |−1∑
n=0

qT
8i
· tanh(Wmp ·H8i

n + bmp),365

β8i = softmax(e8i ) =
exp(e8i )∑P
j=1 exp(e

8j )
, (10)366

whereWmp and bmp are the learnable parameters. q8i denotes367

the semantic-level attention vector.368

We will show details about the correspondence between369

datasets and aggregation methods in Section V.F. The final370

node embedding Hmp in the meta-path schema after aggre-371

gation will be fed into the predictor pcs, and then Zmp is372

generated.373

2) 1-HOP RELATION TYPE GUIDED ENCODER374

As mentioned above, we can also obtain multiple relation375

type based 1-hop views with feature-transformed nodes.376

In each view, the target node is connected to its 1-hop neigh-377

bors through the edges of a specific relation type. It is obvious378

that different types of neighbors contribute differently to the379

node embeddings, and different nodes of the same type are380

also different. Therefore, in the RT encoder, we adopt a381

hierarchical attention mechanism, i.e., node- and type-level382

attention.383

After the node feature transformation, each of the relation384

type based 1-hop views can be represented as (X′φt ,X
′
φi
,A9i ),385

where φi represents the type of 1-hop neighbors correspond-386

ing to the relation type 9i. To extract the local structural387

information of the nodes in a graph, we feed each of the views388

into an identically structured GNN:389

H9i = g9i (X
′
φt
,X′φi ,A

9i ). (11)390

Unlike the MP encoder, we set g9i as a node-level atten-391

tion layer here. For node n in the 9i relation type view, its392

representation in this layer can be calculated as follows:393

H9in = σ
( ∑
m∈N9i

n

α9in,m · X
′9i
m

)
, (12)394

where N9i
n is the set of 1-hop neighbors of node n defined395

by 9i, X′
9i
m denotes the feature vector of node m, and σ is396

a nonlinear activation function. Here, we use LeakyReLU.397

α
9i
n,m measures the importance of node m to node n, which398

can be calculated as follows:399

α9in,m =
exp
(
LeakyReLU

(
aT
9i
· [X′9in ||X

′9i
m ]
))

∑
j∈N9i

n
exp
(
LeakyReLU

(
aT
9i
· [X′9in ||X′

9i
j ]
)) ,400

(13)401

where a9i ∈ R2F×1 is the node-level attention vector and402

|| indicates the concatenating operation.403

For the selection of nodes inN9i
n , we do not simply delimit404

all the nodes directly connected with node n through 9i.405

Instead, we design a threshold 09i . When the number 406

of neighbors corresponding to 9i is greater than the 407

specified 09i , we will non-repeatedly choose 09i neighbors 408

at random to join N9i
n . Otherwise, the 09i neighbors can be 409

selected repeatedly. In this way, the threshold ensures that 410

each node under the same view aggregates the same amount 411

of neighborhood information, while the random selection 412

ensures the diversity of node embeddings in each epoch. 413

The specific learning process of each view is similar to the 414

meta-path. The only difference is that we choose the view 415

with the largest number of 1-hop neighbors as the anchor 416

encoder here. 417

After learning the 1-hop relation type specific node repre- 418

sentations described above, we obtain a set of node embed- 419

dings {H9i}|R|i=1. Next, we use type-level attention to fuse 420

them together to obtain the final embedding Hrt in the 1-hop 421

relation type schema: 422

Hrt
=

|R|∑
i=1

µ9i ·H
9i , (14) 423

µ9i weighs the importance of the 1-hop relation type 9i, 424

which can be calculated as follows: 425

u9i =
1
|Vφt |

|Vφt |−1∑
n=0

qT
9i
· tanh(Wrt ·H9in + brt ), 426

µ8i = softmax(u8i ) =
exp(u8i )∑|R|
j=1 exp(u

8j )
, (15) 427

where Wrt and brt are learnable parameters. q9i is the 428

type-level attention vector. 429

D. CROSS-VIEW BOOTSTRAPPING CONTRASTIVENESS 430

In addition to the bootstrapping contrastiveness between 431

the two schemas, we additionally consider the relationship 432

between the views within the meta-path schema, which 433

acts as a strong regularization and is highly informative for 434

improving the performance of our model. Details are shown 435

in Fig. 4. 436

FIGURE 4. The architecture of SNMH’s cross-view mechanism.

