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ABSTRACT Owing to label-free modeling of complex heterogeneity, self-supervised heterogeneous graph
representation learning (SS-HGRL) has been widely studied in recent years. The goal of SS-HGRL is
to design an unsupervised learning framework to represent complicated heterogeneous graph structures.
However, based on contrastive learning, most existing methods of SS-HGRL require a large number of
negative samples, which significantly increases the computation and memory costs. Furthermore, many
methods cannot fully extract knowledge from a heterogeneous graph. To learn global and local information
simultaneously at low time and space costs, we propose a novel Siamese Network based Multi-scale
bootstrapping contrastive learning approach for Heterogeneous graphs (SNMH). Specifically, we first obtain
views under the meta-path schema and the 1-hop relation type schema through dual-schema view generation.
Then, we propose cross-schema and cross-view bootstrapping contrastive objectives to maximize the
similarity of node representations between different schemas and views. By integrating and optimizing the
above objectives, we can extract local and global information and eventually obtain the node representations
for downstream tasks. To demonstrate the effectiveness of our model, we conduct experiments on several
public datasets. Experimental results show that our model is superior to the state-of-the-art methods on
the premise of lower time and space complexity. The source code and datasets are publicly available at
https://github.com/lorisky1214/SNMH.

INDEX TERMS Heterogeneous graph, graph representation learning, self-supervised learning, Siamese
network, multiscale.

I. INTRODUCTION tasks. Benefiting from the development of deep learning,

As a method of analyzing and mining rich information in
graph structural data, graph representation learning (GRL)
has attracted wide attention in recent years. GRL aims to
learn the high-order embeddings of nodes or graphs that pre-
serve the information of node attributes and graph topological
structure, which can be used for a wide variety of downstream
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most successful GRL methods extend neural networks to
graph data, classified as graph neural networks (GNNs). They
have obtained significant results on many tasks, such as node
classification [3]-[5], recommendation system [6]-[8], and
link prediction [9]-[11].

Despite the fruitful progress, GNNs are mostly applied in a
supervised manner [3], [4], [12], [13], which requires a large
number of labeled nodes for training. Moreover, the acquisi-
tion of label information in the real world is very costly and
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often requires domain-specific expertise, which is difficult to
obtain. To address these problems, self-supervised GRL is
presented, aiming to spontaneously extract supervised signals
from the data itself without any label information. Following
the concept of mutual information (MI) [18], a series of
contrastive learning methods have recently achieved promis-
ing results in learning representations by contrasting positive
and negative samples. For example, DGI [19] maximizes MI
between the global summary representation and the local
patches to generate a low-dimensional representation of each
node using the embedding framework in the homogeneous
graph, such as GCN [13]. On top of DGI, MVGRL [20] intro-
duces multiple views to learn the representations of nodes and
graphs by maximizing MI between the node representation of
a view and the graph representation of the other view. After
graph augmentation, GRACE [21] maximizes the similarity
between the representations of the nodes on the two random
perturbed views of the same original graph. Adopting dif-
ferent graph augmentation methods, GROC [22] improves
robustness to adversarial attacks, and GCA [23] improves
adaptive capacity. It is worth noting that all of the above
methods are applied in homogeneous graphs that contain only
one type of nodes and relations.

Author(A) Paper(P) Subject(S) H
Paper-Author-Paper (PAP)
™
T
Py T
Ay S1
H T Paper-Subject-Paper (PSP)
Py
4 5 (b) Meta-path
Py I Py
A3 S3 i
Py
Write H H T
Belong-to
A, Ay S;

(a) Heterogeneous Graph (c) Relation Based 1-hop Neighbors

FIGURE 1. An example of a heterogeneous graph from the ACM dataset
and relative illustrations of meta-path and relation based 1-hop
neighbors. Nodes with red frames indicate that information is discarded
during the encoding process.

However, real-world graphs often contain multiple node
types and relation types represented by edges, which are
called heterogeneous graphs with more comprehensive infor-
mation and richer semantics. As a typical characteristic of
heterogeneous graphs, meta-path [24] can capture seman-
tic information in a graph by representing the composite
relation between two nodes. Fig. 1 shows an example of a
heterogeneous graph from the ACM dataset, which contains
three types of nodes (Author, Paper and Subject). There are
Write and Belong-to relation types between them. Mean-
while, the meta-paths between two papers can be divided
into two types, i.e., Paper-Author-Paper (PAP) and Paper-
Subject-Paper (PSP). PAP means that two papers belong to
the same author, and PSP means the same subject. DMGI [25]
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and HDGI [26], two current self-supervised heterogeneous
GRL methods, generate node embeddings for each meta-path
type first and then integrate the embeddings with different
semantic information using a consistent regularization frame-
work. HeCo [27] conducts a further step by proposing a
collaborative contrastive learning mechanism that encodes
nodes to handle heterogeneity from both network schema
and meta-path views. Although the aforementioned methods
have achieved significant success, they are all subject to one
of the following problems: 1) Ignoring local neighborhood
information. If we only focus on semantic information, the
representations will fail to extract useful information from
direct neighbors. With this end, it is necessary to design a
mechanism to simultaneously learn the rich local and global
information in a graph. 2) Dependance on a large number
of negative samples. In this case, it leads to high time and
space complexity. At the same time, it is difficult for graphs
to define negative samples in a principled way.

