
Received 7 June 2022, accepted 21 June 2022, date of publication 29 June 2022, date of current version 7 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3187178

Question Answering Over Knowledge
Graphs: A Case Study in Tourism
SAREH AGHAEI 1, ELIE RAAD2, AND ANNA FENSEL 1,3,4
1Department of Computer Science, Semantic Technology Institute (STI) Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria
2WordLift, 00186 Rome, Italy
3Wageningen Data Competence Center, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
4Chair Group Consumption and Healthy Lifestyles, Wageningen University and Research, 6706 KN Wageningen, The Netherlands

Corresponding author: Sareh Aghaei (sareh.aghaei@sti2.at)

This work was supported in part by the Project WordLiftNG within the Eureka, Eurostars Program with the Austrian Research Promotion
Agency (FFG) under Grant 877857; and in part by the Project KI-NET within the Interreg Osterreich-Bayern 2014–2020 Program under
Grant AB 292.

ABSTRACT Over the recent years, a large number of knowledge graphs (KGs) have been developed to
store and present small and medium enterprises’ data in the form of subject-predicate-object triples. The
KGs are not easily accessible to end-users because they need an understanding of query languages and
KGs’ structures. To assist end-users in accessing these KGs, question answering over KGs targets to provide
answers for natural language questions (NLQs). This paper proposes an approach to answer questions over
small and medium scaled KGs based on graph isomorphism in two phases: (1) offline phase and (2) semantic
parsing phase. In the offline phase, a semi-automated solution is proposed to generate NLQs and their
answers, which are used to train machine learning models employed in the next phase. In the semantic
parsing phase, a given input NLQ is mapped into a query pattern according to its grammatical structure.
Each query pattern contains some slots that need to be filled with corresponding entities, classes and relations
from the KG. While string and semantic similarity metrics are applied to identify the entities and classes,
the probability distribution of the relations is used to extract the relations. The Cartesian product of the
identified entities, classes and relations is utilized to fill the slots, derive SPARQL queries and finally retrieve
the answers. To evaluate the proposed approach, we use SalzburgerLand KG, a real KG describing touristic
entities of the region of Salzburg, Austria. Our results show that the approach improves the end-to-end user
experience in terms of interactive question answering and performance.

INDEX TERMS Knowledge graphs, question answering, semantic parsing, small and medium enterprises.

I. INTRODUCTION
With the increasing growth of web data, a large number
of knowledge graphs (KGs) have become available on the
web. A KG is a structured representation of real-world
entities which are connected by semantically-interrelated
relations [1], [2]. A Resource Description Framework (RDF)
KG [3], which can also be viewed as a labelled graph, is a
collection of RDF triples including three fields: subject, pred-
icate and object [4].

Beyond the generic, huge, and open-world KGs with
millions or billions of facts (e.g., DBPedia [5]), KGs are
increasingly used in business scenarios [6]. Most of the recent

The associate editor coordinating the review of this manuscript and
approving it for publication was Pasquale De Meo.

KGs are domain-specific, with thousands or hundreds of
thousands of facts in various domains such as tourism, health-
care, and manufacturing [7], [8]. The last few years have
seen a spike in building KGs by Small and Medium Enter-
prises (SMEs). For example, SMEs in the manufacturing and
production industry utilize KGs to organize data generated
by different machines during manufacturing processes [9].
In the tourism domain, websites use small andmedium scaled
KGs to manage tourism information for different regions and
improve the traveller experience [10]–[14].

Query languages such as SPARQL1 are used to access
knowledge stored in RDF KGs. Since writing queries
can become quite tedious and challenging for end-users,

1SPARQL Protocol and RDF Query Language.

69788 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-0511-095X
https://orcid.org/0000-0002-1391-7104

S. Aghaei et al.: Question Answering Over Knowledge Graphs: A Case Study in Tourism

question answering (QA) systems have been introduced to
simplify access to the KGs. These systems allow end-users to
take advantage of semantic web standards’ expressive power
while simultaneously hiding their complexity behind intuitive
and easy-to-use systems [15], [16]. Therefore, a KG-based
question answering system (KGQAS) can be defined as an
easy-to-use system that aims at making the facts of KGs
accessible and beneficial for end-users [15].

Natural language questions (NLQs) in KGQASs are cat-
egorized based on different criteria. According to question
types formulated by end-users, questions are classified into
three major groups, including (1) factoid questions, (2) con-
firmation questions, and (3) hypothetical questions [17]. The
factoid questions are factual in nature and commonly start
with a WH-word.2 The confirmation questions are generally
answered in the form of ‘‘yes’’ or ‘‘no’’ through verification
and justification. The hypothetical questions have no specific
correct answers, and the answers are subjective. The num-
ber of hops required to reason over KGs to obtain answers
is another criterion that divides NLQs into two categories:
simple questions and complex questions. A simple ques-
tion, namely a single-hop question, is answered through only
one hop, whereas a complex question, called a multi-hop
question, requires reasoning over two or more hops of the
KG [18]–[20]. The target of this paper is factoid questions,
both simple and complex.

Although many KGQASs have been proposed in recent
years, they often require a lot of training data, which is usually
unavailable in small and medium scaled KGs (including facts
ranging from thousands to hundreds of thousands). The same
observation is made in our project WordLiftNG [21] when
working with SMEs. In the project, KGs are created for
SMEs’ websites (e.g., tourism websites), while to make these
KGs accessible for users using machine learning techniques,
training examples are hardly available. We conduct a liter-
ature review (see Section II) and observe that the primary
attention has been paid to huge KGs, which is why we aim
to propose an approach to answer questions over small and
medium scaled KGs where there is little or no training data.

This paper tackles three challenges in providing KGQASs
for SMEs as follows.

1) Lack of training data is a primary challenge in small
and medium scaled KGs to develop KGQASs. Despite
numerous possibilities to use machine learning ideas to
develop KGQASs, those ideas cannot be accomplished
on this scale without relevant data.

2) Traditional KGQASs rely on hand-crafted templates,
which require a lot of effort to cover every possible
question and cannot be easily adapted to other KGs.

3) The linguistic gap between questions and KGs’ vocab-
ularies can lead to poor performance in answering ques-
tions, particularly multi-hop questions that generally
include more complex semantic information than sim-
ple questions.

2when, where, who, what, etc.

Due to the aforementioned challenges, the main research
question of the study is how to leverage machine learning and
semantic web to answer questions asked by end-users using
facts stored in small and medium scaled KGs?. The research
sub-questions derived from the main research question can be
summarized as (1) how to alleviate the training data problem
in QA over small and medium scaled KGs? (2) how to
overcome the task of defining templates for each possible
question?, and (3) how to bridge the linguistic gap between
question sentences and KGs’ vocabularies?

According to the described challenges and research sub-
questions, the main contributions of this paper can be sum-
marized as follows:

1) A semi-automatic generic approach is introduced to
create training data using facts stored in KGs.

2) NLQs are automatically mapped into query patterns
according to questions’ grammatical information.

3) Different similarity measurements are employed to
identify entities and classes of a given input question,
and also a multi-label classifier is applied to extract
relations.

4) A real KG describing touristic entities is used to show
how the proposed approach can be applied in practical
use-cases. Additionally, we show how the approach
improves the end-to-end user experience in terms of
accuracy, recall, precision and F1-score.

In the light of industrial requirements and current chal-
lenges in SMEs to develop KGQASs, this paper is built
around a practical use-case in tourism from the project
WordLiftNG. Here, we target to enable end-users to ask
their information needs through factoid questions and get
their answers. For example, the question ‘‘Which hotels offer
pet-friendly rooms in Salzburg?’’ is posed by a user, and then
the answer is returned.