Since there are usually more than two meta-path types 437

in a heterogeneous graph, more than two encoders with the 438
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TABLE 1. The statistics of the datasets used in our experiments.

same structure but different parameters are needed to encode439

different views inside the same schema. Therefore, unlike440

the traditional Siamese network that contains only one online441

encoder and one target encoder, we set the encoders according442

to different meta-paths. We consider the encoder of the view443

with the most meta-paths as an online encoder (connected to444

an additional predictor) and the rest as target encoders.445

Assume that the meta-path corresponding to the online446

encoder is 81. In each epoch, the online encoder generates447

an online representationH81 . Similarly, other target encoders448

also generate a series of representations {H8i}
P
i=2. Then,H

81449

is fed into a predictor pcv to generate Z81 = pcv(H81 ).450

The parameters of the online encoder are updated by max-451

imizing the similarity between the predictor’s prediction and452

each target representation, following a gradient of cosine453

similarity:454

Lcv = −
2

|Vφt | · (P− 1)

P∑
j=2

|Vφt |−1∑
i=0

Z81
i H

8j
i

T

||Z81
i ||||H

8j
i ||

. (16)455

During training, the parameters of the target encoders do456

not receive the gradient directly but are updated to the EMA457

of the online encoder by formula (7), where η and δ are458

the parameters of the online encoder and target encoders,459

respectively.460

E. MULTI-SCALE MODEL TRAINING461

To learn the attributes and local structural information, as well462

as the global topological information simultaneously, we sys-463

tematically fuse the cross-schema and cross-view optimiza-464

tion objectives. We define the overall objective as follows:465

L = λ · Lcv + (1− λ) · Lcs, (17)466

λ is a hyperparameter used to weigh these two objectives.467

According to the different effects obtained by setting differ-468

ent λ, we can determine the impact of meta-paths and relation469

based 1-hop neighbors (representing global and local infor-470

mation, respectively) on node representations for a specific471

dataset.472

We train our proposed model end-to-end by optimizing the473

above objective. Finally, we obtain the node representations474

used for downstream tasks.475

TABLE 2. The specific characteristics of baselines (X: Learning with initial
features, A: Learning with the adjacency matrix, Y: Learning with node
labels, HG: Suitable for heterogeneous graph).

V. EXPERIMENT 476

A. DATASETS 477

To evaluate the performance of SNMH, we conduct experi- 478

ments with three public datasets, and the basic information 479

statistics of the datasets are shown in Table 1. 480

• ACM: This is an academic paper dataset. The tar- 481

get nodes are papers, which are divided into three 482

classes, namely, database, wireless communication and 483

data mining. The initial features of papers are the bag- 484

of-words representation of keywords. There are two 485

meta-paths defined in ACM, including Paper-Author- 486

Paper (PAP) and Paper-Subject-Paper (PSP) [32]. 487

• DBLP: This is another paper dataset whose target nodes 488

are authors. These nodes can be divided into four classes, 489

including database, data mining, machine learning and 490

information retrieval. We extract three meta-paths from 491

the graph with Author-Paper-Author (APA), Author- 492

Paper-Conference-Paper-Author (APCPA) and Author- 493

Paper-Term-Paper-Author (APTPA) [33]. 494

• Freebase: This is a dataset of movies. There are three 495

classes of target movie nodes, namely action, com- 496

edy and drama. We encode the initial feature of the 497

target node as a one-hot vector. In the experiments, 498

the meta-paths we consider are Movie-Actor-Movie 499

(MAM), Movie-Direct-Movie (MDM) and Movie- 500

Writer-Movie (MWM) [34]. 501

B. BASELINES 502

We implement five methods as baselines, and their specific 503

characteristics are shown in Table 2, where Raw indicates 504

that the initial features of the target nodes are treated as 505

embeddings. HERec [36] is an unsupervised heterogeneous 506

method that only uses topology structure to learn. HAN [31] 507
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TABLE 3. Experimental results (% ± σ ) on node classification.

is a semi-supervised heterogeneous method that extracts node508

attributes and structural information in the graph through509

node- and semantic-level attention. DGI [19] is an unsuper-510

vised homogeneous method, while DMGI [25] is an unsuper-511

vised heterogeneous method. The inputs of these two models512

all contain the initial features and adjacency matrices of513

nodes.514

C. EXPERIMENTAL SETUP515

We implement SNMH using PyTorch. The model parameters516

are initialized by Glorot Initialization [37], and Adam [35]517

is used as the optimizer. We set the initial learning rate as518

γ0 = 0.5 and the number of total epochs as ntotal = 10000.519

To increase stability, we use batch normalization between520

layers and learning rate with a cosine schedule [28], which521

can be expressed by the following formula:522

γi,

{ i×γ0
nsplit

, i 6 nsplit

γ0 × (1+ cos (i−nsplit )×πntotal−nsplit
)× 0.5, nsplit 6 i6ntotal .