To solve the aforementioned problems, inspired by boot-
strapping in the Siamese network [1], we propose SNMH,
a novel multi-scale self-supervised heterogeneous GRL
method to comprehensively extract rich information from
heterogeneous graphs at low time and space costs. Specifi-
cally, distinct from current methods, we propose dual-schema
view generation to obtain the meta-path based views and
relation type based 1-hop views, which represent global
and local information, respectively. Furthermore, we con-
struct cross-view and cross-schema variant Siamese architec-
tures. By maximizing the similarity of node representations
between different views under the same schema and between
two schemas, we can obtain node representations containing
abundant node attributes and topological information without
negative samples. Experimental results on various datasets
demonstrate the excellent performance of our model.

Our contributions can be summarized as follows:

« SNMH is the first trial to apply bootstrapping in
the Siamese network to self-supervised heterogeneous
graph representation learning, which can reduce time
and space costs by avoiding negative samples.

o The multi-scale optimization objective of SNMH,
namely, cross-schema and cross-view contrastiveness,
facilitates simultaneous learning of local and global
information to ultimately obtain high-quality represen-
tations of nodes.

o We perform extensive experiments on different public
datasets. Comparative results with state-of-the-art mod-
els demonstrate the superiority of our model with the
premise of lower time and space complexity.

Il. RELATED WORK

A. SIAMESE NETWORK

Siamese network is a network architecture that contains two
identical structures. Initially, as a supervised learning method,
it is often used on tasks such as forged signature detection [1]
and face validation [2]. Recently, BYOL [30] introduces this
structure into self-supervised visual representation learning,
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which can provide results competing with state-of-the-art
contrastive learning methods while avoiding using negative
samples. BGRL [28] applies Siamese network to the GRL
domain, which can be seen in Fig. 2. Through two different
graph augmentations .4; and Aj, two views can be obtained,
based on which an online encoder gy and a target encoder
&4 are employed to generate node representations for each
view. The predictor pg makes a prediction Z; of the tar-
get embedding Hj utilizing the online embedding H;. The
ultimate objective is calculated as the similarity of Z; and
H, with gradients flowing only via Z;. The target parameters
¢ are updated to an exponential moving average (abbreviated
as EMA) of 6. Among them, the additional predictor of the
online encoder and the non-gradient descent update mecha-
nism of the target encoder are the keys to achieving supe-
rior results for the Siamese network without using negative
samples.

Online Encoder Predictor
o - €o o Po -
(X1, A1) (Hy, Ay) (Z1,Ay)
A4 |
X, 4) EMA
l Stop
A, &g Gradientll—_ N
(X5, A5) (Hy, Ay) _|'|_>i loss
1 1
N oo 7

Target Encoder

FIGURE 2. The architecture of the Siamese network applied in GRL. The
orange, green and blue backgrounds indicate the online encoder, target
encoder and prediction generated by the predictor, respectively (similar
to Fig. 3 and Fig. 4).

B. SELF-SUPERVISED HETEROGENEOUS GRAPH
REPRESENTATION LEARNING

For the self-supervised representation learning of het-
erogeneous graphs, most state-of-the-art methods follow
a contrastive learning method, which learns low-dimensional
features of nodes without labels by allowing the model
to compare similar or different data points. For example,
DMGI [25] and HDGTI [26] utilize GNN encoders to learn
node representations for each meta-path based view and then
aggregate them through consensus regularization. Both meth-
ods conduct contrastive learning to learn node representations
in heterogeneous graphs by maximizing mutual information
between local patches and corresponding graph-level sum-
maries of graphs. However, the limitation of these two meth-
ods is that they only consider the node attributes and global
properties while ignoring the impact of local information
on the quality of node embeddings. Recently, HeCo [27]
proposes a collaborative contrastive mechanism to address
this problem. HeCo learns node embeddings from network
schema and meta-path views to capture both local and global
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structural information simultaneously. Nevertheless, despite
the superior results of all the above methods, they all rely
heavily on the number of negative samples, which greatly
affects the computation and memory costs. Moreover, gener-
ating negative samples in a proper way is also a challenging
task. To address the above problems, we propose a multi-scale
self-supervised heterogeneous graph representation learning
model, which aims to consider the rich information of node
attributes as well as the local and global structures in hetero-
geneous graphs at lower computation and memory costs.

