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ABSTRACT Worldwide, Nuclear Power Plants (NPPs) must have higher security protection and precise
fault detection systems, especially underground power cable faults, to avoid causing national disasters and
keep on safe national ratios of electricity production. Hence, this paper proposes an automatic, effective,
and accurate Deep Learning (DL)-based fault classification and location technique for these cables via a
One-dimensional Convolutional Neural Network (1D-CNN) and a Binary Support VectorMachine (BSVM).
The proposed approach includes four main steps: data collection, feature extraction and reduction, fault
detection, and fault classification and location. Signal collection from the underground cable’s sending end is
performed via the Alternating Transient Program/Electromagnetic Transient Program (ATP/EMTP). Feature
extraction and reduction are performed via Fractional Discrete Cosine Transform (FrDCT) and Singular
Value Decomposition (SVD) methods. Fault detection is performed through leveraging BSVM with the
linear Kernel method in the third step. Finally, this permits 1D-CNN to classify the fault type and locate it.
Simulation results confirmed the efficiency of our proposed method, especially for 11kV underground
cable faults, including different fault resistances and inception angles. Moreover, the proposed technique
is applicable in real-time scenarios with a 99.6% accuracy rate, 0.15sec lowest execution time, and 0.095%
maximum error rate for fault location at fractional factor (α) equals to 0.8.

INDEX TERMS Fault location, transient faults, ATP/EMTP, cable, NPP, deep learning, FrDCT, 1D-CNN,
BSVM, SVD.

I. INTRODUCTION
According to a report from the World Nuclear Association
(WNA), nuclear power contributed to 10.5% of the world’s
electricity in 2021 [1], [2]. Nuclear Power Plants (NPPs) are
among the most critical electrical sources due to their overall
merits in the last few years. However, NPPs in distributed
networks make the system behave differently than before.
Each of these units has affects the system differently upon its
characteristics and reactions [3], [4]. Because power cables
are often installed under the ground rather than overhead,
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they areminor subjects to outages during adverse weather [5].
Furthermore, due to internal insulation failure or exterior
damage, asymmetric and symmetric failures still occur on
power networks [6], resulting in a power failure. Real-time
surveillance approaches for electrical systems have received
much interest in recent years as the reliance on automation
increases. Furthermore, due to their functions in intercon-
necting each piece of electrical equipment, failure diagnostics
of cables has become particularly important in the industrial
sector [4], [7]–[10]. Therefore, accurate and rapid fault classi-
fication and location schemes in the NPP underground power
cable are vital for overcoming the entire electric network
faults. Such faults might produce hazardous transients, fire,
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and explosions due to the cable’s excessive heating, equip-
ment failure, and power outages, reducing nuclear system
reliability and increasing the possibility of national disaster
due to radiation leakage [11]–[13]. Various approaches for
measuring fault location in transmission networks have been
proposed over the years. However, due to structural vari-
ations between the underground cable distribution network
and the transmission network, some of the described method-
ologies cannot be used to find defects in distribution net-
works [14]. The most well-known fault location approaches
includeMachine Learning (ML) techniques [15], impedance-
based methods [16], traveling wave-based algorithms [17],
and state estimation-based approaches [18]. The authors
of [12] checked different types of fault location methods and
their pros and cons. The study and mining of historical data
for predicting the absence or existence of a failure in the
power system are known as fault classification. For failure
prediction in power systems, pattern recognition approaches
and ML algorithms have become crucial [19]. In [13], a new
framework based on Deep Learning (DL) that employs a
particular type of Recurrent Neural Network (RNN) called
Gated Recurrent Unit (GRU) to locate faulty sections in the
network is suggested. This study installed intelligent feeder
meters in all network nodes, which is its primary disadvan-
tage due to their high cost. The Distribution Networks (DNs)
are either radial or ring with underground, overhead, and
mixed connections. The sustained faults in DNs affect the
connected consumer or customer loads. So far, many fault
identifying/locating techniques were reported in the DNs.
But when the distributed generators are integrated, the grids
keep the system more complex, and the existing protection
systems are affected. Ultimately the accuracy of the fault
identification techniques is reduced as well. As a result,
more accurate fault locating or identifying techniques need
to be explored by addressing all the inherent behaviors of
the DNs [20], [21]. An advanced signal processing tech-
nique called the Stockwell Transform (ST) that combines
the advantages of wavelet transform and short-time Fourier
Transform (FT) was employed recently to detect and classify
faults in distribution grids in [22], but not employed in locat-
ing faults and identifying faulty sections in distribution grids.
A wideband fault location scheme for distribution systems in
distributed generation of different types has been presented
and evaluated in [23]. The proposed scheme analyses the
system using the high frequency non-fundamental compo-
nents calculated from the available synchronized and non-
synchronized measurements. Distributed Generations (DGs)
with non-synchronized measures have been represented by
an equivalent impedance over the high-frequency range of
interest. But this depends on system parameters. A hybrid
signal processing technique (WPT-SVM) combined with a
GA-based feature selection method is proposed in [24] for
fault location in a distribution line. The presented process
acquires one cycle of post-fault voltage and current signal
from the sending end of the distribution line under study.
In [25], signal processing methods in fault detection in

