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ABSTRACT In real life, there will be a lot of uncertainty problems, one of which is due to the vagueness
of the concept of things, that is, it is difficult to determine whether an object conforms to this concept. This
situation widely exists in some states, phenomena, parameters and interrelationships between things. For
such uncertain events with heavy subjective influencing factors and incomplete data, it is suitable to use
fuzzy methods to deal with them. In present our work, we firstly introduce the notion of D-number cognitive
maps (DCMs), which are intelligent framework models based on D-number theory and cognitive maps.
Compared with Evidential Cognitive Maps (ECMs) and Fuzzy Cognitive Maps (FCMs), DCMs can fuse
multiple sources of information with uncertainty and construct a cognitive map model with incomplete and
conflicting information. To better solve the problem of knowledge combination, D-number fuzzy cognitive
maps (DFCMs) are also constructed based on D-number theory and fuzzy cognitive maps. In many practical
applications, the establishment of fuzzy cognitive maps is usually completed by using a simple arithmetic
average method for multiple experts to obtain comprehensive fuzzy cognitive maps. This simple processing
method may lead to the loss of some important information so that the synthesized results do not reflect
reality. To overcome this challenge, we synthesize the knowledge of multiple experts by using D-number
theory and the characteristics of the representation of expert knowledge in FCMs. It is based on expert
knowledge, and the synthesized reliability distribution function is used as the basis of final weight synthesis.

INDEX TERMS Uncertainty, fuzzy cognitive maps, D-number cognitive maps, D-number fuzzy
cognitive maps.

I. INTRODUCTION
Evidence cognitive maps (ECMs) [1] and fuzzy cognitive
maps (FCMs) [2] are graph models proposed to deal with
uncertain information. ECMs are uncertain graph struc-
tures that describe causal reasoning through cognitive maps
(CMs) [3] and Dempster-Shafer theory and use basic prob-
ability assignment (BPA) and intervals to represent the rela-
tionship between concepts and the state of concepts. ECMs
have been proven to be effective and convenient in mod-
elling systems with subjective and objective uncertainties.

The associate editor coordinating the review of this manuscript and

approving it for publication was Francisco J. Garcia-Penalvo .

However, when facing the problem of knowledge
combination, ECMs may lead to unreasonable results in
systemmodelling. To overcome the limitations of ECMs, this
paper proposes D-number cognitive maps (DCMs) based on
D-number theory. Compared with ECMs, in DCMs, some
theoretical frameworks are redefined. A scheme combining
information is established through D-number theory, and
a method based on distance measurement is proposed to
determine the weight of different DCMs. DCMs fully con-
sider all the effects of various information. At the same
time, this scheme can overcome the limitation of conflicting
information generate aggregated ECMs to ensure that DCMs
can effectively model complex systems.
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The concept of FCMs has attracted special attention in
recent years as a powerful tool to manipulate knowledge
by imitating human reasoning and thinking. For example,
a study [4] proposes a short-term power load forecasting
model based on K-means and FCM-BP. There are two ways
to construct FCMs: artificial methods and computational
methods. In many practical applications, the establishment
of FCMs [5] is usually performed by experts. To overcome
the limitations of a single assessment, data from multiple
experts are usually used to construct the FCMs of the system
separately, and then the arithmetic average of the weights
is used to calculate the comprehensive FCMs. As the study
of Dempster-Shafer theory develops [6]–[10], a synthetic
method of weight evaluation is derived: with expert knowl-
edge used as evidence, the possible values of the degree
of influence of causality among concepts used as an iden-
tification framework, the membership degree of the fuzzy
value evaluated by each weight used as the reliability dis-
tribution function m, and the combined reliability distribu-
tion function used as the basis for the final synthesis of
weights, this method combines the knowledge of multiple
experts.