IlIl. PRELIMINARY

A. HETEROGENEOUS GRAPH

A heterogeneous graph is defined as G = {V, £}, where V is
a set of nodes, and £ is a set of edges. It has a node-type
mapping function ¢ : V — 7T and an edge-type mapping
function ¢ : £ — R, where T and R represent the node-type
set and the edge-type set, respectively, and |7| + |R| > 2.
Fig. 1 (a) shows an example of a heterogeneous graph with
Author(A), Paper (P) and Subject (S) nodes. There are two
types of relations, i.e., Write and Belong-to, which mean
that the author writes the paper and the paper belongs to the
subject, respectively.

In this paper, we represent the attributes of nodes with
type ¢; as the initial feature matrix Xy, € RIVoi1*Fo; where
|V, | is the number of nodes with type ¢;, and Fy, is the initial
dimension. In this paper, we specify the set of target nodes
as Vy, for representation learning.

B. META-PATH
A meta-path @ is defined as vy &) 12 52) . 51) vi4+1 (abbre-
viated as vivy ---vy41). It describes the composite relation
R = Ry o Ry o --- o R; between nodes v; and v;41, where
o represents a combination operator on the relation. Meta-
paths can model rich semantic information in heterogeneous
graphs. As shown in Fig. 1 (b), two papers can be connected
by PAP and PSP meta-paths. PAP means that two papers
belong to the same author, and PSP means the same subject.

In this paper, we represent the set of meta-paths as
{®1, Dy, -, Pp}, where P is the number of meta-path
types. The topology of the view based on the meta-path type
@, can be expressed as A% e RIVe:XIVs| 1f there is a meta-
path ®; between nodes v; and v;, then A;)" = A;?k = 1
otherwise Ag.)k = A;f" =0.
C. RELATION BASED 1-HOP NEIGHBORS
For a node v, its relation based 1-hop neighbors can be
represented as S, = {u : d(v,u) = 1}, where d(v, u) is
the shortest distance between nodes u and v. As shown in
Fig. 1 (c), the relation based 1-hop neighbors of the central
node P; are Ay, A3 and S3. They are directly connected, which
reflects the local structural information in a heterogeneous
graph.

Based on different relation types in a heterogeneous graph,
we can construct |R| relation types based 1-hop views.
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FIGURE 3. The architecture of SNMH'’s cross-schema mechanism.

We represent the neighborhood information pertaining to
each view as a relation type based adjacency matrix A% e
RV *Vorl 1f there is an edge of relation type Wy between
target nodes v; € Vy, and v; € Vy, , then A;’" = 1; otherwise,

v
A;f=0.

IV. PROPOSED METHOD

We propose a Siamese network based self-supervised
heterogeneous graph representation learning model with
multi-scale optimization objectives. The cross-schema and
cross-view architectures are shown in Fig. 3 and Fig. 4.
First, we perform dual-schema view generation and obtain
meta-path based views and relation type based 1-hop views.
Afterward, we deploy variant Siamese networks between
different views under the same schema and two schemas
to construct a multi-scale bootstrapping contrastive learning
mechanism. Finally, we systematically combine and optimize
the cross-schema and cross-view optimization objectives to
obtain the final node representations. In the following sec-
tions, we will introduce our model in detail.

A. DUAL-SCHEMA VIEW GENERATION

The factors affecting the representations of nodes in heteroge-
neous graphs are complex and contain the attributes of nodes,
global information represented by meta-paths and local infor-
mation represented by relation type based 1-hop neighbors.
To simultaneously learn the above information, we innova-
tively propose a dual-schema view generation mechanism,
as shown in Fig. 3.
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Assume that the original graph is G. To start with, accord-
ing to the first schema, meta-path, we can generate a series of
views:

G=1{G/". 6,7, . G"}. ()
where G = (Xy4,, A®), Xy, € RVorl¥For i the feature
matrix of target nodes, and A% e {0, 1}|V¢1|X|V¢1| is the
adjacency matrix of view g;" P

Next, for the second schema, i.e., the 1-hop relation type,
we can still obtain a series of views:

G=1{G. Gy - .Gl ). @
where G/’ T = Xy, > Xo;, AYH), Xy, is the same as formula (1),
and Xy, € RVoil*Fo; is the 1-hop neighbors feature matrix
based on relation type W;. AY e {0, 1}V XIVail ig the
adjacency matrix of this view, which generally is not a square
matrix.

B. NODE FEATURE TRANSFORMATION

Since node types contained in heterogeneous graphs are not
singular with different feature spaces or feature dimensions,
we need to first project them into the same dimension space to
facilitate the processing of subsequent models. Specifically,
for the nodes of a certain type ¢;, we construct a specific
type of linear transformation that transforms the initial fea-
tures X, of the nodes into a unified dimension. The specific
formula is shown as follows:

3)
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where X:pi e RIValxF , F is the node dimension after the
feature transformation, o (-) is an activation function, Wy, is
a linear transformation parameter matrix, and by, is the bias.

