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ABSTRACT Localization is one of the most critical tasks for an autonomous vehicle, as position information
is required to understand its surroundings and move accordingly. Visual Odometry (VO) has shown
promising results in the last years. However, VO algorithms are usually evaluated in outdoor street scenarios
and do not consider underground railway scenarios, with low lighting conditions in tunnels and significant
lighting changes between tunnels and railway platforms. Besides, there is a lack of GPS, and it is not easy
to access such infrastructures. This research proposes a method to create a ground truth of images and poses
in underground railway scenarios. Second, the EnlightenGAN algorithm is proposed to face challenging
lighting conditions, which can be coupled with any state-of-the-art VO techniques. Finally, the obtained
ground truth and the EnlightenGAN have been tested in a real scenario. Two different VO approaches have
been used: ORB-SLAM2 and DF-VO. The results show that the EnlightenGAN enhancement improves the
performance of both approaches.

INDEX TERMS Visual Odometry, autonomous vehicles, computer vision, data enhancement, simultaneous
localization and mapping, image processing, railway domain.

I. INTRODUCTION
Visual Odometry (VO) is a particular case of odome-
try based on Computer Vision (CV), where the posi-
tion and motion information are acquired through camera
images [1]. VO algorithms aiming to derive localization
data through visual sensors are usually evaluated and com-
pared by reference standard datasets such as KITTI [2],
[3] and EuRoC-MAV [4]. This situation leads solutions
adapted to the visual characteristics contained on those sce-
narios with adequate lighting conditions (good illumination
and similar lighting conditions in subsequent frames), rel-
atively sufficient textures and Lambertian surfaces. How-
ever, few algorithms, datasets, and benchmarks can be
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found in challenging scenarios with varying light condi-
tions, low illumination, low textures, or non-Lambertian
surfaces.

For instance, one of the latest benchmark challenges in
visually challenging odometry is the Subterranean Chal-
lenge (SubT), organized by the Defense Advanced Research
Projects Agency (DARPA). Perceptually challenging scenar-
ios and tasks were stated in this challenge, such as navigation
through tunnel systems, cave networks, or urban under-
ground environments. The participating teams presented sev-
eral approaches [5]–[8] to study the robotics autonomy in
underground scenarios exploration and navigation. These
works emphasize the complexity of localization and naviga-
tion in underground environments due to their perceptually-
degraded conditions. They also emphasize on the importance
of field testing.
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The railway domain is also moving towards the Intelli-
gent Transportation Systems (ITS) and the Advanced Driving
Assistance Systems (ADAS) industry. A train that implements
autonomous operations requires accurate localization estima-
tion to carry out operations as precise stop operation or cou-
pling successfully. Algorithms applied in urban underground
railway scenarios must deal with significant light changes
from tunnel areas to platforms, with insufficient illumination
and low textures in tunnels.

In this context, the application of state of theVO algorithms
and data enhancement techniques was analyzed in a perceptu-
ally challenging driving car scenario [9]. The results showed
that the Generative Adversarial Network (GAN)-based image
enhancement methods can improve the performance achieved
by state-of-the-art VO solutions.

In this paper, an analysis of state-of-art VO algorithms
is performed and the use of a data enhancement method in
underground railway VO solutions is evaluated. Algorithms
applied in these scenarios must deal with significant light
changes from tunnel areas to platforms, with insufficient
illumination and low textures in tunnels. Therefore, an image
enlightening technique is integrated to improve the results of
state-of-the-art VO algorithms.

A dataset with challenging characteristics is really needed
in order to evaluate VO performance in such scenarios. From
an analysis of datasets used in CV for localization (datasets
labeled with 6-DoF pose), no standard dataset of the railway
domain was found; hence, an ad-hoc underground railway
dataset generation was pursued.

The following section (II) includes a literature review of the
main VO algorithms, a description of the applied enlighten-
ing data enhancement technique, and a list of reference VO
datasets. Section III depicts the urban underground railway
dataset generation process. Then, the results of state-of-art
VO algorithms in the underground railway dataset and the
influence of an enlightening technique are shown in sec-
tions IV and V, respectively. Finally, some conclusions are
drawn in section VI.

II. LITERATURE REVIEW
A. VISUAL ODOMETRY
The term Visual Odometry was first introduced by
Niester et al. [10] proposing a technique to estimate camera
motion using RANSAC [11] outlier refinement method and
tracking extracted features across the frames. Previously,
feature matching was done just in consecutive frames. Later
works have shown that VO methods might perform as well
as wheel odometry while the cost of cameras is much lower
compared to wheel sensors [1].

The VO research community started from the robotics
domain to, later, focus on the localization in other sub-
domains. In this context, different types of vehicles from
distinct sub-domains and diverse characteristics have been
studied, such as, cars [12], [13], trains [14], or lately
UAVs [15].

Depending on the algorithm used to estimate odometry
data, VO techniques can be classified as learning-based and
geometry-based [16], [17]. Geometry-based VO is usually
divided into appearance-based VO (also referred to as direct),
feature-based VO, and a hybrid approach that mixes the two
of them.