Synthesizing the uncertain opinions of individual experts
is a problem of uncertainty information fusion. Its pur-
pose is to overcome the limitations in performance of using
knowledge from a single expert, improve the internal quality
of knowledge, and provide true, clear and complete avail-
able knowledge for decision-making. At present, the most
commonly used method is individual probability aggrega-
tion [11]. Individual probability aggregation typically uses
weighted aggregation, product aggregation, Bayesian aggre-
gation, maximum direct model aggregation and other meth-
ods to aggregate the individual opinions of experts. To date,
there is no clear method to determine the weight in the
weighted aggregation model in synthesis research.

As an intelligent technology, D-number theory [12]–[15]
provides a powerful tool for the synthesis of multiexpert
knowledge. D-number theory is a numerical method of infor-
mation reasoning that uses multivalued mapping to obtain
the upper and lower bounds of probability. Based on the
continuous accumulation of evidence, the hypothesis set is
repeatedly reduced, thus gradually approaching the true value
to inform scientific decision-making. This method incorpo-
rates the cognitive and comprehensive ability of the knowl-
edge of multiple experts, resulting in effective integration.
This paper uses D-number theory to carry out the effec-
tive synthesis of multiple expert knowledge, according to
the characteristics expressed by FCMs. This research has
great importance for knowledge base construction based on
FCMs and the integration of new and old knowledge. As the
applications of D-number theory, Nebojsa [16] proposed
a novel multi-criteria methodology based on D-numbers
which enables efficient analysis of the information used for
decision making. Mo [17] proposed a new method to iden-
tify and evaluate the risk factors based on strengths weak-
nesses opportunities threats analysis and D-number theory.

In addition, a new method [18] to solve the problem of
emergency decision-making named D-PLTS is proposed,
based on D-number theory and the probability linguistic
term set.

The advantage of Dempster-Shafer, a reasoning theory
in uncertain environments, is that it obtains the upper and
lower bounds of probability through multivalued mapping
and gradually approaches the true value to inform scien-
tific decision-making. For example, Jia [19] proposed an
extended intuitionistic fuzzy cognitive map via Dempster-
Shafer theory. Yager [20] proposed the interval-valued
entropies for Dempster-Shafer structures, which is based
on Dempster-Shafer structures and classic Shannon entropy
and is an interval entropy model. And a new classifier
based on Dempster-Shafer [21] theory and a convolutional
neural network architecture for set-valued classification is
proposed.

However, some of its strong assumptions may not be rele-
vant for certain applications in the real world. For example,
the problem domain is represented by the concept of an iden-
tification framework, the elements of which are required to be
mutually exclusive. The uncertain information is represented
in the form of a BPA. Because the basic probability sum of
a BPA is equal to 1, it is difficult to apply to incomplete
information. If these assumptions are appropriately relaxed,
a more realistic and comprehensive weight is obtained. Based
on this point of view, this paper proposes a new method to
construct cognitive maps based on D-number theory. Then,
D-number theory is applied to FCMs, and an FCM con-
struction method based on D-number theory and multiexpert
knowledge synthesis is proposed. Compared with Dempster-
Shafer, the D-number theory is more appropriate and capable
of expressing uncertain information.

In order to overcome the limitations of FCMs and DCMs
in dealing with uncertain information and solve the disad-
vantages of using Dempster-Shafer theory [22] to synthesize
multiple experts knowledge, the main contributions of the
cognitive maps based on D-number theory and the extended
FCMs based on D-number theory are as follows.
• We propose that ‘‘D{−1, 1, 0},’’ the weight represen-
tation of edges in DCMs model, can solve the uncer-
tainty in the estimation of the influence relationship
between nodes due to the complexity of the relationship
between concepts and the lack of expert knowledge and
experience. In addition, the proposed DCMs model can
integrate the knowledge of experts by constructing sim-
ilarity matrix and defined D-number combination rules
while maintaining consistency.