In this research study, we present a graph isomorphism-
based approach for QA over small and medium scaled KGs
consisting of two phases: an offline phase followed by a
semantic parsing phase. The offline phase introduces a solu-
tion to generate training data from facts stored in a KG. Then,
the generated training data is used to build a semantic parser
to answer a given input question in the semantic parsing
phase.

The remainder of the paper is organized as follows.
Section II reviews the related works, Section III formulates
the problem, Section IV introduces the proposed approach,
Section V presents the experiment and evaluation results,
Section VI provides the discussion and Section VII contains
the conclusion and future work.

II. RELATED WORKS
This section summarises the related work on QA over KGs.
Since transforming a set of RDF triples into informative text
is a task of natural language generation, and the given focus
of our study is to provide a KGQAS for SMEs, we restrict
the literature review to the research progress in the area of
QA over KGs.

VOLUME 10, 2022 69789

S. Aghaei et al.: Question Answering Over Knowledge Graphs: A Case Study in Tourism

Generally, related works in QA over KGs can be divided
into three main groups, namely, template-based techniques,
information retrieval-based techniques and semantic parsing-
based techniques. We briefly review each of these three
groups as follows.

1) Template-based techniques: Template-based KGQASs
take advantage of templates or rules to answer ques-
tions through mapping questions to predefined tem-
plates [22]–[25]. Although these approaches lead to
high precision, recall is low due to low coverage of
the variety of questions [26]. Additionally, adaptation
for various domains is difficult in these approaches.
In the context of the movies and cinemas domain,
an ontology-based system has been introduced in [27].
This system uses a set of questions called predictive
questions, which are likely to be asked by users in the
domain ontology. Then, a corresponding query tem-
plate is generated according to each predictive question
that can be used only to extract the answer to that
question from the KG. The presented model in [28],
namely Aqqu, maps questions to three templates that
basically have limited coverage on complex questions.
Then, all entities that match a part of the question are
identified from the KG. Next, Aqqu instantiates the
three templates and chooses the best instantiation based
on a ranking model to query the KG and return the
answers.

2) Information retrieval-based techniques: These
approaches focus on retrieving all candidate answers
and then ranking them to select the best answers
instead of parsing the NLQ to obtain a formal semantic
representation. The state-of-the-art works [29]–[32]
leverage neural networks to generate distributed repre-
sentations of questions and candidate answers. These
networks are trained with more than 4K questions
paired with answers which are rarely available in the
case of small and medium scaled KGs. For example,
EmbedKGQA [31] uses KG embeddings to answer
multi-hop NLQs. First, it learns a representation of the
KG in an embedding space using ComplEx embed-
ding. It then learns a question embedding using a
feed-forward neural network for a given question.
Finally, it combines these embeddings to predict the
answer through a scoring function.

3) Semantic parsing-based techniques: The semantic
parsing-based techniques conceptualize the task of QA
over KGs to parse NLQs and then convert the questions
to logical forms or structured queries such as SPARQL
queries. Neural semantic parsing approaches can cover
more complex questions. However, it is challenging to
train a neural semantic parser due to the lack of a con-
siderable amount of gold logical forms [19]. A struc-
ture, namely the syntactic graph, is introduced in [33] to
represent the intention of a given input question using
three types of syntactic information, including word
order, dependency and constituency features. Then a

graph-to-sequence model is employed to encode the
syntactic graph and decode a logical form for the ques-
tion. A recursive neural network-based approach is
introduced in [34] to learn and classify questions into
their corresponding query patterns using a Tree-Long
Short Term Memory (LSTM) model. This model is
trained over LC-QuAD dataset [35] which includes 5K
questions paired with their SPARQL queries. A com-
parative study is presented in [36] using the LC-QuAD
2.0 dataset [37] that consists of 30K question-answer
pairs. The objective of this study is to compare different
classifiers, including random forest classifier [38] and
XGBoost classifier, based on different pre-processing
techniques, including POS tags, word embeddings and
combination of POS tags and word embeddings. Sim-
ilar to [34], [36], TeBaQA [39] leverages question
classification to shift the QA problem into a classifi-
cation task. In TeBaQA, syntactic and semantic fea-
tures are used to train a statistical classifier. TeBaQA
categorizes questions based on their subject areas
(e.g., film, music, or city) to calculate semantic fea-
tures. While some information, such as the number
of verbs or adjectives, is used as syntactic features,
dependencies of questions’ words do not contribute to
shaping feature vectors. Note that in semantic parsing-
based approaches, the DBPedia-based annotator tools
(e.g., DBpedia Spotlight [40]) or DBPedia-based lexi-
cons (e.g., RNLIWOD3) are mainly applied to address
the tasks of entity linking or relation extraction, which
are limited to DBPedia KG [34].

Although template-based approaches can be applied in
small and medium scaled KGs, they require much effort
to ensure covering every possible question and cannot be
easily adapted to new domains. Different from the infor-
mation retrieval-based and semantic parsing-based methods
in [34], [36] which require a considerable amount of train-
ing data, we propose an approach to automatically classify
questions into their corresponding query patterns for SMEs.
First, we deal with the lack of training data in small and
medium scaled KGs by generating NLQs over RDF triples
in a semi-automated solution. Then, in contrast to [39], our
approach analyzes questions based on purely syntactic fea-
tures, including POS tagging and dependency parsing. While
the state-of-the-art approaches widely apply DBPedia-based
annotators and dictionaries to identify entities and relations,
we define a similarity score and a predicate classifier in our
work. String and semantic similarity scores of n-gram words
collected from the NLQ and KG’s entities and classes are
used to define the similarity scores and identify the entities
and classes mentioned in the NLQ. Also, the predicate clas-
sifier calculates the probability distribution of relations and
finds the relations with the highest probability.

3NLIWOD - Natural Language Interfaces for the Web of Data:
https://github.com/semantic-systems/NLIWOD

69790 VOLUME 10, 2022

S. Aghaei et al.: Question Answering Over Knowledge Graphs: A Case Study in Tourism

III. PROBLEM DEFINITION
Formally, we denote4 a KG as KG = (N ,E,F), where N and
E are the sets of entities (i.e. nodes) and relations (i.e., edges),
respectively and F is a set of facts. Each fact refers to a triple
(s, r, o) to present relation r ∈ E between the subject s ∈ N
and object o ∈ N ∪C , where C is a set of the used classes5 in
the KG. Once the number of facts |F | is around thousands or
hundreds of thousands, the KG’s scale is assumed to be small
and medium.

Given an available small and mediumKGKG = (N ,E,F)
and a NLQ q in the format of a sequence of tokens, the task
of QA over KGs aims to answer the question q using the
facts F stored in the KG.

IV. PROPOSED APPROACH
In this section, our approach is presented. An overview of
our approach is given in Section IV-A, and the details of
the approach are provided further. Section IV-B presents the
details on how questions are generated over RDF triples
in the pre-processing, offline phase. Further, Section IV-C
lists and discusses all the steps of the semantic parsing
phase.

A. OVERVIEW
In our work, the proposed approach consists of two
phases, including an offline phase and a semantic parsing
phase, as shown in Figure 1. The offline phase applies a
semi-automated solution to generate training data contain-
ing question and answer pairs, query patterns and relations.
The semantic parsing phase consists of four steps, includ-
ing (1) question classification, (2) entity and class linking,
(3) relation extraction, and (4) slot filling and query exe-
cution. The objective of question classification is to utilize
structural information in questions to learn an XGBoost clas-
sifier [41] and then assign a query pattern to a given input
question. Since SPARQL is basically a graph-based query
language, isomorphic SPARQL queries are used to determine
query patterns. We conduct part of speech (POS) tagging
and dependency parsing techniques to analyze the structural
information of questions. The assigned query pattern contains
empty slots, which are then instantiated after the entity and
class linking, and relation extraction steps. In the entity and
class linking step, we utilize string and semantic similarity
metrics to map entities and classes mentioned in the question
sentence with corresponding entities and classes in the KG.
Additionally, a multi-layer perceptron (MLP) classifier is
learned to predict the probability distribution of the KG’s
relations in the relation extraction step. Finally, the Cartesian
product of the possible values in the slots is applied to fill the
slots and retrieve the answers.