Direct VO techniques operate directly on intensity values.
In feature-based VO methods features are extracted from
the image and a tracking-matching process is done. Feature-
based methods have good accuracy, are robust in dynamic
scenes, and can deal with variances in viewpoint [18]; how-
ever, in contrast to direct methods, feature-based techniques
are inadequate in low texture areas. However, the perfor-
mance of direct VO algorithms degrades if the dataset is
not photometrically calibrated and is sensitive to geomet-
ric distortions as those induced by the camera speed [19].
Furthermore, as mentioned in [20], direct methods require
a constant irradiation appearance between matched pixels,
which hinders its application in some scenarios.
Geometry-based VO approaches rely on image geomet-

ric characteristics and camera model to reconstruct the
ego-motion between consecutive frames. One of the most
standard geometric VO approach is ORB-SLAM2 [21]. It is
based on the ORB [22] feature matching and a bundle adjust-
ment algorithm. It is the reference geometric solution in the
VO community [19], [23]–[28].

Geometry-based VO is reliable and accurate under favor-
able conditions, when there are enough illumination and
textures to make the feature matching among consecutive
frames. As stated in [29], monocular VO experiences a scale
drift issue and global bundle adjustment algorithms needs to
be applied. Furthermore, monocular VO algorithms have a
depth-translation scale ambiguity issue [30].

Stereo geometry-based VO works have been also targeted
lately. Semi-direct visual odometry (SVO) [31] is one of
the most predominant approaches among direct monocular
and stereo VO algorithms. It uses a probabilistic mapping
method to estimate ego-motion and explicitly models out-
lier measurements. In 2017, Wang et al. presented Stereo
Direct Sparse Odometry (Stereo DSO) [19], a method for VO
estimation from stereo cameras based on the previously pro-
posed monocular DSO algorithm [32]. Lately, Koestler et al.
presented TANDEM [33], a SLAM system that estimates
ego-motion based on a direct VO pipeline and deep multi-
view stereo.

The expansion of Deep Learning-based Computer Vision
techniques carried the emergence of Deep Learning-based
VO solutions. Learning-based VO/vSLAM algorithms usu-
ally rely on learning parts of a standard VO/vSLAM pipeline
or designing end-to-end trainable algorithms for ego-motion
estimation.

One of the first and most relevant learning-based VO algo-
rithms was PoseNet proposed by [34] Kendall et al., a robust
and real-time monocular re-localization system based on an
end-to-end trained CNN. This approach was later improved
by introducing loss functions based on geometry and scene
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reprojection error [35]. Following this end-to-end pose esti-
mation networks, DeepVO [36] was published, a solution
that infers camera poses directly in an end-to-end manner
from a sequence of RGB frames through a supervised Deep
Recurrent Convolutional Neural Network (RCNN).

Some research works have tried to adapt traditional
non-learning approaches into Deep Learning pipelines.
Brachmann et al. introduced DSAC (Differentiable Sample
Consensus) [37] algorithm based on previously proposed
RANSAC [11]. They applied DSAC in a camera localization
solution, learning an end-to-end camera localization pipeline.

However, most of the research works from the literature
emphasize the importance of an accurate depth and flow esti-
mation for VO/vSLAM. Depth information is crucial for the
localization as it enables the inference of the scene geometry
from 2D images. Moreover, it allows scale recovery [38]
and the distinction of foreground and background points,
allowing a better environment understanding. Together with
depth estimation, the optical flow estimation is also a critical
component of some VO/vSLAM algorithms as it models
the motion between consecutive images. Therefore, most
of learning-based VO/vSLAM algorithms have focused on
learning depth and flow estimation for the pose inference
process.

Following this research line, several works have focused
the depth estimation [39], [40], [41]. In 2018, Zhan et al. pre-
sented Depth-VO-Feat [42], where stereo training was intro-
duced to reduce the spatial and temporal photometric error.
At the same time, DVSO was presented by Yang et al. [29],
introducing deep depth predictions in Direct Sparse Odom-
etry (DSO). D3VO [43] algorithm was also proposed in this
direction, including the uncertainty estimation with camera
pose and depth.

Zhan et al. proposed the unsupervised VO algorithm DF-
VO [17]. This algorithm applies a deep learning-based depth
and flow estimation, and, geometric image information to
estimate the camera pose. As shown in [17], DF-VO out-
performs most learning-based state-of-the-art algorithms in
standard datasets.

Some works have proposed loss functions to handle
challenging scenario characteristics. Yin et al. proposed
GeoNet [44], to increase robustness towards outliers and
non-Lambertian surfaces. After GeoNet, more works were
proposed in this direction [45], [46].

However, as mentioned in [47], literature VO solutions
have limitations in challenging scenarios that contain insuf-
ficient illumination and textures, or, variable lighting con-
ditions. Literature VO solutions, as they are adapted to the
characteristics of standard datasets, require sufficient illu-
mination and enough textured surfaces for a correct feature
matching. A good illumination allowsmotion extraction from
images, as pixel displacement can not be accurately estimated
otherwise. Therefore, the lighting issue needs to be handled
in scenarios that contain low illumination or varying illumi-
nation conditions. These are the conditions that face the urban
underground railway scenario.

DF-VO and ORB-SLAM2 have been selected from the lit-
erature review as reference VO algorithms. As stated before,
the DF-VO algorithm outperforms most learning-based state-
of-the-art algorithms, while ORB-SLAM2 is the most ref-
erenced geometric algorithm. Moreover, these algorithms
represent two distinct types of VO algorithms (learning-
based and geometric). Both solutions can use mono-vision or
stereo-vision camera frames as input. The stereo-vision input
was chosen for the analysis, as stereo-vision solutions keep
the real-world scale, i.e. the predictions are directly aligned
to a real-world scale.