manufacturing systems are previewed. Still, there are some
problems with Discrete Wavelet Transform (DWT) as fol-
lows, depending on number of decomposition levels, com-
putational complexity and time (especially for wavelet tree
or several decomposition), choosing suitable wavelet type
(according to your application), shift sensitivity, poor direc-
tionality, and lack of phase information, selecting suit-
able detail or approximation sub-bands. Short-Time Fourier
Transform (STFT) is a simple and powerful time-frequency
analysis to describe the instant spectrum of the signal at a
specific time, which uses the spectrum of a signal segment
centered at that time. However, STFT introduces a poor
signal resolution to only describe the static content of the
short time segments. Furthermore, Fractional Discrete Cosine
Transform (FrDCT) has proved itself as a powerful tool for
the analysis of signals by representing rotation of signals in
time-frequency plane. The FrDCT, applied in this paper, is a
reality-preserving transform, which is derived based on the
eigenvalue substitution and eigendecomposition. As shown
later, our proposed method provides accurate fault diagnosis
results, which is more appropriate for real-time scenarios.
Furthermore, the algorithm’s efficiency is sustained under
a variety of resistance and inception angles. Moreover, it is
applicable to any electric power station. However, we focus
here onNPP faults due to their extreme importance and safety,
which may cause national disasters.

The key contributions of this paper are summarized as
follows:
• A novel Deep Learning (DL)-based fault classifi-
cation and location approach for such cables using
a one-dimensional Convolutional Neural Network
(1D-CNN) and a Binary Support Vector Machine
(BSVM).

• The Alternating Transient Program/Electromagnetic
Transient Program (ATP/EMTP) is used to simulate an
actual 11kV underground cable connected to an NPP.

• The faulted current response is extracted from the send-
ing end using DL in the fraction domain for various
faults and fault conditions.

• FrDCT and Singular Value Decomposition (SVD)meth-
ods are used to extract features in the suggested
approach. Because of the FrDCT’s fractional power
parameter, which allows for a spatial-frequency repre-
sentation of the signal, it is widely employed. As a
result, it is possible to use both the spatial and frequency
domains.

• SVD is used to minimize the number of features by
extracting each phase’s most significant singular value.
After that, a BSVM and CNN approaches are used to
detect, classify, and locate faults using the current train-
ing patterns obtained by FrDCT and SVD.

• The fault resistance and inception angles of faults were
adjusted to demonstrate the CNN’s performance under
various fault conditions.

The paper organization is as follows: Section II describes
the models of NPP, 11kV underground cable, load, and faults,
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FIGURE 1. The system used in simulation studies, a 10-km three-phase
Cross-Linked PolyEthylene (XLPE) stranded copper conductor single-core
power cable, and the loading.

respectively. Section III discusses the FrDCT, SVD, SVM,
and 1D-CNN mathematical background. Section IV explains
the proposed algorithm for fault detection, classification,
and location for the system under study. Section V shows
ATP/EMTP simulated fault results. The results are shown and
discussed in Section VI. Finally, the conclusion is provided in
Section VII.