4A KG can be defined as a combination of instance data (ABox) and
ontology data (TBox). Since the ontology is not considered in this study,
we limit our definition to KGs containing instance data.

5In RDF, anything with a subject Uniform Resource Identifier (URI) is
called a resource and a class is simply a way of defining groups into which
resources can be meaningfully placed.

TABLE 1. Statistics of unlabelled trees and RDF template based on hops.

B. OFFLINE PHASE
We choose a semi-automatic way to generate questions over
RDF triples for two main reasons. First, manually generating
questions would be too costly, requiring a certain level of
knowledge of the underlying KG’s domain. Second, automat-
ically generating questions using neural networks or natural
language models requires large KGs and training datasets to
achieve good performance (these KGs are basically larger
than the small and medium scaled KGs) [42]–[44].

In this offline phase, we define a set of RDF templates
according to the maximum number of hops in complex ques-
tions as a first step. In the following step, the RDF templates
are utilized to generate NLQs through querying the KG and
verbalizing query results. Figure 2 depicts the workflow of
the offline phase, which is explained in detail as follows.

1) RDF TEMPLATES
To define RDF templates, the maximum number of hops
n in complex questions needs to be determined. Basically,
the number of required hops for reasoning over triples of
a KG to find answers does not exceed 4 in real scenarios.
The statistics of the existing benchmark QA datasets [35],
[45]–[48] confirms this statement. Thus, this paper assumes
that the required number of hops is n <= 4.
With the assumption of n <= 4, all the possible unlabelled

trees formed from n hops are defined. An unlabelled tree is
assumed to be a tree whose nodes are not explicitly labelled.
Thus, we are interested only in tree structures when counting
unlabelled trees consisting of n hops. As shown in Table 1,
the number of unlabelled trees for 1, 2, 3 and 4 hops are 1, 1,
2 and 3, respectively.

Then, each unlabelled tree is presented with a set of RDF
templates, where the nodes and edges represent entities (sub-
jects, objects or classes) and properties, respectively. Note
that all the possible states to represent an n-hop unlabelled
tree using RDF triples is equal to 2n as shown in Table 1.
For example, the RDF templates of the unlabelled tree with
n = 2 are depicted in Figure 3.

2) QUESTION GENERATION
According to each RDF template, a SPARQL query is defined
to retrieve those entities and properties of the KG mapped
to the RDF template. The defined SPARQL query includes
a condition to filter out the unnecessary properties and
a solution modifier to limit the number of returned rows
to k.

Generally, some properties in a KG are unnecessary in
NLQ generation, such as the properties used to link the

VOLUME 10, 2022 69791

S. Aghaei et al.: Question Answering Over Knowledge Graphs: A Case Study in Tourism

FIGURE 1. An overview of the proposed approach.

KG entities to the entities in other KGs (e.g., dbo:sameAs,
dbo:seeAlso). We filter out all the unnecessary properties
from the SPARQL queries to prune the irrelevant parts of
the KG.

Moreover, to get random results from a SPARQL query, the
SPARQL’s built-in RAND() function is used to order results
by that random number. The idea behind retrieving k random
rows is to shuffle the facts’ KG and then have an approximate
balance between the distribution of templates based on the
number of hops (e.g., the 1-hop RDF template can retrieve
all the facts of the KG).

Therefore, given a RDF template, a SPARQL query is
executed, and then a verbalization process is performed over
the query results. We use the labels of entities (non-literal)
and properties to verbalize them. If an entity or edge does
not have a label in the KG, the variable part of its URI is
adopted (e.g., we use ‘‘farmhouse holidays’’ as the variable
part of the URI <http://open.salzburgerland.com/en/entity/
farmhouse_holidays>). Additionally, an entity is randomly
selected as the answer entity for each row query result. Then,
the domain and range of the property connected to the answer
entity are fetched to determine the WH-word of the factoid
question (e.g., once the domain is ‘‘Place’’, the relevant
WH-word is ‘‘Where’’).

Thus, the information obtained for each row query result
includes the verbalized triples, the answer and the WH-word.
We employ this information to create a question manually
in the next step. Since humans create questions, they are
expressed differently due to humans creating questions based
on their own vocabularies. For example, to make a sim-
ple question for the information ‘‘(Mozart Week, startDate,
22 January), answer: Mozart Week, WH-word: When’’,

different questions may be created such as ‘‘When does
MozartWeek start?’’, ‘‘When doesMozartWeek begin?’’ and
‘‘What is the starting date of Mozart Week?’’.

Next, we utilize each obtained question as a pre-defined
question sentence q with placeholder (entity holder, class
holder and relation holder) variables (e.g., ‘‘When does
[entity_holder] [begin]?’’) to create more questions automat-
ically through running their corresponding SPARQL queries.
Thus, the placeholders of the question sentence q are replaced
with the verbalized forms of the retrieved values to shape
new NLQs.

For each generated question, the information, includ-
ing the answer, the RDF template, the number of hops,
the required number of entities, classes and relations as
the placeholders (to make a SPARQL query) and also the
corresponding KG’s relations are collected to be fulfilled
in the semantic parsing phase. As an example, accord-
ing to Figure 4, for the question sentence ‘‘What is the
address of the hotel where Mozart Week takes place?’’ the
numbers of hops, entity holders, class holders, and rela-
tion holders are 3, 1, 1, and 2 respectively and the corre-
sponding relations include <http://schema.org/address> and
<http://schema.org/organizer>.

C. SEMANTIC PARSING PHASE
Query patterns as a significant part of QA over KGs simplify
semantic parsing of input questions and creation of structured
queries to retrieve answers [28]. Since SPARQL is basi-
cally a graph-based query language, an isomorphism can be
used to determine the structural equivalence of two SPARQL
queries [39]. According to graph isomorphism, two query

69792 VOLUME 10, 2022

S. Aghaei et al.: Question Answering Over Knowledge Graphs: A Case Study in Tourism

FIGURE 2. The workflow of the offline phase.

FIGURE 3. Unlabelled tree and RDF templates with 2 hops.

patterns, which basically are labelled graphs, are isomorphic
if there is an edge-preserving node bijection6 between entity
(and class) sets.

6Abijection is a bijective function that establishes a one-to-one correspon-
dence between elements of two given sets. Here, sets are considered as the
sets of graphs’ nodes.

FIGURE 4. An example of collected information of a question.

For example, although questions ‘‘What is the address of
the hotel where Mozart Week takes place?’’ and ‘‘What is the
phone number of the ski-resorts that open in October?’’ are
semantically different, their query patterns include the same
number of nodes and edges and also their edge connectivity
is retained. Thus, these questions are answered through one
query pattern due to the structural similarity of their SPARQL
queries, as shown in Figure 5.

VOLUME 10, 2022 69793

S. Aghaei et al.: Question Answering Over Knowledge Graphs: A Case Study in Tourism

FIGURE 5. Semantically different questions with similar query pattern.

Thus, we determine a set of query patterns as question
classes using graph isomorphisms according to the obtained
information in the offline phase (including varied questions
and their RDF templates and the number of entity, class and
relation holders). The graph patterns comprise some slots
(entity holders, relation holders and relation holders) inde-
pendent of the KG’s domain and vocabulary. In section V-B,
we show all the basic query patterns used as the question
classes in our use-case.

1) QUESTION CLASSIFICATION
After determining the query patterns, a classification model
is employed to classify NLQs into their corresponding query
patterns. We use XGBoost classifier due to it is a boost-
ing classifier, which combines tree models with lower clas-
sification accuracy and builds a highly accurate and low
false positive model through the constant iteration of the
model [41].