523

(18)524

In all experiments, we fix nsplit = 1000. For each dataset,525

patience is set with a range of { 10, 20, 30 }, i.e., training will526

be terminated when the loss does not decrease for consec-527

utive patience epochs. To prevent overfitting, we set specific528

dropout values to each dataset and perform on both the feature529

vectors and the attention vectors. For simplicity, both predic-530

tors pcv and pcs are fixed as an MLP with a single hidden531

layer, whose dimension is set to 128. In the cross-schema532

and cross-view learning mechanisms, parameters updated by533

EMA are initialized following the same distribution as other534

parameters updated by gradient descent. The decay rate τ in535

formula (7) is initialized as τ0 = 0.99, which also follows a536

cosine schedule to update:537

τi , 1−
1− τ0

2
× (cos(

i× π
ntotal

)+ 1). (19)538

Unlike the target nodes of ACM and DBLP that have539

original features which can be used directly, the target nodes540

of Freebase do not have original features, and its initial541

feature matrix is defined as a sparse matrix with ones on542

the diagonal. We set the embedding dimensions of the target543

nodes of ACM, Freebase and DBLP to 64, 128 and 256,544

respectively. We run 10 times randomly and present the aver- 545

age results with the standard deviation values. 546

In the comparative experiments, we mainly refer to 547

HeCo [27]. For HERec, we set the window size, the number 548

of walks per node and the walk length to 5, 40 and 100, 549

respectively. For both HERec and DGI, we test all meta-paths 550

and present their best results. Other parameters follow the 551

settings in the original paper. 552

D. NODE CLASSIFICATION 553

To evaluate the trained graph encoder, we use the learned 554

node embeddings to fit a logistic regression classifier. During 555

the fitting process, the embeddings are frozen to prevent 556

any gradient flow back to the encoder. For the Freebase, 557

DBLP and ACM datasets, we randomly select 20, 40 and 558

60 labeled nodes in each class as the training set, respectively, 559

and 1000 nodes as the validation set and 1000 as the test 560

set. We present the test performance when the validation set 561

presents the optimal result. We compare SNMH with other 562

baselines by AUC, Micro-F1 and Macro-F1. The results are 563

shown in Table 3, where we mark the best performance in 564

bold. As shown in the table, SNMH outperforms all datasets 565

than other baselines. We attribute the results to the follow- 566

ing two points: 1) We design a novel network based on 567

the Siamese network, which can extract the information in 568

historical representations without relying on negative sam- 569

ples. 2) We construct a multi-scale mechanism to learn node 570

features as well as global and local structural information 571

in heterogeneous graphs from cross-view and cross-schema 572

perspectives. Even if the label information of nodes is used in 573

the training process of HAN, SNMH is still superior to HAN, 574

which also confirms the effectiveness of the self-supervised 575

learning of SNMH. 576

E. VISUALIZATION 577

To intuitively evaluate our model, we visualize the node 578

embeddings of ACM obtained by HERec, HAN, DMGI and 579

SNMH using the t-SNE [38] algorithm, and the results are 580

shown in Fig. 5. We also compute the Silhouette scores for 581

different methods, which are 0.209, 0.323, 0.327 and 0.335. 582

We can see that HERec cannot effectively identify different 583

classes because of the lack of initial features. Even if HAN 584

takes node labels as input, SNMH still works better than 585

HAN. SNMH has a clearer boundary and denser clusters 586
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FIGURE 5. Visualization of the node embeddings of ACM, where different colors indicate different classes.

TABLE 4. Time and space cost comparison between SNMH and HeCo.

than the others, as well as a higher Silhouette score, which587

demonstrate the effectiveness of our method.588

F. ANALYSIS589

1) ANALYSIS OF TIME AND SPACE COSTS590

We conduct comparative experiments in the server with591

an NVIDIA GeForce RTX 2080 GPU to analyze the time592

and space superiority of SNMH. To ensure consistency of593

experimental conditions, we choose HeCo as the comparison594

method. Similar to SNMH, HeCo also uses the initial feature595

and adjacency matrix as input and encodes both meta-paths596

and 1-hop neighbors, ensuring that the time and space costs597

are only affected by the model itself. We employ SNMH598

and HeCo to perform the same number of experiments on599

each dataset and then average the running time and graphics600

memory after removing amaximum andminimum value. The601

results of the comparative experiments are shown in Table 4.602

As shown in Table 4, SNMH uses less running time and603

graphics memory than HeCo on all three datasets under the604

same experimental conditions. Therefore, we can conclude605

that SNMH can reduce time and space costs, which facilitates606

the implementation of our experiments.607

To further illustrate the time and space superiority of608

our model in a variety of situations, we conduct experi-609

ments using SNMH and HeCo at different values of the610

threshold 09i , i.e., the number of sampled 1-hop neighbors611

of target nodes. The results are shown in Fig. 6, where the612

solid lines represent graphics memory and the dashed lines613

represent time. Because each paper belongs to only one614

subject (S) in ACM, we only adjust the number of sampled615

A-type nodes.We can see that the changing trends of time and616

space are similar for both datasets. SNMH requires a stable617

amount of time and is always substantially less than HeCo.618

As the threshold is raised, both SNMH and HeCo’s graph-619

ics memory rises slowly. These findings indicate SNMH’s620

FIGURE 6. Time and space costs when changing the number of sampled
1-hop neighbors. The x-axis represents the number of sampled 1-hop
neighbors. The y-axis on the left represents time (s), and the y-axis on the
right represents graphics memory (GiB).