II. SYSTEM MODEL
This section describes the proposed system, the 11kV under-
ground cable, and the utilized NPP model, including the load
and different faults.

A. PROPOSED SYSTEM
Fig. 1 shows the system under investigation, where the NPP
is connected to the load through the targeted underground
cable. The single unit capacity of the NPP is 300MVA, and
the load of the plant is 2MVA. The rated terminal voltage is
11kV. NPP detailed data are presented in Table 1 [5], [26].
The phase conductor currents and voltages are defined by a
balanced direct-sequence three-phase set of 50Hz sinusoidal
currents described in (1), with 106A rms and 8.9kV rms.

IP = 106[1, e−j2
π
3 , ej2

π
3 ]A (1)

Because different faults substantially impact nuclear
underground cable behavior, it must either be correctly
detected or reliably predicted by simulations. This kind of
performance necessitates accurate system component mod-
eling. As a result, high-frequency modeling components
employing ATP/EMTP are used to create an 11kV Cross-
Linked PolyEthylene (XLPE) underground cable connected
to NPP.

B. NPP MODEL
The ATP/EMTP model SM59/58 represents the NPP’s Syn-
chronous Generator (SG)=300MVA/11kV). Table 1 details
the different parameters of SG [5], [26].

C. UNDERGROUND CABLE MODEL
Fig. 2 shows the underground cable type and geometry
used in this study. Under identification of dimension and
specification of 11kV XLPE underground cable material,
where µc = 1, ρc = 1.724e−−8�.m of core conductor,
µr1 = µr2 = 1, εr1 = εr2 = 2.7 of insulation, and
µs = 1, ρs = 2.84e−−8�.m of sheath. The cable simulation

FIGURE 2. The configuration of cable in the simulation study.

FIGURE 3. Asymmetric and symmetric fault types.

was carried out using the Line Cable Conductor Jose Marti
(LCC JMarti) model (a frequency-dependent model with con-
stant transformation matrix), also based on traveling wave
theory [27]–[30]. where ρc is the resistivity of the conductor
material. ρs refers to the resistivity of the sheath material.
µc defines the relative permeability of the conductor mate-
rial.µs identifies the relative permeability of the sheath mate-
rial. µr is the relative permeability of the insulating material
outside the conductor. εr is the relative permittivity of the
insulating material outside the conductor.

D. LOAD MODELING
A standard component Three-PhaseGrounded-Wye loadwith
parallel R, L elements (RLCY3) can easily model the load as
a R = 71.157ω and L = 365.475mH [30].

E. FAULTS MODELING
Based on the kinds indicated in Fig. 3, faults are classed
as asymmetric or symmetric. For example, a single-phase to
ground fault (Line to Ground (LG)- AG, BG, CG), two-phase
fault (Line to Line (LL)- AB, AC, BC), and two-phase fault to
the ground ((LL-G)- AB-G, AC-G, BC-G) are all examples of
asymmetric faults. On the other hand, three-phase faults, such
as three-phase short circuit ((LLL)-ABC) and three-phase
short circuit to ground ((LLL-G)-ABC-G), are examples of
symmetric faults where A, B, and C signify the system’s three
phases and G denotes the ground. To explore the influence of
varied fault inception angles and fault resistances, short cir-
cuits are simulated as a time-controlled switch with resistance
in ATP/EMTP [7].

70128 VOLUME 10, 2022



A. Said et al.: DL-Based Fault Classification and Location for Underground Power Cable of Nuclear Facilities

TABLE 1. Parameters of the 11kV underground cable connected to NPP.

III. TERMINOLOGIES
This section will summarize essential feature extraction,
reduction, and classification-based techniques. Specifically,
we go deep through FrDCT followed by SVD, SVM, and
CNN methods.