XGBoost (Extreme Gradient Boost) classifier is con-
sidered an implementation of gradient boosted decision
trees (GBDTs) for classification. A GBDT is a decision tree
ensemble learning algorithm that combines multiple machine
learning models to produce improved results using a gradient
descent algorithm. Gradient boosting is based on the idea that
combining the best possible next model with the prior models
minimizes overall prediction errors.

Thus, an XGBoost Classifier is trained to assign an appro-
priate query pattern to a given input question. The features are
calculated based on the grammatical structure of questions,
including POS tagging and dependency parsing. Also, we use
the padding and label encoding to accomplish inputs with the
same size in numeric forms, respectively.

Part of Speech (POS) Tagging: POS tagging, a very basic
and well known natural language processing problem, is used
to classify words of a sentence into their corresponding part
of a speech (verb, noun, adjective, etc) and label them accord-
ingly. This paper applies the averaged perceptron tagger from

FIGURE 6. An example of dependency parsing.

the Natural Language Toolkit (NLTK) package7 which is
based on the average perceptron machine learning algorithm,
to generate POS tags of the question sentences.

Dependency Parsing: Dependency parsing is used to
analyze the grammatical structure of a sentence accord-
ing to the dependencies between the words of the sen-
tence. Dependency triples represent the relationships between
two words (headword and dependent word) using depen-
dency tags. Since the output from the parse tree needs
to be vectorized, we conduct dependency triples of a
question sentence in the form of <POS tag of head-
word, dependency tag, POS tag of dependent word>.
Considering the question sentence ‘‘When does Mozart
Week start?’’, Figure 6 illustrates the dependencies among
the words. For example, there is the dependency aux
(i.e., auxiliary) from ‘‘start’’ with POS tag VB (i.e., verb, base
form) to ‘‘does’’ with POS tag VBZ (i.e., verb, 3rd person
sing. present) that is considered as a triple <VB, aux, VBZ>.

Padding: Padding is commonly used in natural language
processing tasks to obtain feature vectors with the same
length. This paper uses post-padding to pad feature vectors
to a preferred length.

Label Encoding: Basically, machine learning algorithms
such as XGBoost will perform better in terms of accuracy
and other performance metrics when the data is expressed
as a number (machine-readable form) instead of categori-
cal. Here, label encoding converts the POS tags and depen-
dency triples into numeric forms. All the possible POS tags
(in default tagger of NLTK package) and dependency tags
are considered to encode features, which are 37 and 63,
respectively. So, the maximum number of possible triples in
the form of <POS tag, dependency tag, POS tag> is equal to
37 × 63 × 37 − 37 that we consider all the possible triples
though some triples may never happen.

Thus, given a question, the POS tags and dependency
triples are generated and padded with the maximum lengths
l1 and l2 (determined according to maximum values in train-
ing data), respectively. Next, the padded vectors are encoded
and then concatenated to shape the feature vector of the
question with length l1 + l2. Once the XGBoost classi-
fier is trained, it is able to predict the question’s query
pattern.

7https://www.nltk.org/

69794 VOLUME 10, 2022

S. Aghaei et al.: Question Answering Over Knowledge Graphs: A Case Study in Tourism

Figure 7 shows the whole process of POS tagging, depen-
dency triples, padding and encoding of the example question
sentence ‘‘What is the address of the hotel where Mozart
Week takes place?’’. In this example, we use ‘‘x’’ and ‘‘y’’
to pad the POS tags and dependency triples, respectively.

2) ENTITY LINKING AND CLASS LINKING
The task of entity linking can be defined as linking entities
from the KG that are mentioned in the question sentence.
To this end, our introduced technique includes three stages:
(1) n-gram collection, (2) candidate retrieval from the KG,
and (3) entity selection. Here, we use the same technique to
link class mentions appearing in questions with their corre-
sponding classes in the KG.

First, word n-grams are collected (as the entity or class
mentions) using a fixed-sized sliding window that runs from
start to end of a question sentence (an n-gram is a subse-
quence of length n from an item sequence). Here, we apply
unigram, bigram and trigram to extract all possible tokens.
Taking the word sequence in the question sentence: ‘‘When
does Mozart Week start?’’ as an example, there are five
1-gram (i.e., unigram): ‘‘When’’, ‘‘does’’, ‘‘Mozart’’,
‘‘Week’’ and ‘‘start’’, four 2-grams (i.e., bigrams): ‘‘When
does’’, ‘‘does Mozart’’, ‘‘Mozart Week’’, and ‘‘Week start’’,
and three 3-grams (i.e., trigrams): ‘‘When does Mozart’’,
‘‘does Mozart Week’’, and ‘‘Mozart Week start’’. In the
stage of candidate retrieval, two indexes are created based
on labels of entities8 and classes, respectively (if an entity
or class does not have a label, the variable part of its URI
is adopted). To select relevant entities and classes in the last
stage, we leverage Levenshtein edit distance [49] to compute
string similarity as well as word embeddings in order to create
embeddings of mentions and candidates. This enables us to
calculate the semantic score using cosine similarity.

Levenshtein edit distance is computed through a dynamic
programming algorithm that addresses the problem of string
matching based on various edit operations, including substi-
tution, deletion or insertion [50]. Here, the minimum num-
ber of single-character insertions, deletions, and substitutions
required to transform amention into a candidate is considered
as their Levenshtein edit distance. We consider the length
of the candidates in finding their similarities (lines 2 and 3
of Algorithm 1) to prioritise the longest word combinations
rather than the words that make it up. To accomplish word
embeddings, we apply the pre-trained model SBERT9 to
generate the embeddings of the mentions and candidates and
then compute the cosine similarity between the embeddings.
While BERT10 is a state-of-the-art pre-trained contextual
language representation model built on a multi-layer bidi-
rectional transformer encoder [51], SBERT is a modification
of the pre-trained BERT network to derive a semantically
meaningful word or sentence embeddings using siamese and

8Either URI resources or literal resources.
9Sentence-Bidirectional Encoder Representations from Transformers.
10Bidirectional Encoder Representations from Transformers.

triplet network structures [52]. Thus, given each entity and
class mention collected by n-grams, we calculate their sim-
ilarity scores with candidates from entity and class indexes
according to the pseudo-code shown in Algorithm 1.

Algorithm 1 Similarly Score Computation
1: Compute vector STS (STring Similarity) containing the

Levenshtein edit distance ld between entity mention m
and entity candidates

2: Sort STS based on ld/ls ascending where ls is the length
of the entity candidate

3: Sort STS based on ls descending if ld is equal to zero
4: Compute STR (STring Ranks) including the entity can-

didates’ string-ranks where the string-rank of the entity
candidate c is 1/index(stc) where index(stc) is the index
of the entity candidate c in STS vector

5: Compute vector SES (SEmantic Similarity) containing
the cosine similarity cs between the embeddings of an
entitymentionm and the embeddings of entity candidates

6: Sort SES based on cs descending
7: Compute SER (SEmantic Ranks) including the entity

candidates’ semantic-ranks where the semantic-rank of
the entity candidate c is 1/index(sec) where index(sec) is
the index of the entity candidate c in SES vector

8: Compute similarly score of an entity mention m and the
entity candidate c based on the sum of their ranks in STR
and SER

Next, the entities and classes with the highest similarity
scores are selected according to the required number of entity
holders and class holders in the query pattern.