C. CROSS-SCHEMA BOOTSTRAPPING CONTRASTIVENESS
In the learning mechanism of cross-schema bootstrap-
ping contrastiveness, we design a variant Siamese struc-
ture. Unlike conventional Siamese networks, our proposed
variation in the cross-schema learning mechanism has an
online and target encoder with distinct structures. Our online
encoder and target encoder are shown in Fig. 3 (a) and (b),
respectively. To distinguish them from the conventional
Siamese network and intuitively express their characteristics,
we define them as meta-path guided encoder and 1-hop rela-
tion type guided encoder, respectively (abbreviated as MP
encoder and RT encoder).

The cross-schema learning procedure is shown in Fig. 3,
where Z™ = p.(H") is the matrix of predicted node
representations obtained after the input of the output node
representations of the MP encoder to its additional predic-
tor p.s, and H,; is the output node representation matrix of
the RT encoder. We form the cross-schema bootstrapping
contrastiveness by maximizing the cosine similarity between
the above two. We express the optimization objective as the
following formula:

Ve, 1—1

2
Ecs - - |V¢,| Z

i=0

mpyyre T
Zi Hi
m )
1Z7 1]

“

where Z;"p e R and H' € R'*4 are the representa-
tions of node i output by the predictor p.; and RT encoder,
respectively.

For the acquisition of H"” and H"?, as well as the update
of the MP encoder and RT encoder, we will specify them in
detail in the next two subsections.

1) META-PATH GUIDED ENCODER

Here, we aim to learn the characteristics of nodes in the
high-order meta-path schema. After Sections IV.A and IV.B,
we obtain multiple views from feature-transformed nodes
generated based on meta-path types. We represent these views
as (X’,,Ad’f ). To extract the node attributes and semantic
information contained in each view, we plunge each of the
above views into a GNN:

H® = fo,(X,, A®). ()

For fo,: RVorIXE 5 Vo IxXIVa | 5 RIValxd | e use a
meta-path specific single-layer GCN [13]. The node embed-
ding matrix encoded by the GCN can be expressed as:

_1 _1
H® = oD% A%D% "X, W¥), ©)

where A% = A% + L I is an identity matrix, D? is the
degree matrix of A% and W® e RF*4 jg a weight matrix
that is not shared between different views. o is a nonlinear
activation function, and here, we use PReLU.
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Each GCN encoder encodes a node embedding under a
meta-path. Apparently, the effects of different meta-paths on
the quality of the resulting node embeddings are distinct.
Intuitively, if target nodes are mostly connected through a
certain type of meta-path, this meta-path type affects their
representations most. Based on this, we treat the encoder of
the view with the largest number of meta-paths contained
as the anchor encoder. As shown in Fig. 3 (a), we assume
that the top encoder is the anchor encoder, and the bottom
encoders are non-anchor encoders. The ellipses in the figure
indicate that the number of non-anchor encoders may be 1, 2,
3..., which depends on the number of meta-path types in a
heterogeneous graph (we assume a minimum number of 2).

During the learning process, only the parameters of the
anchor encoder are updated by gradient descent to reduce
the target loss, while the parameters of other non-anchor
encoders follow different targets. The intuition behind this is
that the slow-moving non-anchor encoders act as a stabilizer
to encode the meta-paths that are not the most influential.
This guides the anchor encoder to learn to explore richer
and better representations on the basis of the most influential
meta-paths without relying on additional negative samples to
avoid a collapse. The parameters of the non-anchor encoders
are updated as an EMA of the parameters of the anchor
encoder:

§=1t-8+(1—1)-1, @)

where 1 and § are the parameters of the anchor encoder
and non-anchor encoders respectively. T is a decay rate that
controls the distance between n and §, and its update can be
seen in formula (19).

After the above meta-path specific node representation
learning, we obtain a set of node embeddings {H‘Di}f: I

Now, we need to aggregate the node embeddings above.
Considering that the appropriate aggregation methods may
change for datasets with different distributions of the number
of meta-paths, we implement distinct aggregation methods
for different datasets, which are shown as follows:

a: AVERAGE POOLING
The first aggregation method is average pooling, which cal-
culates the average of the set of embedding matrices:

P

1
H"™ = - ZH% (8)

i=1

b: SEMANTIC-LEVEL ATTENTION

For the second method, we employ semantic-level atten-
tion [31] to fuse the node embeddings into the final embed-
ding H™ in the meta-path schema:

P
H" = fo,-H”, ©)

i=1
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where B, weighs the importance of the meta-path ®;, which
is calculated as follows:

, 1 ;
e(b’ = |V_¢| E q](;l . tanh(me . H?L)[ + bmp)7
" n=0

exp(e®)
Zf:l exp(e®)

where W,,,, and by, are the learnable parameters. qo,; denotes
the semantic-level attention vector.