B. DATA ENHANCEMENT FOR VISUAL ODOMETRY IN
CHALLENGING ENVIRONMENTS
In order to afford the scenario limitations of VO in chal-
lenging environments, the application of a data enhancement
technique was considered. In this work, the data enhancement
process is dedicated to the lighting limitations of the target
domain. It aims to reduce the impact of the drastic lighting
conditions found in the underground railway scenario.

In this paper, the work published in [9] is extended. In the
previous work the application of EnlightenGAN [48] data
enhancement approach in an outdoor driving car scenario
with varying lighting conditions was evaluated. This previ-
ous research was focused on a driving car scenario where
the lighting conditions of the underground railway domain
where replicated driving by night. The results showed that the
performance of DF-VO algorithm is improved when Enlight-
enGAN is applied in the recorded frames.

EnlightenGAN is based on machine learning models pro-
posed by Ian Goodfellow et al. [49]. The algorithm uses an
unsupervised Generative Adversarial Network (GAN) pre-
trained on the ImageNet dataset [50] and then trained on
several datasets [51]–[54] to improve input image lighting.

EnlightenGAN was previously used for several tasks such
as image reconstruction [55], photo exposure correction [56],
image quality assessment [57] or illumination enhancement
[58]. However, to our knowledge, the use of data enhance-
ment methods to handle specific problems of VO methods in
such challenging scenarios has not been researched yet.

In this paper, the application of EnlightenGAN in the
underground railway domain when using geometric and
hybrid VO solutions is evaluated. The study aims to explore if
EnlightenGAN technique can afford the lighting limitations
of reference VO approaches (DF-VO and ORB-SLAM2).
The evaluation procedure and results are detailed in sectionV.

C. DATASETS FOR UNDERGROUND RAILWAY VISUAL
ODOMETRY
In this work, a propietary dataset is generated as no standard
or reference railway dataset fitted to the underground rail-
way scenario was identified. Table 1 resumes the reference
datasets used by starte-of-the art VO approaches.

Most state-of-the-art VO approaches are evaluated in the
standard KITTI [2], [3] vision benchmark [17], [29], [36],
[42], [43], [81]. This benchmark includes several datasets for
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TABLE 1. Referenced datasets for Computer Vision-based VO approaches application and evaluation ordered by domain or motion type.

tasks like VO, optical flow estimation, 3D object detection,
or 3D tracking. The data is captured from a moving car in
outdoor urban scenarios, and they provide datasets and evalu-
ation metrics for each task. However, as the KITTI odometry
dataset contains images from an outdoor environment with
good lighting conditions, it is not adequate to evaluate the
VO algorithms in the pursued scenario. Among the other
analyzed datasets, it should be noted that only one database
(Norland [78]) covers the railway domain; however it only
covers outdoor scenarios, which is also out of the scope of
this research work. Searching for a publicly available VO
dataset from an indoor urban railway domain, no dataset
was found. Following the idea that the evaluation of the VO
approaches that have previously been evaluated in standard
datasets is essential to adapt the algorithms to other industrial
scenarios. Therefore, the generation of a proprietary database
was considered.

The data for a proprietary dataset can be collected from
different sources: from real scenarios or simulated environ-
ments. Real environment datasets are based on real-world
scenarios, and therefore, the performance of algorithms can
be effectively evaluated in the target scenario. However, the
database generation in real-world scenarios increases record-
ing and processing time, effort, and cost. In addition, it also
depends on the access and permission to make the recordings
in the target scenario.

Simulated environments can overcome these problems.
The drawback of simulated environments is that it can not
be assured that an algorithm trained and validated in a simu-
lated environment will perform the same way in a real-world
scenario. As stated in [82], all the challenging conditions

inherent to underground environments can not be recreated
in virtual scenarios.

Consequently, and as a real-world underground railway
scenario was accessible, a proprietary dataset was generated
from a real underground railway scenario. The definition,
generation and validation processes of the proprietary CAF
dataset is explained in the next section III.

III. URBAN UNDERGROUND RAILWAY DATASET
GENERATION
The proprietary (CAF) was generated for the evaluation of
VO algorithms in underground railway scenarios. The sensor
set validation and camera calibration procedure was done
by generating a complementary dataset (CarDriving) in an
urban driving car domain. CarDriving dataset generation is
described in [9].

The CAF dataset was recorded in an underground scenario
in the railway Line 3 of Euskotren-Bilbao. The line is com-
posed by seven stations from Matiko to Kukullaga and it
has a whole track length of 5.8km. It contains poor light-
ing conditions in tunnel areas and significant light changes
in platform areas. Furthermore, the images captured in the
tunnels contain repetitive and light dependent textures, and
therefore, they are challenging for feature extraction algo-
rithms. Figure 1 shows two frames of this scenario: (a) tunnel
frame and (b) platform frame.

The camera was placed in the front of the train, inside
the driving cabin according to the safety requirements of the
railway domain. Figure 2 shows the camera placement in the
active cabin.
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FIGURE 1. The CAF dataset’s tunnel and platform areas where the poor light conditions and textureless areas can be appreciated.