3) RELATION EXTRACTION
The task of relation extraction targets at finding the specific
predicates (also named properties or relations) from the KG
that match the phrases detected in a given question sentence.
Basically, the task of relation extraction is more difficult
than the detection of entities and classes due to the large
number of expressions that can be used to express the same
predicate [22]. Since a question sentence can include more
than a relation (such as the described questions in Figure 5),
we utilize multi-label classification. The task of multi-label
classification is concernedwith learning from a set of samples
that are associated with a set of labels. So, zero or more labels
are required as output for each input sample. To accomplish
relation extraction, given a question, probability distributions
for predicates are computed by an MLP predicate multi-
label classifier. Note that the unnecessary predicates which
are identified in the offline phase are not considered in this
calculation.

An MLP classifier is a neural network that follows a
feed-forward mechanism and maps input data onto corre-
sponding outputs, and the neurons in the MLP are trained
with the back propagation learning algorithm. It consists of
three types of layers, including the input layer, output layer

VOLUME 10, 2022 69795

S. Aghaei et al.: Question Answering Over Knowledge Graphs: A Case Study in Tourism

FIGURE 7. An example of feature vectors in the question classifier.

and hidden layer. The input layer receives the data to be
processed. Next, the hidden layers, which are an arbitrary
number of layers between the input and output layer, are the
true computational engine of the MLP. Finally, the task of
classification is performed by the output layer.

We use the pre-trained model SBERT to generate the
embedding of question sentences. Then the embedding is
passed through an MLP classifier with two hidden layers
(in our use-case) followed by a sigmoid activation function
in the output layer. The sigmoid function is the right choice
due to it predicts the probability for each class label (a value
between 0 and 1), and the predicted probabilities are indepen-
dent (the probabilities-sum does not need to be 1).

Once the predicate classifier outputs the probability of each
predicate in an input question, the top-k relations are selected
as the most relevant extracted relations where k is equal to
the number of required relation holders in the assigned query
pattern.

4) SLOT FILLING AND QUERY EXECUTION
Once entities, classes and relations that can fill the slots of a
query pattern are identified, we arrive at a range of possible
states to fill the slots using the Cartesian product of the
possible values. Since the maximum number of hops in a
query pattern equals 4, the total number of permutations to fill
slots is limited. So, a SPARQL query is executed according to
each permutation, but in most queries, no results are returned.
Finally, the union of all the returned results is considered the
answer.

V. EXPERIMENTAL STUDY
This section contains details about the experimental study.
In Section V-A, the applied KG in our use-case is introduced.
Section V-B explains the experiment process in the offline
and semantic parsing phases, and Section V-C provides infor-
mation on the evaluation metrics and the reasons why those
evaluation metrics are considered. Finally, in Section V-D,
we present our experimental results.

A. DATASET
With the rapid increase in using KGs to store and present data
generated by SMEs, KGs have been developed in tourism
websites in recent years. So, we choose a KG in the tourism
domain to showcase the proposed approach. The KG chosen

TABLE 2. Unnecessary properties in Salzburgland KG.

for this empirical study is from Salzburgerland11 (this KG is
a part of the project WordLiftNG12). It consists of approxi-
mately 31K facts describing touristic entities of the region of
Salzburg, Austria.

B. EXPERIMENT PROCESS
To construct the training data, the unnecessary properties of
the KG are identified in the offline phase. Among the 39 prop-
erties that are present in the Salzburgland KG, 10 properties
are identified as the unnecessary properties, as tabulated in
Table 2.

Out of all the possible RDF templates in Table 1 (70 RDF
templates13), we execute SPARQL queries where some of
them may return no result. Since the objective is to arrive
at an almost balanced distribution among questions based
on the number of hops to return the answers, the values of
K (the number of returned results) in RDF templates are
different. The obtained information from each row result
includes the verbalized triples, the answer entity, and theWH-
word question. These elements are used to generate questions
by the authors involved in the paper. Once all the questions are
generated, we categorize the questions based on the isomor-
phic graph patterns, the required numbers of entity holders,
class holders and relation holders and finally arrive at 7 query
patterns (we ignore the patterns with examples less than 5%
of the total number of generated questions) that Table 3 shows
the statistics.

To present feature vectors of the questions, the maxi-
mum numbers of POS tagging and dependency triples of the

11http://data.salzburgerland.com/en
12Eurostars funded project WordLiftNG aims to construct the most

SEO-friendly structured linked data (e.g., KGs) for SMEs.
131× 2+ 1× 4+ 2× 8+ 3× 16 = 70

69796 VOLUME 10, 2022

S. Aghaei et al.: Question Answering Over Knowledge Graphs: A Case Study in Tourism

TABLE 3. Statistics of query patterns.

observed sequences are considered 17 and 18, respectively.
We use ’x’ and ’y’ to pad the POS tags and dependency
triples, respectively, to make the samples in the same size
(the length of the feature vectors is equal to 35).

We apply the pre-trained model distilbert-base-nli-stsb-
mean-tokens with a dimension of 768 to generate the feature
vectors of the questions. Thus, the training set comprises the
vectors, each associated with a set of 29 relations. In our use-
case, we apply an MLP multi-label classifier with two hidden
layers including 100 and 40 units (with a ReLU14 activa-
tion function), respectively, followed by a sigmoid activation
function in the output layer, where the more details of the
model are shown in Table 5.

C. EVALUATION METRICS
Accuracy, one of the most common metrics, is used to mea-
sure the overall correctness of the employed classification
models. This metric refers to the ratio of the total correct pre-
dictions over the total predictions, both correct and incorrect,
as the following:

Accuracy =
correct predictions
total predictions

(1)

We adopt three metrics, including recall, precision and
F1-score to evaluate the effectiveness of the entire proposed
approach.

Recall refers to the ratio of the correctly retrieved answers
over all the given explicit standard answers; the formulation
is as follows:

R =
correctly obtained answers
gold standard answers

(2)

Precision refers to the ratio of the correctly retrieved
answers over all returned answers, as the following:

P =
correctly obtained answers

returned answers
(3)

F1-score combines precision and recall for simplicity, and
the formulation is as follows:

F1 = 2×
P× R
P+ R

(4)

D. EXPERIMENTAL RESULTS
This section provides details on the applied models such as
hyper-parameters and describes experimental results.

According to the generated questions in the offline phase,
the QA dataset is made of 700 questions that are split into

14Rectified Linear Unit.

train and test datasets. The split ratio is 75% for the training
set and 25% for the test set that is used to evaluate the
employed classifiers, and then the whole proposed approach.

The XGBoost question classifier and MLP predicate clas-
sifier are trained using 5 k-fold cross-validations to control
overfitting during the training. The achieved values for the
accuracy of the XGBoost classifier and MLP classifier are
0.93 and 0.91, respectively.

Tables 4 and 5 show the tuned hyper-parameters of
XGBoost and MLP classifiers, respectively.

As seen in Table 4, we opt for gbtree and auto as the
booster and tree method. Since the booster is of tree type,
the learning rate is kept at the default 0.3, and the num-
ber of trees is 5. Due to multi-class classification, objective
should be multi:softprob. Additionally, we directly control
model complexity through max_depth and gamma and add
randomness to make training robust to noise by subsample
and colsample_bytree. We set the max depth to 3 (3 units
lower than the default 6), gamma to 20, subsample to 0.5 and
colsample_bytree to 0.4.