We will show details about the correspondence between
datasets and aggregation methods in Section V.F. The final
node embedding H"” in the meta-path schema after aggre-
gation will be fed into the predictor p.s, and then Z™ is
generated.

soﬁmax(eq)") = (10)

IBCD,'

2) 1-HOP RELATION TYPE GUIDED ENCODER

As mentioned above, we can also obtain multiple relation
type based 1-hop views with feature-transformed nodes.
In each view, the target node is connected to its 1-hop neigh-
bors through the edges of a specific relation type. It is obvious
that different types of neighbors contribute differently to the
node embeddings, and different nodes of the same type are
also different. Therefore, in the RT encoder, we adopt a
hierarchical attention mechanism, i.e., node- and type-level
attention.

After the node feature transformation, each of the relation
type based 1-hop views can be represented as (X[, , X, , AV,
where ¢; represents the type of 1-hop neighbors correspond-
ing to the relation type W;. To extract the local structural
information of the nodes in a graph, we feed each of the views
into an identically structured GNN:

HY = gy,(X[, , X}, AY). (11)

Unlike the MP encoder, we set gy, as a node-level atten-
tion layer here. For node n in the \W; relation type view, its
representation in this layer can be calculated as follows:

HY: =0( 3 a,ff;n-x/,‘z'), (12)

meNi
where J\/'nw[ is the set of 1-hop neighbors of node n defined
by ¥;, X/ ;I,:” denotes the feature vector of node m, and o is
a nonlinear activation function. Here, we use LeakyReLU.

Ot: i» measures the importance of node m to node n, which
can be calculated as follows:

exp (LeakyReLU (a-‘ll-',' . [X/:’i | |X/r‘5i]>)

Zje A exp(LeakyReLU (a-l\;li . [X/r‘f’i | |X/j‘I/,])>
13)

ali =

s

where ay, € R2*1 g the node-level attention vector and
|| indicates the concatenating operation.

For the selection of nodes in ,"*, we do not simply delimit
all the nodes directly connected with node n through ;.
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Instead, we design a threshold I'y,. When the number
of neighbors corresponding to W; is greater than the
specified I'y,, we will non-repeatedly choose I'y, neighbors
at random to join /\f,,wi. Otherwise, the I'y, neighbors can be
selected repeatedly. In this way, the threshold ensures that
each node under the same view aggregates the same amount
of neighborhood information, while the random selection
ensures the diversity of node embeddings in each epoch.

The specific learning process of each view is similar to the
meta-path. The only difference is that we choose the view
with the largest number of 1-hop neighbors as the anchor
encoder here.

After learning the 1-hop relation type specific node repre-
sentations described above, we obtain a set of node embed-
dings {HYi }lg Next, we use type-level attention to fuse
them together to obtain the final embedding H'? in the 1-hop
relation type schema:

IR
H' =y, -HY, (14)
i=1

ww, weighs the importance of the 1-hop relation type W;,
which can be calculated as follows:

\V¢,|—l
1 _
W= —— 3" ql, - tanh(Wy - H}' +by),
|V¢’| n=0

exp(u®)
R X ’
YR exp(u®

where W,; and b,; are learnable parameters. qy, is the
type-level attention vector.

W, = softmax(u®) = (15)

D. CROSS-VIEW BOOTSTRAPPING CONTRASTIVENESS

In addition to the bootstrapping contrastiveness between
the two schemas, we additionally consider the relationship
between the views within the meta-path schema, which
acts as a strong regularization and is highly informative for
improving the performance of our model. Details are shown
in Fig. 4.
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o H d o
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FIGURE 4. The architecture of SNMH’s cross-view mechanism.

Since there are usually more than two meta-path types
in a heterogeneous graph, more than two encoders with the
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TABLE 1. The statistics of the datasets used in our experiments.

Dataset Node type # Nodes Relation type # Relations Meta-path # Classes
Paper (P) 4019
I A R -
Subject (S) 60 P )
’},‘;‘h": ((S) %5278 Author-Paper 19645 APA
DBLP pe Paper-Conference 14328 APCPA 4
Conference (C) 20 Paper-Term 85810 APTPA
Term (T) 7723 P
Movie %) o Movie-Actor 65341 MAM
Freebase cto Movie-Direct 3762 MDM 3
Direct (D) 2502 Movie-Writer 6414 MWM
Writer (W) 4459

same structure but different parameters are needed to encode
different views inside the same schema. Therefore, unlike
the traditional Siamese network that contains only one online
encoder and one target encoder, we set the encoders according
to different meta-paths. We consider the encoder of the view
with the most meta-paths as an online encoder (connected to
an additional predictor) and the rest as target encoders.

Assume that the meta-path corresponding to the online
encoder is @1. In each epoch, the online encoder generates
an online representation H®! . Similarly, other target encoders
also generate a series of representations {H® }f): »- Then, H®!
is fed into a predictor p., to generate 7% = pc‘,(HCD1 ).