• We extend the D-number theory to FCMs. The proposed
DFCMs model can effectively solve the limitations of
some strong assumptions of Dempster-Shafer theory in
dealing with practical problems when using Dempster-
Shafer theory to synthesize multiple experts knowledge.
DFCMs provide a reasonable method to determine the
weight in the weighted aggregationmodel. This research
is of great significance for the construction of knowledge
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base based on FCM, the integration of old and new
knowledge and the research field of synthesis.

The rest of this paper is arranged as follows. Section 2 intro-
duces some basic concepts of fuzzy set theory, FCMs,
Dempster-Shafer theory and D-number theory and then intro-
duces the existing construction methods of FCMs based on
Dempster-Shafer theory. In Section 3, DCMs are proposed as
a new graph structure to deal with uncertain information, and
an example is given to illustrate the advantages of this model
for handling practical problems. In Section 4, a method of
multiexpert knowledge synthesis based on D-number theory
is used to construct FCMs. In Section 5, we compare and ana-
lyze the differences and advantages of DFCMs and existing
research methods with examples. Finally, the conclusion of
this paper is given in Section 6.

II. BACKGROUND KNOWLEDGE
A. FUZZY SET THEORY
Since Zadeh [23] first introduced the notion of fuzzy sets
in 1965, the study of fuzzy sets has piqued the interest of
numerous researchers. The definition of a fuzzy set given by
Zadeh is as follows. A Fuzzy set is a class with a continuum
of membership grades. So a fuzzy set µ in a referential X
is characterized by a membership function µ in X which
associates with each element x ∈ U a real number µ (x) ∈
[0, 1], having the interpretation µ (x) is the ‘‘membership
grade’’ of x in the fuzzy set µ. A fuzzy set µ is thus defined
as a mapping:

µ : X → [0, 1]

where µ (x) is the membership degree.
Definition 1: If ã =

[
a−, a+

]
=

{
x | a− 6 x 6 a+

}
, a−,

a+ ∈ R, then ã is called an interval number, as shown in
Figure 1 [24]. In particular, if a− = a+, then ã degenerates
into a real number, and the interval number is a uniformly
distributed fuzzy number.

FIGURE 1. Schematic diagram of interval numbers.

Let ã and b̃ be two interval numbers, where ã =[
a−, a+

]
, b̃ =

[
b−, b+

]
. The basic operators on interval

numbers are described below.
Addition of interval numbers:

ã⊕ b̃ =
[
a− + b−, a+ + b+

]
(1)

B. FUZZY COGNITIVE MAPS
Definition 2.: The model composed of concept nodes and
directed arcs between concept nodes is called FCMs. Concept
nodes represent the dynamic feature system to be modeled,

and the directed arc between concept nodes represents the
connection relationship between nodes [25].
Example 1: FCM is represented by a quaternion G =

(C,E,X , f ). A FCM with 5 nodes is shown in Figure 2.

FIGURE 2. An examples of FCM.

C = {C1,C2, . . . ,Cn} is the set of concepts that constitute
the vertices of the directed graph.
E : (Ci,Cj) → ωij is a mapping, ωij ∈ E,Ci,Cj ∈ C .

Useωij to represent the degree of causal influence betweenCi
and Cj.
ωij > 0 means that the increase in Ci will lead to the

increase in Cj, and there is a positive causal relationship
between Ci and Cj.
ωij < 0 indicates that an increase in Ci will lead to a

decrease in Cj, and there is a negative causal relationship
between Ci and Cj.
ωij = 0, it means that there is no causal relationship

between Ci and Cj.
Then, E (C × C) =

(
ωij
)
n×n is a connection matrix of

the directed graph. For example, the adjacency matrix of
Figure 2.