FIGURE 2. Camera setup for CAF dataset, placed in the cabin of a train
moving through an underground urban railway scenario.

The recording camera is a ZED Stereo Camera. The
image’s resolution is 1280 × 720 pixels at 30 Hz with an
electronic synchronized rolling shutter, automatic gain and a
lens aperture of F2.0.

A. CAF DATASET
The dataset is composed by 19 sequences captured in the
two directions of the rail Matiko-Kukullaga. A sequence is
a record that begins at one station and ends in the stations
the train stops. A 6-DoF pose is estimated for each captured
frame. The dataset format follows the standard KITTI odom-
etry dataset format and naming convention. The frames are
rectified RGB color images stored with lossless compression
using 8-bit PNG files.

The camera calibration parameters and the poses are stored
in files specified by the KITTI format [3]. Each row of the
pose file contains the first three rows of a 4×4 homogeneous
pose matrix flattened into one line. The homogeneous pose
matrix pn can be represented as:

pn = [rn|trn] =


r11 r12 r13 xn
r21 r22 r23 yn
r31 r32 r33 zn
0 0 0 1

 ,

TABLE 2. CAF dataset resume with recorded sequences, the direction of
the sequences, arriving station for each sequence, frame quantity, and
sequence length.

where rn and trn are the rotation matrix and the translation
matrix of the n-th frame, respectively. The translation com-
ponent of the pose matrix follows the right-hand rule when
defining axes in a 3D space (x-axis forward, y-axis right and
z-axis up).

The dataset generated in this domain is represented in
table 2 where the recorded sequences, recording direction, the
arrival station for each sequence, the number of frames, and
the track length of each sequence are depicted. The entire set
of sequences yields 65.384 frames, with varying speed and
length.

B. GROUND TRUTH GENERATION ALGORITHM DATA
SOURCES
In general, the ground truth of VO datasets is generated using
a GPS sensor [3], [74]–[77] (refer to Table 1). But, the GPS
signal is unavailable in underground zones like the urban
underground railway domain. Thus, a method that computes
the 6-DoF pose of each frame from the train ERTMS/ETCS
ATP data, geodetic map coordinates, and railway infrastruc-
ture gradient profile data was defined and implemented (see
figure 3).
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FIGURE 3. Diagram of the algorithm processes, with the data sources and the outputs.

The algorithm first estimates (x,y) positions based on
geodetic coordinates, then z is added through the gradient
profile. Afterwards the (x,y,z) translation data is estimated
for each frame by using ERTMS ATP data, and, finally, the
rotation data of each pose is calculated.

1) GEODETIC COORDINATES
The geodetic coordinates are represented by a pair (φ, λ)
expressing Latitude (Lat.) and Longitude (Lon.) in decimal
degrees. These coordinates use an ellipsoid to approximate
the the earth’s surface locations [83].

In this research, the geodetic coordinates define the coor-
dinates followed by the trains in the target railway and have
been extracted from a Geomap called ÖPNVKarte [84]. This
Geomap contains public data that includes worldwide public
transport facilities on a uniform map with information con-
cerning several transport methods such as train, railway, ferry
or bus. It is derived from OpenStreetMap [85], an initiative
to create and provide accessible geographic data (i.e. street
maps, etc.). It also contains railway-related information, such
as platforms, stop positions, and routes.

The entire trajectory of an underground train in L3
extracted from ÖPNVKarte is shown in figure 4. As stated
before, the trajectory of L3 is made up of seven stations in
the route Kukullaga -Matiko, where some route positions, the
station entrances, and train stop positions of each station are
known in geodetic coordinates. However, the frequency of the
camera is higher than the geodetic coordinates defined in the
Geomap, and, therefore, a method based on ERTMSATP data
has been designed and implemented in order to generate the
poses of the frames that were recorded between the geodetic
coordinates.

The geodetic coordinates must be transformed from 3D
plane to a 2D plane to assign an equal-area (x,y) position
to each geodetic coordinate. Figure 5 shows a trajectory
sample in geodetic coordinates and the generated equal-area
(x,y) coordinates. In the ground truth generation algorithm,
an equal-area (x,y) coordinate refers to trx and try compo-
nents of a 6-DoF pose.

FIGURE 4. Line 3 railway extracted from ÖPNVKarte map [84]. Each circle
represents one station from Line 3.

2) RAILWAY GRADIENT PROFILE
The railway gradient profile provided by the railway infras-
tructure managers, defines how the slope of the railway varies
in predefined sections and allows the estimation of the height
(z) for each 6-DoF pose. For that, a height profile can be
constructed with this gradient profile. The initial height is
initialized as 0, and then the height for each 1m section is
calculated using the Equation 1.

h(dn) = h(dn−1)+ (0.01 · gradn) , (1)

where h refers to height, dn refers to 1m railway sections
and gradn is the gradient value corresponding to that section
from the gradient profile. Figure 6 shows the obtained railway
gradient profile of the whole L3 railway.