The parameters of the online encoder are updated by max-
imizing the similarity between the predictor’s prediction and
each target representation, following a gradient of cosine
similarity:

Ve, 1—1 <1>1H

P
Vol P—1) (P— AR (16)

Lov=~— 7@ i
=2 =0 Z; " IIH; ||

During training, the parameters of the target encoders do
not receive the gradient directly but are updated to the EMA
of the online encoder by formula (7), where n and § are
the parameters of the online encoder and target encoders,
respectively.

E. MULTI-SCALE MODEL TRAINING

To learn the attributes and local structural information, as well
as the global topological information simultaneously, we sys-
tematically fuse the cross-schema and cross-view optimiza-
tion objectives. We define the overall objective as follows:

;C:)\'Ecv+(l_)")'ﬁcsv (17)

A is a hyperparameter used to weigh these two objectives.
According to the different effects obtained by setting differ-
ent A, we can determine the impact of meta-paths and relation
based 1-hop neighbors (representing global and local infor-
mation, respectively) on node representations for a specific
dataset.

We train our proposed model end-to-end by optimizing the
above objective. Finally, we obtain the node representations
used for downstream tasks.
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TABLE 2. The specific characteristics of baselines (X: Learning with initial
features, A: Learning with the adjacency matrix, Y: Learning with node
labels, HG: Suitable for heterogeneous graph).

Method X A Y HG
Raw v X X X
HERec X v X v
HAN v v v v
DGI v v X X
DMGI v v X v
SNMH v v X v

V. EXPERIMENT

A. DATASETS

To evaluate the performance of SNMH, we conduct experi-
ments with three public datasets, and the basic information
statistics of the datasets are shown in Table 1.

e ACM: This is an academic paper dataset. The tar-
get nodes are papers, which are divided into three
classes, namely, database, wireless communication and
data mining. The initial features of papers are the bag-
of-words representation of keywords. There are two
meta-paths defined in ACM, including Paper-Author-
Paper (PAP) and Paper-Subject-Paper (PSP) [32].

« DBLP: This is another paper dataset whose target nodes
are authors. These nodes can be divided into four classes,
including database, data mining, machine learning and
information retrieval. We extract three meta-paths from
the graph with Author-Paper-Author (APA), Author-
Paper-Conference-Paper-Author (APCPA) and Author-
Paper-Term-Paper-Author (APTPA) [33].

o Freebase: This is a dataset of movies. There are three
classes of target movie nodes, namely action, com-
edy and drama. We encode the initial feature of the
target node as a one-hot vector. In the experiments,
the meta-paths we consider are Movie-Actor-Movie
(MAM), Movie-Direct-Movie (MDM) and Movie-
Writer-Movie MWM) [34].

B. BASELINES

We implement five methods as baselines, and their specific
characteristics are shown in Table 2, where Raw indicates
that the initial features of the target nodes are treated as
embeddings. HERec [36] is an unsupervised heterogeneous
method that only uses topology structure to learn. HAN [31]
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TABLE 3. Experimental results (% =+ o) on node classification.

Method ACM DBLP Freebase
AUC MaF1 MiF1 AUC MaF1 MiF1 AUC MaF1 MiF1
Raw 90.81 £ 0.1 76.48 0.0 75.97 0.1 84.98 £ 0.0 67.67 0.1 68.03 0.1 50.02 £0.2 32.57+0.2 3542+02
HERec 81.64 £0.7 64.35+0.8 65.15+0.9 97.93 +0.1 89.73 £ 0.4 90.15+0.4 73.89+£0.4 55.78 £0.5 57.92+0.5
HAN 94.68 1.4 88.41+1.1 88.10+1.2 97.48 £0.6 88.87 £ 1.0 89.47 £ 0.9 73.26 £2.1 53.16 £2.8 5724 £32
DGI 9141+1.9 80.03+3.3 80.15+3.2 97.12+04 88.62 £ 0.6 89.22+0.5 72.80 £ 0.6 54.90 £ 0.7 58.16 £0.9
DMGI 96.79 £0.2 87.97 £ 0.4 87.82+0.5 97.23+0.2 89.25+0.4 89.92+0.4 73.19+1.2 55.79 £0.9 5826 £0.9
SNMH 96.82 + 0.1 88.48 £ 0.5 88.30 £ 0.5 98.00 + 0.2 89.88 + 0.9 90.37 £ 0.9 7418 + 1.7 56.30 + 0.9 58.44 + 0.6

is a semi-supervised heterogeneous method that extracts node
attributes and structural information in the graph through
node- and semantic-level attention. DGI [19] is an unsuper-
vised homogeneous method, while DMGI [25] is an unsuper-
vised heterogeneous method. The inputs of these two models
all contain the initial features and adjacency matrices of
nodes.