C1 C2 C3 C4 C5 C6

W =

C1
C2
C3
C4
C5
C6


0 ω12 0 0 0 0
ω21 0 ω23 0 0 0
0 0 0 0 0 0
0 0 0 0 ω45 ω46
0 ω52 ω53 0 0 0
ω61 0 0 ω64 0 0


X : Ci → xi is a mapping, xi(t) represents the state of

node Ci at time t , and X (t) = [x1 (t) , x2 (t) , . . . , xn (t)]T

represents the state of G at time t; then,

xi (t + 1) = f [
n∑
i=1
j6=i

ωijxj (t)] (2)

or

X (t + 1) = WXT (t) (3)
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Remark 1: where xi (t + 1) is the normalized (xi (t + 1) ∈
[0, 1]) value of concept Ci at time step t , and f (x) is a thresh-
old function. Generally, a sigmoidal function f (x) = 1

1+e−Cx

is used to constrain the value of f (x) in the interval [0, 1],
where C > 0 determines the steepness of f (x).
Remark 2: Eq. (2) represents the model of FCM, which can

also be called evolution equation. From the model, we can see
that the dynamic behavior of the system [26] is formed by the
interaction of concept nodes and their states in the system
through causal arc. Each concept node in FCM transmits
its output to other nodes through weight and receives the
causal influence transmitted by other nodes at the same time.
In short, when the adjacency matrix of FCM is known, the
state x(t + 1) of the system at time t + 1 can be obtained
by the product of the adjacency matrix and the state x(t)
at time t .
The measure of the degree of causal influence is repre-

sented by a real number belonging to [0, 1], the magnitude
of the number indicates the strength of the influence, and
the sign (positive or negative) indicates the direction of the
influence, resulting in a quantitative expression of the causal
relationship. For example, the strength of the causal relation-
ship can be categorized (none, very weak, weak, medium,
strong, very strong), as well as quantified: (0, 0.2, 0.4, 0.6,
0.8, 1). The standard and accuracy of fuzzy quantification
depend on the specific problem [27].

C. DEMPSTER-SHAFER THEORY
Definition 3: For a finite nonempty set� = H1,H2, . . . ,HN ,
� is called a frame of discernment (FOD) when satisfying

Hi ∩ Hj = ∅, ∀i, j = {1, . . . ,N }

The mapping

m : 2�→ [0, 1]

which satisfies the following condition:

m(∅) = 0 and
∑
A∈�

m (A) = 1 (4)

Then, the functionm is called the basic credibility distribu-
tion on frame �. ∀A ∈ �, m(A) is called the basic credibility
number of A and reflects the degree of reliability of A [28].
The former condition indicates that an empty proposition
does not produce reliability, and the latter condition indicates
that a proposition can be assigned a reliability value of any
magnitude, but the sum of the reliability values of all propo-
sitions is equal to 1 [29].
Definition 4: The mapping

Bel : 2�→ [0, 1]

defined by the formula

Bel (A) =
∑
B∈A

m (B) ∀A ∈ � (5)

is called the reliability function on �. That is, the reliability
function Bel (A) of A is the sum of the reliability values of
each subset in A, which can be obtained:{

Bel(∅) = 0
Bel (�) = 1

(6)

The reliability function Bel and function m are mutually
uniquely determined, so they can be understood as different
representations of the same evidence. From the meaning of
function m, reliability function Bel (A) can be understood as
the degree of trust in the evidence for proposition A and its
subsets.

The suspicion function and the plausibility function of
Bel (A) are defined as:

Dou (A) = Bel
(
Ā
)

Pl (A) = 1− Bel
(
Ā
)
, ∀A ∈ � (7)

Dou(A) is the suspicion degree of A and Pl(A) is the plau-
sibility degree of A, meaning the highest degree of trust in
proposition A.

In summary, the uncertainty of information is shown
in Figure 3.

FIGURE 3. Uncertainty representation of information.

We can use A[Bel (A) ,Pl (A)] to analyse the uncertainty
of the proposition.
A[0, 0] indicates that proposition A is false.
A[0, 1] means proposition A cannot be affirmed or denied,

indicating no knowledge about proposition A.
A[1, 1] indicates that the proposition is true.
It can be seen from the above analysis that propositions

can be analysed through Pl (A) and Bel (A) distinguishing
between unknown and uncertain, which is very meaningful
distinction in a decision problem.