3) ATP DATA: TRAIN’s DYNAMICS AND SPEED DATA
The ERTMS/ETCS ATP train speed estimation process is
based on redundant wheel encoder and radar sensor in order
to get a safe and accurate estimation. By using these sen-
sors, the ATP subsystem embedded in the train estimates the
train position in the track, i.e. the distance traveled from an
station or a beacon of the track. Track beacon position or
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FIGURE 5. Transformation of a given sequence from L3 railway defined
by geodetic coordinates into equal-area (x,y) positions.

inter-beacon distance is predefined and known by railway
infrastructure managers, even by the ATP subsystem, and
therefore the ATP train position is re-adjusted when a beacon
signal is received obtaining a precise estimation. The 6-DoF
pose estimation of each frame is made by synchronizing the
ATP system monitoring process with the image recording
process as both are installed in the train. The objective of this
process is to obtain a synchronized train position information
for each frame. The data monitored from the ATP system is
the following one:

• timestamp (s): timemeasured in the CoordinatedUniver-
sal Time (UTC) standard read from the train’s internal
clock.

• linear position estimation (cm): distance traveled by the
train from a previous station.

• train speed (m/s): train speed calculated by ATP.
• train acceleration (cm/s2): train acceleration calculated
by ATP.

• train stopped: boolean reflecting whether the train has
reached stopping point or not.

FIGURE 6. Results of height generation process. Height profile (h) is
generated from gradient profile provided by railway constructor. The
green circles represent the stations.

FIGURE 7. Railway with the known (x,y) positions, the intervals and
estimated poses.

All those variables are extracted from a ATP monitoring
proprietary application that monitors ATP data with a fre-
quency of 128000 Hz. The data acquisition frequency higher
than the camera frequency (30Hz), and, consequently, they
have been synchronized and a pose estimated for each frame.

C. ESTIMATE POSES OF AN INTERVAL THROUGH A
BACKWARD DATA SYNCHRONIZATION BASED ON
TIMESTAMP
The main idea of the synchronization algorithm is the esti-
mation of poses in the trajectory sections between the known
(x,y) positions obtained by transforming the known geodetic
coordinates. These known (x,y) positions define the trajec-
tory, but they are not enough for camera frequency and,
therefore, more poses must be estimated between them. The
interval has been defined to represent the idea of the trajec-
tory sections, and it is a straight line between two consecutive
known (x,y) positions. The estimated poses are located in the
intervals. Figure 7 represents the intervals, known (x,y) posi-
tions and estimated poses in the railway. The main concepts
of the ground truth generation algorithm are described in 1.

As the data sources are synchronized at the sequence end-
ing, from now on, the ground truth generation is done in a
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Algorithm 1 Ground Truth Data Generation Algorithm
Input: Given an interval (i) defined as a straight line

between two known (x,y) positions

Phase 1 - Synchronize last (x,y) position, last image and
ATP data of an interval

1: if i = 0 then F First interval
2: Last image← SSIM > threshold F SSIM [86]
3: Last (xi, yi) position← given in the interval defini-

tion
4: ATP data← train_stopped = 1
5: else F Following intervals
6: Last image, last (xi, yi) position and ATP data ←

taken from i− 1
7: end if

Phase 2 - Estimate poses on an interval through a back-
ward data synchronization based on timestamps

Input: Vn: train speed, an: train acceleration, t: timestamp,
h: height profile, dn: linear position estimation

8: Estimate translation component of poses (trn)
a: (xn, yn)← f (vn, an, t) F Eqn. 2
b: zn← h(dn) F Eqn. 1

9: Estimate rotation component of poses (rn)
a: rn← g(trn−1, trn) F Eqn. 3, 4, 5

backward data synchronization process of an interval based
on the images timestamps. The last (x,y) position, last image
and ATP data are taken for a given interval and the poses for
all timestamps in that interval are estimated. Then, the poses
of the following interval are estimated by taking the last (x,y)
position and the last image of the previous interval as the
initial position.

However, the train speed is variable and, therefore, the dis-
tribution of these poses can not be linear in different intervals.
The total number of poses within the whole sequence should
match the record frame amount.

1) SYNCHRONIZE LAST (x,y) POSITION, LAST IMAGE AND
ATP DATA
The first step is to synchronize the different data sources
using the last (x,y) position, last image and ATP data. The
algorithm generates ground-truth poses for each recorded
sequence using the position where the train has stopped as
origin. For that, first the image where train stops (last image
of the sequence) must be estimated.When there is motion, the
similarity between consecutive frames is very low, however
the similarity increases when the train has stopped. Due to the
similarity of the frames corresponding to the train stopping
point, the last frame is selected using the Structural Similarity
Index (SSIM) [86]. SSIM is one of the most standard algo-
rithms for image quality assessment [57], and therefore, for
image similarity measure. It has shown that can outperform
other common image similarity measurements as MSE [87]
and has been previously referenced [88]. The SSIMmeasures

the luminance, contrast, and structure of two given images
and returns a similarity value between them.

Also, it only requires a starting optimization phase where
the threshold is selected. Furthermore, the index was used to
find just the first image within the threshold in each sequence,
which gives a little number of results totally. Although SSIM
is sensitive to image distortions, the environment being static,
and the view fixed enables the SSIM application in under-
ground railway scenarios.

The threshold was selected by exploratory testing. A pre-
defined threshold was stated and iterated it until a SSIM
threshold that best fitted to the lighting conditions of the
scenario was identified. In this case a SSIM > 0.965 has been
used as similarity threshold at the train stopping point.