A. FRACTIONAL DISCRETE COSINE TRANSFORM
The FrDCT is computed based on the Eigen decomposition
of the DCT kernel [31]–[33]. The Eigen decomposition of
the DCT kernel is obtained using the even Hermite–Gauss
eigenvectors of the Fourier matrix DPN in the cosine case.
The kernel matrix CN whose element cm,n can be written as:

cm,n =

√
2

N − 1
kmkncos(

mnπ
N − 1

), (2)

where m, n = 0,1,. . . ., N - 1 and km and kn are defined as:

km =


1
√
2
, m = 0

1, m 6= 0,
kn =


1
√
2
, n = 0

1, n 6= 0
(3)

The kernel matrix of FrDCT is mathematically expressed
as follows

CN ,α = CP
= VND

2α
π

N V T
|N

= VN


1 0

e−2jα

. . .

e−2j(N−1)α

V T
|N (4)

where N is the number of points, and VN is the eigenvector
derived from k order DFT Hermite eigenvector. The trans-
formed signal is transformed in the frequency domain when
α is the fraction factor and equals π

2 . On the other hand,
the converted signal is in the time domain when α equals 0.
Compared to the DCT, the FrDCT has the order parameter α
as an extra degree of freedom. To analyze the faulted phases,
time-frequency representations of the FrDCT can be used to
enhance the classification rate.

B. SINGULAR VALUE DECOMPOSITION
It is a matrix factorization technique that is extremely useful
for various tasks such as pattern recognition, data dimension
reduction, matrix approximation, pseudo inverse calculation,
and solving linear equations. It can be used to decompose any
matrix into three matrices in the following manner:

A = U · S · V ′, (5)

where U and V are unitary matrices, i.e., UU ′ = 1 and
VV ′ = 1, that are called left and right singular vectors,

respectively. The S matrix is a diagonal matrix representing
the singular values of A, which are evaluated by calculating
the eigenvalues of AA′. It can be described as follows:

S =


S1

. 0
.

0 Sp
0

 (6)

where ρ is the rank of the matrix A. Note that
s1 > s2 > . . . > sρ

The use of SVD brings its advantages. It can express the
feature matrix in several values (singular values), so it is
endowed with a dimension reduction strategy. Furthermore,
it is more stable against feature changes.

C. SUPPORT VECTOR MACHINE
The optimal separating hyperplane is obtained by maximiz-
ing the margin between two or more classes of training data
set [34], [35]. This hyperplane lies at the margin’s midway
and must satisfies

Minimize :
1
2
‖W‖2 S.T : yi ((W · Ci + b) ≥ 1) (7)

Then the solution to this problem is achieved by optimizing
the following equation:

E =
1
2
‖W‖2 −

∑
i

αi

(
yi
(
EW ·
−→
Vl + b

)
− 1

)
(8)

whereW is the set of weights, one for each input feature, y is
the output result which indicates the class label (y ∈ {1,−1}
for binary classifier), and C is the input features vectors.
While V ’s (called the support vectors) are the selected points
from the input training features’ data (C) that satisfy the max-
imum margin above and below the hyper-plane. The output
b and α are parameters which determine a unique maximal
margin solution. The y’s and α’s correspond to the selected
support vectors V ’s. The classification of an unknown vector
Q is predicted by the decision function d(Q), which is positive
for class 1 and negative for class 2 and is defined for the kernel
(K ) as follows

d (Q) = sign

(∑
i

K (Q,Vi)

)
yiαi + b (9)

D. CONVOLUTIONAL NEURAL NETWORKS
CNNs are a form of neural network that has a large number
of layers. It analyses grid-structured data and then extracts
relevant features. One significant advantage of using CNNs is
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FIGURE 4. Flowchart of the proposed method.

FIGURE 5. Simulated underground cable model.

that no extensive pre-processing is required. 1D-CNNs were
introduced in [35] to process 1D data and have been shown
to offer numerous computational benefits. Convolution is
carried out on data vectors in 1D-CNNs, where an input signal
vector x of length N is convolved with a filter vector w of
length L. This procedure is stated in 10, resulting in a 1D
output layer c with (NL + 1) length without zero padding.

c (j) = f

(
L−1∑
i=0

w (i) x (j− i)+ b

)
, j = 0, 1, · · · ,N − p,

(10)

where b denotes the bias term, and f (.) is a nonlinear function,
in this case, the Rectified Linear Unit (ReLU) [35], [36].