C. EXPERIMENTAL SETUP

We implement SNMH using PyTorch. The model parameters
are initialized by Glorot Initialization [37], and Adam [35]
is used as the optimizer. We set the initial learning rate as
o = 0.5 and the number of total epochs as ny,; = 10000.
To increase stability, we use batch normalization between
layers and learning rate with a cosine schedule [28], which
can be expressed by the following formula:

iX Yo

o) ngiic? (. ) LS Mapli
= i—Ngplir) X0 .
Yo x (1 + cos=—2=—) x 0.5, Rsplit < 1< Notal -

Ntotal —Nsplit

(18)

In all experiments, we fix ngy;; = 1000. For each dataset,
patience is set with a range of { 10, 20, 30 }, i.e., training will
be terminated when the loss does not decrease for consec-
utive patience epochs. To prevent overfitting, we set specific
dropout values to each dataset and perform on both the feature
vectors and the attention vectors. For simplicity, both predic-
tors p., and p.g are fixed as an MLP with a single hidden
layer, whose dimension is set to 128. In the cross-schema
and cross-view learning mechanisms, parameters updated by
EMA are initialized following the same distribution as other
parameters updated by gradient descent. The decay rate T in
formula (7) is initialized as 7y = 0.99, which also follows a
cosine schedule to update:

1—

T0 iX T
tiél—Tx(cos(

)+ 1). (19)

Ntotal

Unlike the target nodes of ACM and DBLP that have
original features which can be used directly, the target nodes
of Freebase do not have original features, and its initial
feature matrix is defined as a sparse matrix with ones on
the diagonal. We set the embedding dimensions of the target
nodes of ACM, Freebase and DBLP to 64, 128 and 256,
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respectively. We run 10 times randomly and present the aver-
age results with the standard deviation values.

In the comparative experiments, we mainly refer to
HeCo [27]. For HERec, we set the window size, the number
of walks per node and the walk length to 5, 40 and 100,
respectively. For both HERec and DGI, we test all meta-paths
and present their best results. Other parameters follow the
settings in the original paper.

D. NODE CLASSIFICATION

To evaluate the trained graph encoder, we use the learned
node embeddings to fit a logistic regression classifier. During
the fitting process, the embeddings are frozen to prevent
any gradient flow back to the encoder. For the Freebase,
DBLP and ACM datasets, we randomly select 20, 40 and
60 labeled nodes in each class as the training set, respectively,
and 1000 nodes as the validation set and 1000 as the test
set. We present the test performance when the validation set
presents the optimal result. We compare SNMH with other
baselines by AUC, Micro-F1 and Macro-F1. The results are
shown in Table 3, where we mark the best performance in
bold. As shown in the table, SNMH outperforms all datasets
than other baselines. We attribute the results to the follow-
ing two points: 1) We design a novel network based on
the Siamese network, which can extract the information in
historical representations without relying on negative sam-
ples. 2) We construct a multi-scale mechanism to learn node
features as well as global and local structural information
in heterogeneous graphs from cross-view and cross-schema
perspectives. Even if the label information of nodes is used in
the training process of HAN, SNMH is still superior to HAN,
which also confirms the effectiveness of the self-supervised
learning of SNMH.

E. VISUALIZATION

To intuitively evaluate our model, we visualize the node
embeddings of ACM obtained by HERec, HAN, DMGI and
SNMH using the t-SNE [38] algorithm, and the results are
shown in Fig. 5. We also compute the Silhouette scores for
different methods, which are 0.209, 0.323, 0.327 and 0.335.
We can see that HERec cannot effectively identify different
classes because of the lack of initial features. Even if HAN
takes node labels as input, SNMH still works better than
HAN. SNMH has a clearer boundary and denser clusters
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(a) HERec

(b) HAN

(c) DMGI (d) SNMH

FIGURE 5. Visualization of the node embeddings of ACM, where different colors indicate different classes.

TABLE 4. Time and space cost comparison between SNMH and HeCo.

Time (s) Graphics Memory (GiB)
Dataset
SNMH HeCo SNMH HeCo
ACM 111.6 163.0 1.92 2.21
DBLP 119.6 215.2 2.90 323
Freebase 214.3 887.1 5.98 6.16

than the others, as well as a higher Silhouette score, which
demonstrate the effectiveness of our method.

F. ANALYSIS

1) ANALYSIS OF TIME AND SPACE COSTS

We conduct comparative experiments in the server with
an NVIDIA GeForce RTX 2080 GPU to analyze the time
and space superiority of SNMH. To ensure consistency of
experimental conditions, we choose HeCo as the comparison
method. Similar to SNMH, HeCo also uses the initial feature
and adjacency matrix as input and encodes both meta-paths
and 1-hop neighbors, ensuring that the time and space costs
are only affected by the model itself. We employ SNMH
and HeCo to perform the same number of experiments on
each dataset and then average the running time and graphics
memory after removing a maximum and minimum value. The
results of the comparative experiments are shown in Table 4.

As shown in Table 4, SNMH uses less running time and
graphics memory than HeCo on all three datasets under the
same experimental conditions. Therefore, we can conclude
that SNMH can reduce time and space costs, which facilitates
the implementation of our experiments.