The last (x,y) coordinates refer to the train stopping posi-
tion; therefore, this coordinate pair and the last image are
already synchronized. Finally, ATP monitored data is syn-
chronized using the train stopped variable.

2) ESTIMATE POSES OF AN INTERVAL THROUGH A
BACKWARD DATA SYNCHRONIZATION BASED ON
TIMESTAMPS
A ground truth pose is generated for each recorded image in
an interval using a backward synchronization process based
on the timestamp. This process has two steps; first, the
translation component is estimated, and then, the rotation is
calculated from that translation.

a: ESTIMATION OF TRANSLATION COMPONENT
Translation component T = {tr0, tr1, . . . , trm} is defined
as a set containing all the 3-DoF poses (trn = [xn, yn, zn])
of an interval where n is the pose number (0 ≤ n ≤ m)
and m is the total number of poses for that interval. For the
translation component of a pose, first, the (x,y) position is
estimated, and then the height (z) is added. The translation is
estimated by taking an initial (x,y) position and calculating
the motion to the next one using the ATP data train speed and
train acceleration. The translation between two consecutive
(x,y) positions in a straight line that forms the interval can
be calculated using Uniformly Accelerated Motion (UAM)
equations. This estimation is possible because it is considered
that the poses follow a motion in a straight line and with a
constant acceleration between them. Equation 2 shows the
application of UAM equations in this case.

dn = vn−1t +
1
2
an−1t2 , (2)

where t refers to the timestamp, vn and an refer to ATP data
train speed and acceleration respectively. The initial (x,y)
translation component is set as [0, 0].
After calculating the (x,y) positions, the z or height is

estimated using the height profile estimated from the gradient
profile and ATP data. The railway height profile can be syn-
chronized with the train stopping point, and therefore, with
the first (x,y) position.
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Then, previously calculated (x,y) positions can be used
to extract the Euclidean distance traveled from position to
position. Each pose’s height (z) is calculated using traveled
distances and the height profile. Therefore, after height esti-
mation, the translation component of a pose has been esti-
mated with respect to a timestamp.

b: ESTIMATION OF ROTATION COMPONENT
Rotation component R = {r0, r1, . . . , rm} is defined as a set
containing all the rotation matrices (rn) within an interval
where n is the pose number (0 ≤ n ≤ m) and m is the total
number of poses for that interval calculated in the previous
steps.

To calculate the rotation component rn for each translation
trn the transformation between two consecutive orientation
vectors orn−1 and orn is estimated. orn defines the orientation
of the train in trn and represents the vector between consecu-
tive translations trn−1 and trn. It is calculated as shown in 3:

orn(trn−1, trn) = (xn − xn−1, yn − yn−1, zn − zn−1) , (3)

where x, y and z represent the translation components of
trn−1 and trn. Then, using the axis-angle representation, the
transformation between consecutive orientation vectors orn−1
and orn can be calculated. For that, first the orientation vectors
are normalized by dividing their value with the Euclidean
norm (vector magnitude) ‖orn‖ of each vector (Eqn. 4) to
align them at the same origin. The Euclidean norm can also be
defined as the Euclidean distance of a vector from the origin
to a point.

normalize(orn) =
orn
‖orn‖

, (4)

Then, the Euclidean norm of the cross product between
the normalized consecutive orientations is estimated to
get the axis. Finally, the rotation component is estimated
using the inverse tangent function as shown in equation 5,
where the angle between the orientations vectors is calculated
trough the dot product:

rn = arccos(
‖orn × orn−1‖
orn · orn−1

) , (5)

where arccos refers to the inverse cosine function and orn−1
and orn to two consecutive orientation vectors. This rotation
estimation method accumulates an error relative to the pre-
vious estimations. However, as the train is tied to the rails,
the trains’ orientation is always fixed, and the orientation
estimation is not critical.

The previously calculated translation component is added
to the newly calculated rotation component to obtain the
target 6-DoF ground truth pose. This is done by following
the representation in equation 1.

Once all the poses from a given interval have been esti-
mated, the next interval is taken and the process is repeated
until all the intervals of a sequence have been covered.

FIGURE 8. ATE of DF-VO and ORB-SLAM2 application on the generated
CAF dataset.

IV. VO APPLICATION IN URBAN UNDERGROUND
RAILWAY ENVIRONMENT
In this section the application of DF-VO and ORB-SLAM2
in the CAF dataset is evaluated.

In the following subsection, the standard VO evaluation
metrics are explained. Then, the experimentation setup is
described. Finally, the experimental results are discussed.

A. VO EVALUATION METRICS
The metrics used to evaluate the performance of the
experiments are the following: Absolute Trajectory Error –
ATE [67], Relative Pose Error – RPE [67], Average Transla-
tional Error – terr and Average Rotational Error – rerr .

All the sequences were transformed with a 6-DoF
Umeyama alignment [89], a standard alignment method used
in most VO and SLAM evaluation benchmarks. [2]. A 6-DoF
alignment is recommended to evaluate shape similarities of
trajectories [90].

Given this transformation, ATE evaluates the global con-
sistency of an estimated trajectory compared to the ground-
truth trajectory. The RPE measures the drift error for each
pose of the trajectory and the rotation and the translation
components are calculated separately.