As mentioned in Section V-B, MLP classifier implemen-
tation uses two hidden layers and one output layer. The first
hidden layer is made up of 100 hidden units, while the next is
made up of 40 hidden units. The number of units in the input
layer equals the number of the features 768, and the number
of units in the output layer equals the number of classes, 29.
We apply the activation function ReLU for the hidden layers
because ReLU is more resistant to the vanishing gradient
problem than other activation functions. We use dropout in
our implementation to alleviate the overfitting in MLP clas-
sifier and also apply the early stopping technique to monitor
the validation accuracy. Dropout is a regularization method in
the deep networks that network units are randomly ignored
(dropped out) during training. Additionally, early stopping,
as an effective and simple form of regularisation, stops the
training once the monitored metric has stopped improving.
As shown in Table 5, the training is carried out for 100 epochs
in our MLP implementation, and the value for dropout in
each hidden layer is 0.45. The learning rate (LR) controls the
rate or speed at which the model learns. Once LR is large,
the model learns faster but may cause undesirable divergent
behaviour. Once LR is small, it allows the model to learn
a more optimal but may take significantly longer to train.
Here, we apply an adaptive learning rate Adam with an initial
value of 0.01, considering the importance of LR in our MLP
classifier. The loss function as another circuital aspect, which
quantifies the difference between the expected outcome and
the outcome produced by the model, is considered binary
cross-entropy (it is useful for binary and multi-label classi-
fication problems).

Table 6 presents recall, precision and F1-score of 175 test
questions over the implemented proposed approach by the
number of hops, where ’Right’ denotes the number of ques-
tions that are correctly answered. According to Table 6, the
final accuracy is 0.72, which means 72 percent of ques-
tions (127 questions out of a total of 175 questions) can

VOLUME 10, 2022 69797

S. Aghaei et al.: Question Answering Over Knowledge Graphs: A Case Study in Tourism

TABLE 4. XGBoost parameters.

TABLE 5. MLP parameters.

TABLE 6. Results on different hop questions.

be answered correctly. The F1-score has higher values for
questions with fewer hops (as expected) because obtaining
answers for complex questions is basically much more dif-
ficult than simple questions. Overall, the average precision,
recall, and F1-score are 0.86, 0.80 and 0.82, respectively.

We provide a failure analysis of our approach, which shows
three reasons for the failure of the questions. The first rea-
son is the question classification problem, which accounted
for 6.8%. The second one is the failure of entity or class link-
ing, which means we cannot find the correct referred entity
or class for 6.8% questions that are classified correctly. The
third one is relation extraction, which accounted for 4.6%.
Furthermore, we find that considering all the permutations
to fill slots reduces the precision in some cases. In 14.8% of
the questions, the queries filled with wrong permutations of
entities or relations retrieve incorrect answers.

TABLE 7. Failure analysis of the proposed approach.

To compare our approach with the state-of-the-art
approaches, we re-implement the question classification
step of TeBaQA [39]. According to the described fea-
tures15 extracted from questions in TeBaQA, we train three

15The features that are not calculable in the case of Salzburgland KG are
ignored.

FIGURE 8. Proposed approach versus the state of the art TeBaQA result.

classifiers, including an MLP classifier, XGBoost classifier
and support vector machine (SVM) classifier, to identify the
query patterns of the questions. Figure 8 compares the gained
accuracy of TeBaQA-based classifiers with the accuracy
of our proposed question classifier (PQuestion Classifier).
As shown, our proposed approach improves the accuracy
by 12%.

Note that no single KGQAS will ever be a perfect system
for all the steps (question classification, entity and class
linking, relation extraction and query execution) on all scales
of KGs. For example, our proposed solution for entity linking
cannot be performed over a huge KG (e.g., DBPedia, which
is employed in TeBaQA) with millions or billions of facts
due to it will require reducing search space for each given
question and then finding the relevant entities across a subset
of the KG which is more likely to contain those entities.
In our next research, we will develop our proposed KGQAS
on the website of the underlying KG and show how end-users
evaluate our system based on the answers to the questions
they receive.

VI. DISCUSSION
In literature, most QA-based approaches either target huge
KGs with large training data or define many domain-
dependent rules to cover different questions. Hence, these
approaches often cannot be applied directly to small and
medium KGs where no training data is directly available.

From the conducted experiments, we observe that our
approach achieves high performance in answering NLQs
across small and medium KGs. While the approach is
tested on a touristic KG, it is not restricted to a particular
domain and can be generalized to other domains. Moreover,

69798 VOLUME 10, 2022

S. Aghaei et al.: Question Answering Over Knowledge Graphs: A Case Study in Tourism

we find that answering complex questions is more chal-
lenging than simple questions, as observed in other studies.
As shown in Section V-D, complex questions gain less accu-
racy in comparison to simple questions due to different rea-
sons, including misclassification, incorrect entity and class
linking, and wrong predicted relation distributions in our
work.

Our approach can be applied to SMEs’ KGs, includ-
ing facts ranging from thousands to hundreds of thou-
sands. These quantities are derived from the observation
made in the WordLift project and working with SMEs.
For example, manufacturing SMEs can utilize our work to
answer the requests of domain experts regarding the pro-
duction process on top of the semantically integrated data
as a KG.

The key requirement in our work is humans’ assistance
to generate questions (as training data) based on their own
vocabularies using the verbalized RDF triples and the gained
information in the offline phase. Additionally, with complex
questions, we expect to have at most four hops for reasoning
over triples of a KG. This assumption is made according to
the existing benchmark datasets’ statistics and the practical
scenarios in which it is much less likely to arrive at more than
four hops. Thus, the complex questions are assumed to be
2-hop, 3-hop and 4-hop questions.

We also acknowledge the limitations of the work presented
as follows:
• Since our work focuses on answering the factoid ques-
tions, it may fall short of the other types of questions
(i.e., the confirmation and hypothetical questions, dis-
cussed in Section I).

• While our approach takes into account all the possible
RDF templates, it excludes questions that are rarely
posed because of their low frequency. Hence, we take out
query patterns with a few examples when categorizing
the generated questions in the offline phase. This exclu-
sion leads to limited misclassifications in the question
classification step.

• In the slot filling and query execution step, incorrect
permutations of detected entities, classes and relations
can increase false positives and consequently decrease
precision.

With the above highlighted limitations, the task of QA
over small and medium scaled KGs can still be significantly
improved.

VII. CONCLUSION
This paper proposes an isomorphism-based approach to
develop KGQASs over small and medium scaled KGs,
including the offline and semantic parsing phases. The offline
phase targets at generating NLQs and their answers over the
underlying KG using RDF templates in a semi-automated
way. The outcome of this phase is utilized as training data
in the semantic parsing phase. According to the grammatical
structure of NLQs, an XGBoost classifier is trained to predict
the relevant query pattern of a given input question in the

semantic parsing phase. The query patterns comprise entity,
class and relation holders as slots.We define a similarity score
based on the string and semantic measurements to select the
appropriate entities and classes from the KG. Additionally,
a multi-label MLP classifier is applied to predict probability
distributions for relations and then extract the relations in
the question sentence. Then, the Cartesian product of the
possible values in each slot is considered to derive and return
answers.

To show how the proposed approach is applied in practical
use-cases, we use SalzburgerLand KG describing touristic
entities and achieve the average recall, precision and F1-score
of 0.86, 0.80 and 0.82, respectively.

Looking back at the main research sub-questions and chal-
lenges, we address the training data problem in small and
medium scaled KGs through the offline phase. We determine
query patterns using graph isomorphisms from SPARQL
queries to deal with the task of defining hand-crafted tem-
plates. Different similarity measurements and probability dis-
tributions tackle the linguistic gap between question sen-
tences and KGs’ vocabularies.

The future work will focus on the multilingual aspect
and show how the proposed approach can be adapted to a
KG with a new language (in particular, the German version
of SalzburgerLand KG is also available). To evaluate the
proposed KGQAS using a practical setting, we will develop
the system on the website and ask the end-users to assess
the system. Furthermore, to generate questions in the offline
phase, wewill involvemore people to increase the diversity of
the generated questions. Also, ‘‘yes’’ or ‘‘no’’ questions and
factoid questionsmergedwith complex aggregation functions
(e.g., ‘‘How many ski-resorts with more than 100 slopes
operate between October 20 and 31?’’) will be covered in the
next investigation.