D. D-NUMBER THEORY
D-number theory is based on people’s understanding and
knowledge of the objective world and provides uncertainty
measures for uncertain events. For the first time, the prob-
ability of not satisfying additivity was provided, and the
principle of combining two independent information sources
was applied for statistical problems. Later, it was extended
to the general case, which is a generalization of classical
probability theory.
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In themathematical framework of Dempster-Shafer theory,
it is required that an FOD must be a mutually exclusive and
collectively exhaustive set, and the sum of basic probabilities
of a BPA must be equal to 1, as shown in Eq. (4). When
constructing an FCM, these two assumptions and constraints
are inappropriate in many cases.

First, experts’ estimates of the causal relationship between
concepts are often qualitative, such as ‘‘very weak,’’ ‘‘weak,’’
and ‘‘strong,’’ and then the fuzzy value is used to quan-
tify the assessment in [0, 1]. Due to the arbitrary setting,
there is inevitably an intersection between these qualitative
categories. Therefore, the exclusion assumption cannot be
accurately guaranteed.

Second, in some cases, due to a lack of knowledge and
information, some experts have an unknown influence on
certain causal relationships in FCMs and may obtain incom-
plete BPA with the sum of basic probabilities less than 1.
Moreover, the incompleteness of FOD may also lead to the
incompleteness of the BPA. Therefore, in some cases, it is
difficult to guarantee that BPA is always equal to 1.

To solve these problems, the Dempster-Shafer theory is
applied to enhance the ability to express the degree of influ-
ence of the causal relationship between concepts, give a more
reasonable and comprehensive weight for the comprehensive
knowledge of multiple experts, and systematically implement
D-number theory [12].
Definition 5: LetU be a finite nonempty set; the D-number

is a mapping

D : 2U → [0, 1]

such that

D(∅) = 0 and
∑
B∈U

D (B) ≤ 1 (8)

where ∅ is an empty set and B is a subset of U .
Note that the elements in U of the D-number theory do not

require mutual exclusivity, in contrast to the � of Dempster-
Shafer theory. In D-number theory, BPA is not required to be
equal to 1.

An example is given to show the difference between
D-number theory and Dempster-Shafer theory as follows.

Suppose that in an FCM, an expert judges the causal influ-
ence intensity between two conceptual nodes C1 and C2 as
follows: the possibility that the influence intensity is ‘‘weak
(0.4)’’ is 0.7, and the influence intensity is the possibility of
‘‘strong (0.6)’’ is 0.1. The remaining 0.2 is unknown, and it
may belong to one of the following categories: ‘‘very weak,’’
‘‘weak,’’ and ‘‘strong.’’ In the framework of Dempster-Shafer
theory, the expert could give a BPA to express his estimate
result by

m (0.4) = 0.7

m (0.6) = 0.1

m (0.2, 0.4, 0.6) = 0.2

However, if the expert gives his estimate result by using
D-numbers, possible values are as follows.

m (0.4) = 0.7

m (0.6) = 0.1

Note that the set of {0.2, 0.4, 0.6} is not actually an
identification framework because the elements in the set of
{0.2, 0.4, 0.6} are not mutually exclusive, and BPA =
0.8 based on the D-number theory. The example illustrates the
difference between Dempster-Shafer and D-number theories.

E. CONSTRUCTING FCM BASED ON
DEMPSTER-SHAFER THEORY
FCM has unique advantages for knowledge representation
and reasoning. Its construction usually relies on the experi-
ence and knowledge of experts. To overcome the limitations
of a single estimation, information from multiple experts is
usually used to build systematic FCMs separately and then
synthesize them. Dempster-Shafer theory, as an intelligent
technology, provides a powerful tool for the synthesis of mul-
tiexpert knowledge. This method can incorporate the cogni-
tive ability and comprehensive knowledge of multiple experts
and, thus, effectively integrate the knowledge of multiple
experts [30], [31].