Finally, following KITTI evaluation benchmark criteria,
the Average Translational Error (terr ) and the Average Rota-
tional Error (rerr ) are calculated on sub-sequences of dif-
ferent lengths. These errors measure the average relative
pose error at a fixed distance. The sub-sequences length
in meters is (100,200,. . . ,800) because the error for smaller
sub-sequences was large and hence biased the evaluation
results.

B. EXPERIMENTATION SETUP
These experiments extend the evaluation done at [9], where
ORB-SLAM2 and DF-VO were evaluated in an outdoor
urban car driving scenario. In those experiments, the bad
lighting conditions were replicated by car driving recordings
in the night.

DF-VO implementation [91] flow-weights and depth esti-
mation deep models were selected from the authors’ trained
models. The flow model is trained by the authors in the
synthetic dataset Scene Flow [92].

To handle the non-deterministic nature of the ORB-
SLAM2 algorithm, each sequence is run five times, and the
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TABLE 3. DF-VO and ORB-SLAM2 application evaluation using standard VO evaluation metrics: Average Translational Error (terr ), Average Rotational Error
(rerr ), ATE and RPE. The sequences are organized by the direction they are recorded. The average errors for all 19 sequences are calculated, and the best
result is in bold.

FIGURE 9. Comparison of relative VO evaluation metrics when applying DF-VO and ORB-SLAM2 algorithms in CAF datasets. Translational and rotational
components of relative errors are shown separately.

median accuracy is evaluated as proposed by authors in [21].
The VO evaluation is done using the KITTI Odometry Eval-
uation Toolbox [17].

C. VO RESULTS IN CAF DATASET
Table 3 shows the results of DF-VO and ORB-SLAM2 in the
CAF dataset. Figures 8 and 9 represent the results depicted in
table 3. The visual representation can be found in Figure 9.

Previously, DF-VO and ORB-SLAM2 were evaluated
in the KITTI Odometry dataset; however, KITTI does
not contain those perception challenges as it contains
considerably different properties related to the sequence

length and visual characteristics. Results in CAF dataset
show that the errors of both algorithms are higher than
those found in the KITTI dataset. The RPE for DF-VO is
0.038 and 0.339 in KITTI dataset and CAF dataset, respec-
tively. While for ORB-SLAM2, RPE measures are 0.130
and 0.353.

In the case of the ATE, the error of DF-VO inKITTI dataset
is 6.344 while in the CAF dataset is 210.517. For ORB-
SLAM2, the ATE is 26.48 and 115.754 in KITTI dataset and
CAF dataset, respectively.

It can be seen that ORB-SLAM2 outperforms DF-VO in
this challenging scenario, where the sequences are longer
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FIGURE 10. Comparison of ORB-SLAM2 and DF-VO application on two sample sequences in both CAF and EnlightenCAF datasets and the ground
truth for each trajectory.

TABLE 4. Average standard VO errors in CAF dataset when reducing the
sequences to platform areas without lighting constraints.

than the standard KITTI dataset. If the CAF sequences are
shortened to just platform areas where the lighting chal-
lenges are more limited, and more similar to the lighting
conditions of the KITTI dataset, the errors are reduced to
similar values (see Table 4) of executing DF-VO, and ORB-
SLAM2 in KITTI dataset [17], [21]. For instance, DF-VO
achieves an RPE (m) of 0.027 in KITTI dataset and 0.049 in
shortened CAF dataset. ORB-SLAM2 achieves an ATE of
9.464 in KITTI dataset while 4.113 is achieved in shortened
CAF dataset. Furthermore, the same behavior as in KITTI
dataset is observed: DF-VO performance is higher than ORB-
SLAM2. These results seem to support that the challenging
scene conditions hinder the application of VO algorithms in
such scenarios.

Results are visually shown in figure 10. In the case of
DF-VO, a scale misalignment can be appreciated as the shape
of most estimated trajectories is similar to the ground truth
shape, but a dimensionality error appears.

FIGURE 11. A frame from the CAF dataset enhanced by EnlightenGAN.

FIGURE 12. Comparative of ATE when applying DF-VO and ORB-SLAM2
algorithms in CAF and EnlightenCAF datasets.

As mentioned in [17], geometry-based VO algorithms as
ORB-SLAM2 suffer from a scale drift when ideal visual
conditions are not met. In the case of DF-VO, being a
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FIGURE 13. Comparison of relative VO evaluation metrics when applying DF-VO and ORB-SLAM2 algorithms in CAF and EnlightenCAF datasets.
Translational and rotational components of relative errors are shown separately.

hybrid algorithm, the scale may be wrongly estimated due
to issues related to the geometric characteristics of the under-
ground visual domain or deep-learning training process. The
estimation error of the learning part of the algorithm could be
reduced by training the deep models in the target scenario.

Nevertheless, these results require an adaptation of refer-
ence VO solutions to increase the performance in the under-
ground railway domain. Image enhancement techniques or
solutions based on the fusion of different odometry sensors
could provide the precision required by autonomous train
operations.

V. ENLIGHTENGAN IN VO APPLICATION
This section explores the application of the image enhance-
ment technique EnlightenGAN in ORB-SLAM2 and DF-VO
algorithms.