Each convolution layer in the proposed architecture is
followed by a max pooling layer, in which the maximum
value in a kernel window function u of size m×1 and stride
s is extracted across an input vector c, resulting in an output
vector d defined as:

d = max(u (m× 1, s) c) (11)

The Fully Connected (FC) layer takes the feature map
generated by the preceding layer as input and connects all of
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FIGURE 6. Sending end three-phase current waveforms under regular
operation.

FIGURE 7. Sending end three-phase current waveforms under AG faults
at X, Y points.

the layer’s neuron nodes. Batch Normalisation (BN) can be
used to normalize and scale the FC layer in order to change its
distribution, allowing for faster training. During the network
training process, an activation function (such as Softmax,
Sigmoid, or others) is used to calculate the expected output,
which is then used to calculate the cross-entropy loss l.

l =
∑
k=1

t (k) log(p (k)) (12)

where C is the number of classes, t(k) denotes the outcome
of comparing the predicted label to the ground truth label
such that t(k) = 1 if the input belongs to class k and 0 oth-
erwise. p(k) denotes the predicted probability that the input
belongs to class k . Back propagation is performed using the
Adam optimizer [33], which adjusts the network’s weights
and biases based on the estimated loss.

TABLE 2. Fault classifier 1D-CNN outputs for various faults.

TABLE 3. Testing results of different network.

IV. PROPOSED TECHNIQUE
Herein, we discuss our proposed solution for fault detec-
tion, classification, and location based on a deep learning
approach. Specifically, BSVM and 1D-CNN techniques for
detecting, classifying and locating the fault in underground
cables. The BSVM detects if there is faults or not since it is
a fast and accurate detection method, especially using linear
Kernel with the lowest processing time. If there is a fault,
1D-CNN is utilized to classify and locate such fault. 1D-CNN
is utilized due to its high classification accuracy in addition
to accurate location with low errors than other methods. The
overall processing time for our algorithm is 0.15 s, which is
proper to real-time applications.

FrDCT draws intermediate time–frequency representa-
tions for a signal. SVD expresses the feature matrix in the
form of several values (singular values), so it is endowed
a dimension reduction strategy. Furthermore, the singular
values have a good stability. One feature is obtained from the
maximum SVD of FrDCT for one phase only (max value S
matrix). For three-phase underground cable, three features are
selected for each fault state.

Figure.4 illustrates different steps of our proposed algo-
rithm in a flow chart structure. It consists of four main
stages (input processing, feature extraction&reduction, fault
detection, and fault classification & location). The first one
processes the obtained current signals from the underground
cable’s sending end for various fault types and locations. The
signals are transformed and reduced in the second stage using
FrDCT and SVD to remove the discrimination’s dependence
on the signal’s energy and noise effects, respectively. The
FrDCT transformation helps understand and discriminate sig-
nal types i.e., feature extraction. SVD assists in obtaining the
essential features with high classification accuracy and low
processing time. Here, SVD is used due to its low complexity
and accurate results. The third stage involves fault detection
using BSVM with linear Kernel. The fourth stage includes
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FIGURE 8. Sending end three-phase current waveforms under AB,AB-G faults at X, Y points.

faults classification & location using 1D-CNN due to its pre-
cise and fast outcomes. As shown in the results and discussion
section, the proposed method has efficient performance and
is applicable to underground cable fault classification and
location problems in real time. The fault location results are
precise with variable fault resistance and inception angle.

V. ATP/EMTP SIMULATED FAULT RESULTS
Herein, a practical 11kV underground cable connected to the
NPP was used [1]. In addition, a 10-kilometer covert cable
model is used in the ATP/EMTP simulation. To create the
10 km underground cable model, twenty identical blocks of
500m in length are cascaded. Fig. 5 shows the designed sys-
tem. Faults were conducted at the intermediate connections
of each subsequent block, with the fault current waveforms
being recorded exclusively at the sending end. The four
primary fault parameters are fault type, fault distance, fault
resistance, and inception angle.