Next, we introduce the specific synthetic formula of FCMs
constructed by Dempster-Shafer theory and its importance.

Let Bel1 and Bel2 be two reliability functions on the
same recognition framework, the corresponding basic relia-
bility distributions are m1 and m2, respectively, and the focal
elements are X1,X2, . . . ,Xk and Y1,Y2, . . . ,Yk , as shown
in Figure 4.

FIGURE 4. Basic credibility distribution.

The combination of the two types of evidence is as follows:

m (A) = m1 ⊕ m2

=


0, A = ∅
1

1− k

∑
X∩Y=A

m1 (X)m2 (Y ) , A 6= ∅ (9)

with

k =
∑

X∩Y=∅

m1 (X)m2 (Y )

When multiple pieces of evidence are synthesized, a
step-by-step method of synthesizing two at a time can be
implemented:

Bel = {[[Bel1 ⊕ Bel2]⊕ Bel3]⊕ · · · } ⊕ Beln
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It can also be solved by the formula given below.
Suppose Bel1,Bel2, . . . ,Beln is the reliability function on

the same recognition framework, and m1,m2, . . . ,mn is the
corresponding basic reliability distribution. If

Bel1 ⊕ Bel2 ⊕ · · · ⊕ Beln

exists and the basic reliability distribution is m, then the
combination of n reliability functions is:

m (A) = m1 ⊕ m2 ⊕ · · · ⊕ mn

=


0, A = ∅∑
A1∩A2∩···∩An

n∏
i=1

mi (Ai)

1− k
, A 6= ∅

(10)

where

k =
∑

A1∩A2∩···∩An=∅

n∏
i=1

mi (Ai).

III. COGNITIVE MAPS BASED ON D-NUMBER AND
ITS APPLICATIONS
In this section, we systematically propose the graph structure
of DCMs by introducing four aspects of DCMs, and illustrate
the calculation method of edge weights in DCMs with an
example.

A. D-NUMBER COGNITIVE MAPS MODEL
1) EDGE WEIGHT REPRESENTATION IN DCM
In the CMs, the knowledge and opinions of experts are
incorporated via weight estimation, that is, an effective
estimation of the degree of causal relationship between
nodes in the reference concept set. Generally, due to the
complexity of the relationships between concepts and the
lack of expert knowledge and experience, the estimation
of the influence relationship between nodes will be uncer-
tain, and based on D-number theory, this can be captured
by assigning a probability. If C̃i has a positive impact on
C̃j, it is expressed as D {1}; if it is a negative impact,
it is expressed as D {−1}; if C̃i has no effect on C̃j, it is
expressed as D {0}.
As mentioned above, the degree of influence of C̃i on C̃j

can be expressed by the basic probability assignment,

BPAij =

D {−1} = a
D {1} = b
D {0} = c


such that a > 0, b > 0, and c > 0.
According to this rule, the uncertainty of the causal rela-

tionship between two conceptual nodes can be expressed in a
straightforward manner. The FCM of Figure 2 can be repre-
sented as a DCM, as shown in Figure 5, and the correlation

FIGURE 5. Examples of DCM.

matrix is as follows:

C̃1 C̃2 C̃3 C̃4 C̃5 C̃6

W =

C1

C2

C3

C4

C5

C6


0 BPA12 0 0 0 0

BPA21 0 BPA23 0 0 0
0 0 0 0 0 0
0 0 0 0 BPA45 BPA46
0 BPA52 BPA53 0 0 0

BPA61 0 0 BPA64 0 0


2) TRANSFORMATION USING THE BELIEF FUNCTION AND
PLAUSIBILITY FUNCTION IN DCM
In order to evaluate the edge weights of the DCM in Figure 5,
taking the information BPAij as an example. It can be denoted
explicitly by