ACKNOWLEDGMENT
The authors would like to thank Tek Raj Chhetri for
the insightful discussions. Additionally, they would like to
express their gratitude to Albin Ahmeti for providing feed-
back that aided in the manuscript’s improvement. Finally,
they thank Jubril Gbolahan Adigun and Mooud Amirkavei
for proofreading the manuscript.

REFERENCES
[1] S. Ji, S. Pan, E. Cambria, P. Marttinen, and S. Y. Philip, ‘‘A survey on

knowledge graphs: Representation, acquisition, and applications,’’ IEEE
Trans. Neural Netw. Learn. Syst., vol. 33, no. 2, pp. 494–514, Apr. 2021.

[2] B. Abu-Salih, ‘‘Domain-specific knowledge graphs: A survey,’’ J. Netw.
Comput. Appl., vol. 185, Jul. 2021, Art. no. 103076.

[3] G. Klyne. (2004). Resource Description Framework (RDF): Concepts and
Abstract Syntax. [Online]. Available: http://www.w3. org/TR/2004/REC-
rdf-concepts-20040210

[4] H. Arnaout and S. Elbassuoni, ‘‘Effective searching of RDF knowledge
graphs,’’ J. Web Semantics, vol. 48, pp. 66–84, Jan. 2018.

[5] J. Lehmann, R. Isele,M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes,
S. Hellmann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer,
‘‘DBpedia—A large-scale, multilingual knowledge base extracted from
Wikipedia,’’ Semantic Web, vol. 6, no. 2, pp. 167–195, 2015.

VOLUME 10, 2022 69799

S. Aghaei et al.: Question Answering Over Knowledge Graphs: A Case Study in Tourism

[6] M. Mansfield, V. Tamma, P. Goddard, and F. Coenen, ‘‘Capturing expert
knowledge for building enterprise SME knowledge graphs,’’ in Proc. 11th
Knowl. Capture Conf., Dec. 2021, pp. 129–136.

[7] Z. Akbar, A. Fensel, and D. Fensel, ‘‘On generating stories from seman-
tically annotated tourism-related content,’’ in Proc. OTM Confederated
Int. Conf. Meaningful Internet Syst. Cham, Switzerland: Springer, 2018,
pp. 481–497.

[8] A. Fensel, Z. Akbar, E. Kärle, C. Blank, P. Pixner, and A. Gruber,
‘‘Knowledge graphs for online marketing and sales of touristic services,’’
Information, vol. 11, no. 5, p. 253, May 2020.

[9] E. G. Kalayci, I. G. González, F. Lösch, G. Xiao, A. ul-Mehdi,
E. Kharlamov, and D. Calvanese, ‘‘Semantic integration of Bosch man-
ufacturing data using virtual knowledge graphs,’’ in Proc. Int. Semantic
Web Conf. Cham, Switzerland: Springer, 2020, pp. 464–481.

[10] D. Xiao, N. Wang, J. Yu, C. Zhang, and J. Wu, ‘‘A practice of tourism
knowledge graph construction based on heterogeneous information,’’ in
Proc. China Nat. Conf. Chin. Comput. Linguistics. Cham, Switzerland:
Springer, 2020, pp. 159–173.

[11] C. Lu, P. Laublet, and M. Stankovic, ‘‘Travel attractions recommendation
with knowledge graphs,’’ in Proc. Eur. Knowl. Acquisition Workshop.
Cham, Switzerland: Springer, 2016, pp. 416–431.

[12] X. Liang, H. Cao, andW. Zhang, ‘‘Knowledge extraction experiment based
on tourism knowledge graph Q & A data set,’’ in Proc. IEEE Int. Conf.
Power, Intell. Comput. Syst. (ICPICS), Jul. 2020, pp. 828–832.

[13] E. Kärle, U. Şimşek, O. Panasiuk, and D. Fensel, ‘‘Building an ecosystem
for the tyrolean tourism knowledge graph,’’ in Proc. Int. Conf. Web Eng.
Cham, Switzerland: Springer, 2018, pp. 260–267.

[14] W. Zhang, T. Gu, W. Sun, Y. Phatpicha, L. Chang, and C. Bin,
‘‘Travel attractions recommendation with travel spatial-temporal knowl-
edge graphs,’’ in Proc. Int. Conf. Pioneering Comput. Scientists, Eng.
Educators. Singapore: Springer, 2018, pp. 213–226.

[15] S. Hu, L. Zou, J. X. Yu, H. Wang, and D. Zhao, ‘‘Answering natural
language questions by subgraph matching over knowledge graphs,’’ IEEE
Trans. Knowl. Data Eng., vol. 30, no. 5, pp. 824–837, May 2017.

[16] A. Ait-Mlouk and L. Jiang, ‘‘KBot: A knowledge graph based chatbot for
natural language understanding over linked data,’’ IEEE Access, vol. 8,
pp. 149220–149230, 2020.

[17] B. Ojokoh and E. Adebisi, ‘‘A review of question answering systems,’’
J. Web Eng., vol. 17, no. 8, pp. 717–758, 2018.

[18] Y. Qiu, Y. Wang, X. Jin, and K. Zhang, ‘‘Stepwise reasoning for multi-
relation question answering over knowledge graph with weak supervi-
sion,’’ in Proc. 13th Int. Conf. Web Search Data Mining, Jan. 2020,
pp. 474–482.

[19] B. Fu, Y. Qiu, C. Tang, Y. Li, H. Yu, and J. Sun, ‘‘A survey on complex ques-
tion answering over knowledge base: Recent advances and challenges,’’
2020, arXiv:2007.13069.

[20] S. Aghaei and A. Fensel, ‘‘Building knowledge subgraphs in ques-
tion answering over knowledge graphs,’’ in Proc. 22nd Int. Conf.
Web Eng., 2022. [Online]. Available: https://icwe2022.webengineering.
org/programandsessions/

[21] Wordlift New Generation. Accessed: Apr. 10, 2022. [Online]. Available:
https://wordlift.io/ng/

[22] C. Unger, L. Bühmann, J. Lehmann, A.-C. N. Ngomo, D. Gerber, and
P. Cimiano, ‘‘Template-based question answering over RDF data,’’ inProc.
21st Int. Conf. World Wide Web, 2012, pp. 639–648.

[23] W. Zheng, L. Zou, X. Lian, J. X. Yu, S. Song, and D. Zhao, ‘‘How to
build templates for RDF question/answering: An uncertain graph similarity
join approach,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2015,
pp. 1809–1824.

[24] W. Zheng, J. X. Yu, L. Zou, and H. Cheng, ‘‘Question answering over
knowledge graphs: Question understanding via template decomposition,’’
Proc. VLDB Endowment, vol. 11, no. 11, pp. 1373–1386, Jul. 2018.

[25] D. Diefenbach, ‘‘Question answering over knowledge bases,’’
Ph.D. dissertation, Dept. Sci. Ingénierie Santé, Université de Lyon,
Lyon, France, 2018.

[26] W. Cui, Y. Xiao, H. Wang, Y. Song, S.-w. Hwang, and W. Wang, ‘‘KBQA:
Learning question answering over QA corpora and knowledge bases,’’
2019, arXiv:1903.02419.

[27] S. Ou, C. Orasan, D. Mekhaldi, and L. Hasler, ‘‘Automatic question pattern
generation for ontology-based question answering,’’ in Proc. Flairs Conf.,
2008, pp. 183–188.

[28] H. Bast and E. Haussmann, ‘‘More accurate question answering on free-
base,’’ in Proc. 24th ACM Int. Conf. Inf. Knowl. Manage., Oct. 2015,
pp. 1431–1440.

[29] H. Sun, B. Dhingra, M. Zaheer, K. Mazaitis, R. Salakhutdinov, and
W. W. Cohen, ‘‘Open domain question answering using early fusion of
knowledge bases and text,’’ 2018, arXiv:1809.00782.