In this respect, eleven types of fault (AG, BG, CG, AB,
AC, BC, AB-G, AC-G, BC-G, ABC, ABC-G) and also
ten fault resistance in the case of ground short-circuit fault
R = 0, 20, 50, 75, 100, 125, 150, 175, 200�), five inception
angles 2◦ (including 0◦, 45◦, 90◦, 135◦,180◦) and nineteen
distances of fault from recording point (including 500m,
1km,1.5km, 2km, 2.5km, 3km, 3.5km, 4km, 4.5km, 5km,
5.5km, 6km, 6.5km, 7km, 7.5km, 8km, 8.5km, 9km, 9.5km)
are simulated. Figs. 5-8 show the sending end three-phase
current waveforms after applying various fault types to
phases at distances of 500m (cable nearest point to NPP (X))
and at 9.5 km (cable nearest point to load (Y)) from the

source. These faults are applied in 0◦ degree for the system
phases and 0 � fault resistance.
Fig. 6 shows the measured sending end current wave’s

time variation under regular operation. It’s clear the current
waveform is constant and stable and reaches 150A. Fig. 7
shows the time variation of the measured sending end current
wave under LG (AG) at points X andY. It is noticed that when
LG faults occur, the current for the faulted phase is higher
compared with the healthy phase. But, the current amplitude
for the faulted phase depends on the fault location, which
reaches 80 KA and 5 KA when LG is at points X and Y,
respectively. When the LL (AB) fault and the LL-G (AB-G)
fault occur, the temporal variation of the measured sending
end current wave for the faulted phases is larger than for the
healthy phases, where phase A and phase B are substantially
higher than phase C as shown in Fig. 8.

Fig. 9 shows that when LLL (ABC) fault and LLL-G
(ABC-G) occur, the time variation of the measured sending
end current wave for the faulted phases is higher than the
normal condition. Fig. 10 show the three phase current wave-
form at sending end under different fault resistance (with
fault resistance R = 20, 50, 100, 150�), InceptionAngle =
00 and fault location=500 m (point X) for the three-phase (a,
b, c) to ground fault. It’s clear that the faulted phase current
amplitude reduced at high value of fault resistance. Fig. 11
show the three phase current waveform at sending end under
different inception angle (withR = 20�, Inception Angle=
(0◦, 45◦, 90◦, 135◦,180◦) and fault location=500m (point X)
for the three-phase (a, b, c) to ground fault. It’s noticed that
the initial current amplitude in the case of fault at 45◦, 90◦,
and 135◦ is much more than 0◦, 180◦.
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FIGURE 9. Sending end three-phase current waveforms under ABC,ABC-G faults at X, Y points.

FIGURE 10. Three-phase current waveform at sending end under ABC-G fault with different fault resistance (with fault resistance
R = (20�, 50�, 100�, 150�), 2 = 0o and fault location=500m (point X).

VI. RESULTS AND DISCUSSIONS
To illustrate the efficiency of the proposed method
eleven types of fault (i.e., AG, BG, CG, AB, AC,
BC, AB-G, AC-G, BC-G, ABC, ABC-G) and also ten

fault resistances in the case of ground short-circuit fault
R=0�,20�, 50�,75�, 100�, 125�, 150�, 175�, 200�),
five inception angles (including 2 = 0◦, 45◦, 90◦,
135◦,180◦) and nineteen distances of fault from recording

VOLUME 10, 2022 70133



A. Said et al.: DL-Based Fault Classification and Location for Underground Power Cable of Nuclear Facilities

FIGURE 11. Three phase current waveform at sending end under ABC-G fault with different inception angle (with fault resistance R20�,
2 = (0◦, 45◦, 90◦, 135◦,180◦) and fault location=500m (point X).