BPAij =

D {−1} = a
D {1} = b
D {0} = c

 (11)

such that a > 0, b > 0, and c > 0. According to Eq. (5)

Bel {−1} = D {−1} = a

Pl {−1} = D {−1} + D {u} = 1− b− c

where u represents the case with unknown information, that
is, a + b + c 6= 1. Therefore, the probability of a negative
relationship between concept nodes is:

P {−1} = [Bel {−1} , Pl {−1}] = [a, 1− b− c]

The same can be obtained:

P {1} = [b, 1− a− c]

P {0} = [c, 1− a− b]

Therefore, the connection weight between node i and
node j is:

ω̃ij = P {1} × 1⊕ P {0} × 0⊕ P {−1} × (−1)

= 1× [b, 1− a− c]⊕ 0× [c, 1− a− b]
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⊕ (−1)× [a, 1− b− c]

= [b, 1− a− c]⊕ [−1+ b+ c,−a]

= [2b+ c− 1, 1− 2a− c]

Therefore, the weight matrix between concepts is:

C̃1 C̃2 C̃3 C̃4 C̃5 C̃6

W =

C1

C2

C3

C4

C5

C6


0 ω̃12 0 0 0 0
ω̃21 0 ω̃23 0 0 0
0 0 0 0 0 0
0 0 0 0 ω̃45 ω̃46
0 ω̃52 ω̃53 0 0 0
ω̃61 0 0 ω̃64 0 0


3) FUSION OF UNCERTAIN CONFLICT
INFORMATION IN DCM
In the process of knowledge gathering and integration, the
opinions of experts may conflict with one another. The ques-
tion of how to integrate the knowledge of various experts
while maintaining consistency is an important one. In this
paper, we adopt the fusion method of the reliability function
based on evidence distance proposed by Deng Yong [32]. The
main process is as follows:

Assuming that there are two pieces of information (Ri,Di)
and information (Rj,Dj), the distance between the two pieces
of information can be calculated by the following algorithm,
namely, d(Di,Dj).

d(D1,D2) =

√
1
2
( ED1 − ED

2
)TC( ED1 − ED2) (12)

where Di is a (2N × 2N )-dimensional matrice.
The elements of C are:

C (A,B) =
|A ∩ B|
|A ∪ B|

, A,B ∈ 2N (13)

|A ∪ B| represent the first element in the set |A ∪ B|, as does
the set |A ∩ B|. For example, the distance between {−1} and
{1} can be calculated as follows:

D ({−1} , {1}) =
∅

{−1, 1}
= 0

The similarity between information (Ri,Di) and informa-
tion (Rj,Dj) is defined as Sij:

Sij(Di,Dj) = 1− d(Di,Dj) (14)

Suppose there are k pieces of information. When the
similarity between all the information is obtained, we can
construct a similarity measure matrix, which allows us to take
into account the consistency between the information.

SMM =

 1 · · · S1k
...

. . .
...

Sk1 · · · 1



The support degree between information (Ri,Di)
(i = 1, 2, . . . , k) is defined as:

Sup (Di) =
k∑

j=1,j 6=i

Sij(Di,Dj) (15)

The credibility degree Crdi of the information (Ri,Di)
(i = 1, 2, . . . , k) is defined as:

Crd i =
Sup (Di)
k∑
i=1

Sup (Di)

(16)

It can be easily seen that
k∑
i=1

Crd i = 1; thus, the credibility

degree is a weight that represents the relative importance of
the collected information.

If the maximum of the credibility degree (MaxCrdi) of the
information is 1, the discounting coefficient for the ith piece
of information can be defined as:

α =
Crd i

MaxCrd i
, (i = 1, 2, . . . , k) (17)

If a source informationm has credibility weight α, then the
discounted evidence D′ is defined in the identification frame
2 as:

D′ = αD (A) , ∀A ∈ 2, A 6= 2

D′(2) = 1− α + αD(2) (18)

After that, the discounted information is combined into the
final fusion result through the D-number combination rule.
This method is applied in specific examples in the following
sections.