[30] H. Sun, T. Bedrax-Weiss, and W. W. Cohen, ‘‘PullNet: Open domain
question answering with iterative retrieval on knowledge bases and text,’’
2019, arXiv:1904.09537.

[31] G. He, Y. Lan, J. Jiang, W. X. Zhao, and J.-R. Wen, ‘‘Improving multi-hop
knowledge base question answering by learning intermediate supervision
signals,’’ in Proc. 14th ACM Int. Conf. Web Search Data Mining, 2021,
pp. 553–561.

[32] M. Yasunaga, H. Ren, A. Bosselut, P. Liang, and J. Leskovec, ‘‘QA-GNN:
Reasoning with language models and knowledge graphs for question
answering,’’ 2021, arXiv:2104.06378.

[33] K. Xu, L. Wu, Z. Wang, M. Yu, L. Chen, and V. Sheinin, ‘‘Exploiting
rich syntactic information for semantic parsing with graph-to-sequence
model,’’ 2018, arXiv:1808.07624.

[34] R. G. Athreya, S. K. Bansal, A.-C.-N. Ngomo, and R. Usbeck,
‘‘Template-based question answering using recursive neural networks,’’
in Proc. IEEE 15th Int. Conf. Semantic Comput. (ICSC), Jan. 2021,
pp. 195–198.

[35] P. Trivedi, G.Maheshwari, M. Dubey, and J. Lehmann, ‘‘LC-QuAD: A cor-
pus for complex question answering over knowledge graphs,’’ in Proc. Int.
Semantic Web Conf. Cham, Switzerland: Springer, 2017, pp. 210–218.

[36] A. K. Dileep, A. Mishra, R. Mehta, S. Uppal, J. Chakraborty, and
S. K. Bansal, ‘‘Template-based question answering analysis on the
LC-QuAD2.0 dataset,’’ in Proc. IEEE 15th Int. Conf. Semantic Comput.
(ICSC), Jan. 2021, pp. 443–448.

[37] M. Dubey, D. Banerjee, A. Abdelkawi, and J. Lehmann, ‘‘LC-QuAD 2.0:
A large dataset for complex question answering over Wikidata and dbpe-
dia,’’ in Proc. Int. semantic web Conf. Cham, Switzerland: Springer, 2019,
pp. 69–78.

[38] L. Breiman, ‘‘Random forests,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[39] D. Vollmers, R. Jalota, D. Moussallem, H. Topiwala, A.-C. Ngonga
Ngomo, and R. Usbeck, ‘‘Knowledge graph question answering using
graph-pattern isomorphism,’’ in Proc. 17th Int. Conf. Semantic Syst. Fur-
ther Knowl. Graphs, vol. 53. Amsterdam, The Netherlands: IOS Press,
Sep. 2021, p. 103.

[40] P. N.Mendes,M. Jakob, A. García-Silva, and C. Bizer, ‘‘Dbpedia spotlight:
Shedding light on the web of documents,’’ in Proc. 7th Int. Conf. Semantic
Syst., 2011, pp. 1–8.

[41] T. Chen and C. Guestrin, ‘‘XGBoost: A scalable tree boosting system,’’
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2016, pp. 785–794.

[42] H. Gao, L. Wu, P. Hu, and F. Xu, ‘‘RDF-to-text generation with graph-
augmented structural neural encoders,’’ in Proc. 29th Int. Joint Conf. Artif.
Intell., Jul. 2020, pp. 3030–3036.

[43] Y. Chen, L. Wu, and M. J. Zaki, ‘‘Reinforcement learning based graph-to-
sequencemodel for natural question generation,’’ 2019, arXiv:1908.04942.

[44] K. Xu, L. Wu, Z. Wang, Y. Feng, M. Witbrock, and V. Sheinin,
‘‘Graph2Seq: Graph to sequence learning with attention-based neural net-
works,’’ 2018, arXiv:1804.00823.

[45] J. Berant, A. Chou, R. Frostig, and P. Liang, ‘‘Semantic parsing on freebase
from question-answer pairs,’’ in Proc. Conf. Empirical Methods Natural
Lang. Process., 2013, pp. 1533–1544.

[46] J. Bao, N. Duan, Z. Yan, M. Zhou, and T. Zhao, ‘‘Constraint-based ques-
tion answering with knowledge graph,’’ in Proc. 26th Int. Conf. Comput.
Linguistics, Tech. Papers (COLING), 2016, pp. 2503–2514.

[47] W.-T. Yih, M. Richardson, C. Meek, M.-W. Chang, and J. Suh, ‘‘The value
of semantic parse labeling for knowledge base question answering,’’
in Proc. 54th Annu. Meeting Assoc. Comput. Linguistics, vol. 2, 2016,
pp. 201–206.

[48] A. Talmor and J. Berant, ‘‘The web as a knowledge-base for answering
complex questions,’’ 2018, arXiv:1803.06643.

[49] V. I. Levenshtein, ‘‘Binary codes capable of correcting deletions, inser-
tions, and reversals,’’ Sov. Phys. Doklady, vol. 10, no. 8, pp. 707–710,
1966.

[50] L. Yujian and L. Bo, ‘‘A normalized Levenshtein distance metric,’’ IEEE
Trans. Pattern Anal.Mach. Intell., vol. 29, no. 6, pp. 1091–1095, Jun. 2007.

[51] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805.

[52] N. Reimers and I. Gurevych, ‘‘Sentence-BERT: Sentence embeddings
using Siamese BERT-networks,’’ 2019, arXiv:1908.10084.

69800 VOLUME 10, 2022

S. Aghaei et al.: Question Answering Over Knowledge Graphs: A Case Study in Tourism

SAREH AGHAEI received the M.Sc. degree in
computer engineering from the University of
Isfahan, Iran, in 2012. She is currently pursuing the
Ph.D. degree with the Semantic Technology Insti-
tute (STI), Innsbruck, Austria. From 2012 to 2020,
she has worked as a Data Analyst at Iran Insurance
Company’s projects. Since October 2020, she has
been a Research Assistant with STI. Her research
interests include knowledge graphs and question
answering systems.

ELIE RAAD received the Ph.D. degree in com-
puter science from the University of Bourgogne,
France, in 2011. After his Ph.D. degree, he held
multiple postdoctoral positions at the Memorial
University of Newfoundland, Canada; and theUni-
versity of Bourgogne, where he has worked on
designing generative adversarial networks (GANs)
and bridging the gap between the semantic web
and cognitive science. He is currently working as
a Machine Learning Specialist at WordlLift. Prior

to this, he has worked as a Data Scientist for different companies, where he
was responsible for building knowledge graphs and for generating insights
from structured and structured data using artificial intelligence and machine
learning algorithms.

ANNA FENSEL was born in Novosibirsk, Russia.
She received the university degree in mathemat-
ics and computer science from Novosibirsk State
University, Russia, in 2003, and the Ph.D. and
Habilitation degrees in computer science from the
University of Innsbruck, Austria, 2006 and 2018,
respectively.

In 2006–2007, she has worked as a Research
Fellow at the University of Surrey, U.K., and then
as a Senior Researcher at the Telecommunications

Research Center Vienna (FTW), Austria, from 2007 to 2013. Afterward,
she was an Assistant and then an Associate Professor at the University of
Innsbruck. Since 2021, she has been an Associate Professor at Wageningen
University and Research, Wageningen, The Netherlands. She has been a
co-organizer or a program committee member of more than 100 scientific
events, including being in chair roles at top events, such as SEMANTiCS and
ESWC, a reviewer for numerous journals, and a Project Proposals Evaluator
for funding agencies, such as EU H2020 and FP6, Eureka-Eurostars, and
national funding. She is a (co)author of more than 130 refereed publications.

VOLUME 10, 2022 69801