point (including d=500m, 1km,1.5km, 2km, 2.5km, 3km,
3.5km, 4km, 4.5km, 5km, 5.5km, 6km, 6.5km, 7km, 7.5km,
8km, 8.5km, 9km, 9.5km) are studied. The simulation time
is 40 msec with 5 µsec time step, 10 msec fault clear-
ing. Fault type, fault location and fault inception time are
changed to obtain training patterns covering a wide range
of different power system conditions. In ATP simulation,
the sample frequency is about 40 kHz and the transients of
only one-terminal phase currents is processed. The data size
has 9405 (6584 training and 2822 testing) characteristics for
eleven fault types to train and test the 1D-CNN classifier.

This section describes the related results of fault detection
using SVM first, followed by classification and location via
the CNN approach.

A. FAULT DETECTION USING BSVM
The primary goal is to pinpoint the location of the faulty or the
standard cable with pinpoint accuracy. The BSVM classifier

is fed by the outed features of SVD. Its input consists of the
maximum value of diagonal S of the SVD of three currents
from each phase, which is then normalized. The output of
BSVM with linear Kernel is in a straightforward yes or no
format, i.e., 1 or 0, which shows whether or not a fault has
occurred in the underground cable.

B. FAULT TYPE IDENTIFICATION USING 1D-CNN
As soon as the BSVM detects the cable fault, our next goal
is to determine this fault’s type using 1D CNN. One fea-
ture is obtained from the maximum SVD of FrDCT for one
phase only. For three-phase underground cable, three features
are selected for each fault state. Therefore, the three-phase
feature vector size has 9405 (6584 training and 2822 test-
ing) characteristics for eleven fault types to train and test
the 1D-CNN classifier. Table 2 illustrates the truth table
describing the flaws and the ideal output for each of the
faults.
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TABLE 4. Results Of 1D-CNN for 11 faults.

C. FAULT CLASSIFICATION
The planned 1D-CNN network consists of 11 inputs and four
outputs, one for each of the three phases and one for the
ground line. Thus, the outputs are either 0 or 1, indicating the
absence or presence of a defect on the appropriate line (A, B,
C, or G, where A, B, and C signify the system’s three phases
and G denotes the ground). Thus, the numerous possible
permutations can be used to represent each of the various

flaws. Therefore, the suggested 1D-CNN should accurately
discriminate between the eleven fault categories. The training
set has a total of 9405 input and output patterns (855 for
each of the eleven types of errors), each with three inputs
and one output. The trained 1D-CNN overall Mean Square
Error (MSE) is 0.015002. Moreover, the performance of 1D
CNN concerning FrDCT is shown in Fig. 12. The highest
performance is 99.6% at a fractional factor (α) of 0.8.
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TABLE 5. Results of 1D-CNN for 11 faults R=10 �.

TABLE 6. Results of 1D-CNN For 11 faults at R = 50�.
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TABLE 7. Results of 1D-CNN for 11 faults at R = 150�.

TABLE 8. Results of 1D-CNN for 11 faults at R = 200�.
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TABLE 9. Results of 1D-CNN for 11 faults at 2 = 45o.

TABLE 10. Results of 1D-CNN for 11 faults at 2 = 90o.
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TABLE 11. Results of 1D-CNN for 11 faults At 2 = 135o.

FIGURE 12. The proposed method’s performance based on the FrDCT
coefficients for different FrDCT factor values.

To evaluate the performance of 1D-CNN, k-nearest neigh-
bour algorithm (kNN) [38], Radial Basis Function networks
(RBF) [39], Elman networks [40], Multilayer Perceptrons
(MLP) [41], and Probabilistic Neural Networks (PNN) [37]
are investigated and compared with our method. The fault
classification results using different network structures are
shown in Table 3.

As shown in Table 3, the best results were obtained
using 1D-CNN, which achieved 99.6% performance levels
and required less time than the others because 1D-CNN
is trained using only the most significant features than the
entire training dataset. Hence, 1D-CNN results in the optimal

performance of classification tasks. FrDCT and SVD pro-
vides optimal representation of signal by packing most of the
information in few coefficients for a given signal. Both MLP
and ELMAN take a lot of times because the computations are
difficult and time consuming and the proper functioning of
the model depends on the quality of the training If the model
does not work properly, generalization problems arise.