VO algorithms are based on minimizing the reprojection
error of consecutive frames captured by the camera. The error
is estimated by solving the essential matrix, which depends
on the intrinsic camera parameters, and assuming the cam-
era satisfies the pinhole camera model. In a previous work,
the enhanced images calibration procedure was pursued to
assess the EnglithenGAN architecture’s effect on the cam-
era’s calibration. The experimental results showed that the

GAN architecture did not significantly disturb the camera
calibration parameters. Therefore, it was concluded that VO
algorithms could be applied directly to the dataset enhanced
by EnlightenGAN.

In the following section the enhanced dataset generation,
the experimental configuration, and, finally, the results are
explained.

A. ENHANCED DATASET GENERATION: EnlightenCAF
The CAF dataset enhanced by EnlightenGAN is named
EnlightenCAF. Figure 11 shows the result of the enhance-
ment in the same tunnel zone frame as in figure 1.

The same algorithm configuration fromCAF dataset exper-
imentation has been used. The enhancing inference model is
composed of pretrained weights from original authors.

B. RESULTS IN EnlightenCAF
In the previous work [9], the experimental results showed
thatEnlightenGAN improves the DF-VO performance in low-
light car scenarios. In this case, the same behavior was con-
firmed: quantitative results show that EnlightenGAN reduces
the VO errors for both algorithms. Figure 12 shows the reduc-
tion in the mean ATE and mean RPE of both algorithms for
all the sequences in EnlightenCAF.
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FIGURE 14. Pose dispersion analysis on sample trajectory 01_54. ORB-SLAM2 algorithm is executed five times on each dataset.

A relative ATE reduction of 24.89% and 20.20% is
observed, respectively, when DF-VO and ORB-SLAM2 are
applied in the enhanced sequences. Figure 13 shows RPE, terr
and rerr evaluation metrics in EnlightenCAF dataset.
In the case of RPE, DF-VO algorithm obtains a relative

improvement of 1.97% and 4.74% for translation and rota-
tion components, respectively. ORB-SLAM2 gets a relative
improvement of 14.59% for the RPE translation component
and a relative improvement of 18.55% for the rotation com-
ponent. terr and rerr present a relative reduction of 0.22%
and 4.16% when applying DF-VO, and a relative reduction
of 3.63% and 9.31% when applying ORB-SLAM2.

Figure 10 shows a result comparison of DF-VO and ORB-
SLAM2 in the sequences of CAF and EnlightenGAF. As in
CAF dataset, it can be seen that the algorithms can esti-
mate the shape of the EnlightenCAF trajectories. However,
a scale underestimation problem appears again. Furthermore,
DF-VO results show that the rotation estimation is affected in
the EnlightenCAF dataset.
The results demonstrate that EnlightenGAN improves

VO algorithms performance in the underground railway
domain. Furthermore, the relative error is reduced more for
the geometric-based VO algorithm, while absolute error is
reduced more in the learning-based algorithm.

However, as in the CAF dataset, the errors continue being
higher than the results obtained by the algorithms in the
KITTI dataset. Therefore, an affection of lighting conditions
of the scenario can still be appreciated. This affection could
be related to scale underestimation problems found in both
algorithms, especially in the hybrid DF-VO.

Additionally, when evaluating the VO algorithms, it has
been seen that the dispersion of the poses estimated by ORB-
SLAM2 in different runs is reduced when enhancing the
frames with EnlightenGAN.

The dispersion of poses among different executions
of ORB-SLAM2 has been evaluated using standard met-
rics [93]. These metrics include the variance (σ 2) and the
Coefficient of Variation (cv).
The evaluation procedure has been to run ORB-SLAM2

five times in each dataset, the original CAF and the enhanced
EnlightenCAF. Figure 14 shows the results of applying ORB-
SLAM2 five times for a given sequence (01_54) in the CAF
and the enhanced EnlightenCAF datasets. It can be seen that
the distribution of the poses through the trajectory is more
constant in the enlightened dataset.

From the results, it can be seen that enlightening the
datasets with EnlightenGAN increases the VO performance
and tends to reduce ORB-SLAM2 dispersion. An analysis
of the trouble spots in the dispersion results could better
understand the high dispersion in such frames and detect
further possible improvements for VO algorithms in such
scenarios.

VI. CONCLUSION
This paper has presented a method to create a ground truth
database for underground railway scenarios, where the GPS
is unavailable, or the access to the infrastructure is not easily
granted. The ground truth data generation is based on camera
frames, ERTMS/ETCS ATP data, the railway gradient profile
map, and geodetic coordinates of the target railway. Second,
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it has proposed to enhance image lighting conditions with
EnlightenGAN, which can be used with any state-of-the-art
VO. Finally, it has presented the result of the experiment per-
formedwithin a real urban underground railway scenario. The
scenario was characterized by varying lighting conditions
(tunnel vs. platform), low illumination (in tunnels), or texture-
less areas that challenged the state-of-the-art VO algorithms.
The experiments were performed using two VO approaches:
geometric (ORB-SLAM) and hybrid (DF-VO). The results
show that the data enhancement increases the performance
of both VO algorithms, reducing the translational error by at
least 18%.

Future research proposes to apply the proposed dataset
generation method and image enhancement algorithm in
more underground railway scenarios. Sensor fusion is also a
promising research direction. It is expected that the inclusion
of new sensors will reduce uncertainty and increase accu-
racy, which will be welcome for autonomous train operations
requiring higher localization accuracy (e.g., precise train stop
operation).
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