To further illustrate the time and space superiority of
our model in a variety of situations, we conduct experi-
ments using SNMH and HeCo at different values of the
threshold I'y,, i.e., the number of sampled 1-hop neighbors
of target nodes. The results are shown in Fig. 6, where the
solid lines represent graphics memory and the dashed lines
represent time. Because each paper belongs to only one
subject (§) in ACM, we only adjust the number of sampled
A-type nodes. We can see that the changing trends of time and
space are similar for both datasets. SNMH requires a stable
amount of time and is always substantially less than HeCo.
As the threshold is raised, both SNMH and HeCo’s graph-
ics memory rises slowly. These findings indicate SNMH’s
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FIGURE 6. Time and space costs when changing the number of sampled
1-hop neighbors. The x-axis represents the number of sampled 1-hop
neighbors. The y-axis on the left represents time (s), and the y-axis on the
right represents graphics memory (GiB).

advantage in terms of time and space when sampling more
1-hop neighbors of target nodes.

In addition, we perform experiments to see how the number
of meta-paths affects time and space. The results are shown
in Fig. 7, where the solid lines represent graphics memory
and the dashed lines represent time. It can be seen from
the figure that the curves representing different meta-paths
show almost the same changing trend for time, and they
are all much smaller than HeCo, indicating that the number
of meta-paths has minimal influence on the time required
for SNMH. When the number of MAM increases, the graph-
ical memory required for SNMH increases slowly and is
always less than HeCo, but it remains constant when the
number of MDM and MWM increases. This finding suggests
that MAM, as the meta-path encoded by the online encoder
(anchor encoder), has a greater impact on the space required
by the model. These results also prove the superiority of
SNMH in time and space when more meta-paths are encoded.

2) ANALYSIS OF AGGREGATING META-PATH SPECIFIC NODE
REPRESENTATIONS

From Section IV.C, there are two methods to aggregate
meta-path specific node representations, including average
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FIGURE 7. Time and space costs when changing the number of meta-
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pooling and semantic-level attention. To explore the influence
of different aggregation methods on the quality of the final
node embeddings, we conduct experiments on ACM, DBLP
and Freebase, and the results are shown in Fig. 8.

ACM

(b) Semantic-level Attention

m AUC = MaF1 = MiF1
100 100

80 80

60 60

40 40

20 20

0 0
ACM

DBLP
FIGURE 8. Analysis of methods for aggregating meta-path specific node
representations.

® AUC = MaF1 = MiF1

Freebase DBLP Freebase

(a) Average Pooling

From the figure, we conclude that different datasets are
suitable for different aggregation methods. For ACM and
Freebase, it is better to use average pooling, while DBLP is
more suitable for semantic-level attention. In other words,
identifying differences in meta-paths is more crucial for
datasets such as DBLP, where the number of different
meta-paths varies substantially. In addition, different datasets
have distinct sensitivities to aggregation methods. ACM is
obviously more affected than DBLP and Freebase when
adopting different aggregation methods.

3) ANALYSIS OF HYPERPARAMETERS
In this section, we also investigate a key hyperparameter,
i.e., the equilibrium parameter A in the final objective (17).
We perform node classification on ACM, DBLP and Free-
base, and then show AUC, Macro-F1 and Micro-F1 values
under different X, as shown in Fig. 9.

It can be seen from the figure that all three datasets
practically approach a minimum at A = 1, demonstrating
the necessity for us to consider both meta-paths and rela-
tion based 1-hop neighbors using the cross-schema mecha-
nism. Furthermore, at A = 0 (i.e., only the cross-schema
part of the model remains), DBLP obtains the minimum
value, while ACM and Freebase achieve the best perfor-
mance. This indicates that it is important to utilize the
cross-view mechanism to additionally learn the similarity
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(a) ACM (b) DBLP (c) Freebase

FIGURE 9. Analysis of hyperparameters.

between different meta-paths for datasets where the number
of different meta-paths varies substantially (i.e., imbalanced).
Since the majority of real-world datasets are imbalanced, the
above findings illustrate the significance of utilizing both the
cross-schema and cross-view parts for multi-scale learning.

VI. CONCLUSION

In this paper, we propose a novel self-supervised heteroge-
neous graph representation learning method called SNMH.
To capture rich self-supervised signals, we conduct dual-
schema view generation to obtain meta-path based views and
relation type based 1-hop views, which represent the global
and local information in a heterogeneous graph, respec-
tively. Based on the Siamese network, SNMH implements
a multi-scale bootstrapping contrastive learning mechanism
to learn node representations in heterogeneous graphs from
cross-schema and cross-view aspects. Our method does not
require any negative samples, thus reducing time and space
costs. Experimental results show that our method is supe-
rior to other methods. In the future, we will continue to
research more efficient methods with lower time and space
complexity.
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