D. 1D-CNN BASED FAULT LOCATION
After classifying the faulty phases, we initiate our next objec-
tive of determining the fault location from the line’s sending
end. 1D-CNN predicts the actual location of the fault using
inputs containing three-phase current data. Numerous fault
types have been considered, including 11 faults i.e., AG, BG,
CG, AB, AC, BC, AB-G, AC-G, BC-G, ABC, and ABC-G.
1D-CNN was trained and tested using data corresponding
to faults occurring at various points along the 10 km under-
ground cable (approximately 20 data points for each case).
The distinct high-frequency characteristics of each fault type
were determined using FrDCT and SVD. Then, employed
to obtain the corrected location of the fault. For each test
case, the results were examined to determine the estimation
error associated with this test case. The deviation between
the estimated fault distance (U) and the actual fault distance
(V) for the test case was used to quantify this error, which
measures the algorithm’s precision. The overall accuracy, E,
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TABLE 12. Results of 1D-CNN for 11 faults at 2 = 180o.

TABLE 13. Results of 1D-CNN for 11 faults at R = 200� and = 90o.

can be expressed as the maximum estimation error across the
entire length range of the cable for all possible fault types
expressed as a percentage of the total cable length C.

E =
U − V
C

X100 (13)

The testing results are presented in Table 4, which shows
that the maximum percentage error in locating the fault is
limited to (0.0871% of L) kms in the worst-case scenario.
The greatest estimation errors occur at the receiving end of
the cable’s closest points. Similar results have been obtained
for other types of faults and system conditions in terms of
fault location accuracy. Additionally, different values of fault
resistances R and inception angles 2 are tested to evaluate
the 1D-CNN’s performance under numerous operating con-
ditions. Tables 5-8 show faults’ actual and predicted loca-
tions at 10 Km with various fault resistances at constant

2 = 0(R = 10,R = 50,R = 150,R = 200, respectively).
The worst case was found atR = 200, i.e., Table 8. Variable
fault resistance values have no effect on accurate classifica-
tion of fault location as shown in the tables.

Tables 9-12 show faults’ actual and estimated locations
at 10 Km with various fault resistance at no fault resistance
(2 = 45o, 2 = 90o, 2 = 135o, 2 = 180o, respectively).
The worst case is at2 = 90o Table 10. The tables confirm the
accurate classification of fault locations at different inception
angles.

Table 13 illustrates faults’ actual and estimated locations
of 10 Km underground cable at R = 200 and 2 = 90o,
i.e. worst case. The location of the fault, the fault resistance
value, and inception angle have no effect on the accuracy of
fault location. The maximum error (0.095%) in fault location
occurs when theR = 200� and2 = 90o at the cable receiv-
ing end (9.5 km). Simulation results confirm that 1D-CNN
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combined with FrDCT and SVD is an efficient method for
locating fault in practical 11kV underground cable connected
to NPP. The proposedmethod can determine the fault location
easily, quickly, and accurately under different conditions.

VII. CONCLUSION
Fault detections of underground cables are vital, especially
for those fed NPPs. This paper presented a DL-based fault
classification and location technique in NPP three-phase
underground power cables. First, ATP/EMTP simulator mod-
els several fault types with variable locations under variable
settings to feed such data to our proposed method. Then,
the proposed technique optimized the performances of fault
classification, location, and execution time by combining
FrDCT with SVD, BSVM, and 1D-CNN, respectively. Simu-
lation results confirmed the superior performance of the pro-
posed technique regards detecting, classifying, and locating
faults effectively, quickly (0.15sec), and accurately (maxi-
mum error between 1D-CNN output and actual output is
0.095%). Hence, our proposed method could be used as a part
of a new generation of high-speed advanced fault locators.
Future work will include inspection of our planned model in
a realistic power system network.
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