advantage in terms of time and space when sampling more 621

1-hop neighbors of target nodes. 622

In addition, we perform experiments to see how the number 623

of meta-paths affects time and space. The results are shown 624

in Fig. 7, where the solid lines represent graphics memory 625

and the dashed lines represent time. It can be seen from 626

the figure that the curves representing different meta-paths 627

show almost the same changing trend for time, and they 628

are all much smaller than HeCo, indicating that the number 629

of meta-paths has minimal influence on the time required 630

for SNMH. When the number of MAM increases, the graph- 631

ical memory required for SNMH increases slowly and is 632

always less than HeCo, but it remains constant when the 633

number of MDM andMWM increases. This finding suggests 634

that MAM, as the meta-path encoded by the online encoder 635

(anchor encoder), has a greater impact on the space required 636

by the model. These results also prove the superiority of 637

SNMH in time and space whenmore meta-paths are encoded. 638

2) ANALYSIS OF AGGREGATING META-PATH SPECIFIC NODE 639

REPRESENTATIONS 640

From Section IV.C, there are two methods to aggregate 641

meta-path specific node representations, including average 642
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FIGURE 7. Time and space costs when changing the number of meta-
paths. The x-axis represents the multiples of the original number of
meta-paths. The y-axis on the left represents time (s), and the
y-axis on the right represents graphics memory (GiB).

pooling and semantic-level attention. To explore the influence643

of different aggregation methods on the quality of the final644

node embeddings, we conduct experiments on ACM, DBLP645

and Freebase, and the results are shown in Fig. 8.646

FIGURE 8. Analysis of methods for aggregating meta-path specific node
representations.

From the figure, we conclude that different datasets are647

suitable for different aggregation methods. For ACM and648

Freebase, it is better to use average pooling, while DBLP is649

more suitable for semantic-level attention. In other words,650

identifying differences in meta-paths is more crucial for651

datasets such as DBLP, where the number of different652

meta-paths varies substantially. In addition, different datasets653

have distinct sensitivities to aggregation methods. ACM is654

obviously more affected than DBLP and Freebase when655

adopting different aggregation methods.656

3) ANALYSIS OF HYPERPARAMETERS657

In this section, we also investigate a key hyperparameter,658

i.e., the equilibrium parameter λ in the final objective (17).659

We perform node classification on ACM, DBLP and Free-660

base, and then show AUC, Macro-F1 and Micro-F1 values661

under different λ, as shown in Fig. 9.662

It can be seen from the figure that all three datasets663

practically approach a minimum at λ = 1, demonstrating664

the necessity for us to consider both meta-paths and rela-665

tion based 1-hop neighbors using the cross-schema mecha-666

nism. Furthermore, at λ = 0 (i.e., only the cross-schema667

part of the model remains), DBLP obtains the minimum668

value, while ACM and Freebase achieve the best perfor-669

mance. This indicates that it is important to utilize the670

cross-view mechanism to additionally learn the similarity671

FIGURE 9. Analysis of hyperparameters.

between different meta-paths for datasets where the number 672

of different meta-paths varies substantially (i.e., imbalanced). 673

Since the majority of real-world datasets are imbalanced, the 674

above findings illustrate the significance of utilizing both the 675

cross-schema and cross-view parts for multi-scale learning. 676

VI. CONCLUSION 677

In this paper, we propose a novel self-supervised heteroge- 678

neous graph representation learning method called SNMH. 679

To capture rich self-supervised signals, we conduct dual- 680

schema view generation to obtain meta-path based views and 681

relation type based 1-hop views, which represent the global 682

and local information in a heterogeneous graph, respec- 683

tively. Based on the Siamese network, SNMH implements 684

a multi-scale bootstrapping contrastive learning mechanism 685

to learn node representations in heterogeneous graphs from 686

cross-schema and cross-view aspects. Our method does not 687

require any negative samples, thus reducing time and space 688

costs. Experimental results show that our method is supe- 689

rior to other methods. In the future, we will continue to 690

research more efficient methods with lower time and space 691

complexity. 692
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