4) INFORMATION COGNITIVE MAP DYNAMIC
FUNCTION IN DCM
DCMs can simulate dynamic system operating conditions.
If the initial state of each concept node of the system is
given, the state value of any concept node at any time can
be calculated by the DCM conversion function.

Ãtj = f
(
kD1

n
⊕

i=1,i 6=j
(Ãt−1i ⊗ ω̃ij)⊕ kD2Ã

t−1
j

)
0 6 kD1 6 1, 0 6 kD2 ≤ 1 (19)

Let C̃ = {C̃1, C̃2, . . . , C̃N } be the set of conceptual nodes
of the system, N is the number of conceptual nodes contained
in the system, Ãti (i = 1, 2, . . . ,N ) represents the state value
of the ith node C̃i at time t , and ω̃ij represents the causal
influence of the jth node C̃j on the ith node C̃i. The weight
is converted from the fused information BPAij through relia-
bility and likelihood. If

BPAij =

D {−1} = a
D {1} = b
D {0} = c


Then the converted weight is:

ω̃ij = [2b+ c− 1, 1− 2a− c]
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where a > 0, b > 0, and c > 0. f is the threshold func-
tion, as shown in Figure 6, and its purpose is to convert the
result of

kD1
n
⊕

i=1,i 6=j
(Ãt−1i ⊗ ω̃ij)⊕ kD2Ã

t−1
j

The initial system value of each conceptual node of the
system is the interval number

[
a−, a+

]
, a− 6 a+.

¬ a− ∈ [0, 1] and a+ ∈ [0, 1]
­ a− ∈ [−1, 1] and a+ ∈ [−1, 1]
We denote x̃ ti is converted by the threshold

function f as Ãti .

FIGURE 6. Threshold function.

In above formula, the kD1 and kD2 have the same physical
meaning and represent the sum of all known fundamental
probabilities (not necessarily 1). In this paper, we use the
sigmoid function as the threshold function:

f
(
X̃
)
=

1

1+ e−λX̃
(20)

where X̃ is an interval number, λ determines the speed of
convergence, and the output of the function f is also an
interval number. It can represent concept nodes and uncertain
information between nodes.

From the above four points, it can be seen that DCMs, sim-
ilar to ECMs and FCMs, are also a directed graph with feed-
back, consisting of concept nodes that describe the behaviour
of the system and weighted arcs that represent the causal
relationships that exist between the concepts. Each concept
node C̃i has an interval ãi representing its value obtained by
the transformation of the fuzzy value of the system variable.
Compared with FCMs, the representation of this concept
is more flexible and practical than the representation using
concrete, specific numbers. In contrast to ECMs, DCMs do
not require the interval mutual exclusion of concept nodes
and a cognitive map can be constructed even with incomplete
information due to a limited amount of knowledge, thus
providing a solution in the face of uncertainties in real life
situations.

In summary, the above process can be divided into the
following 5 steps:

FIGURE 7. National economic impact factors.

Step 1: Calculate the distance matrix d of the evidences;
Step 2: Calculate the similarity matrix SMM of the

evidences;
Step 3: Calculate the credibility degree Crd of the

evidences;
Step 4: Calculate the discounting coeffificient a;
Step 5: Combine the evidences using D-number theory.

B. AN EXAMPLE OF ECONOMIC EVALUATION
Example 2: The economy is an important criterion for mea-
suring the strength of a country. The national economy is
manifested not only in its numerous and complex elements,
but also in the mutual influence and interaction among the
various elements of the system. Each element involves not
only precise statistical information but also a large amount of
uncertain information. The system is required not only to be
able to model existing elements but also to be able to effec-
tively expand to include new elements. The analysis of such a
complex system requires new models that are compatible and
account for these features.

Suppose this system has a total of 4 components, which are
represented in the system as follows:
C1: education C2: science and technology
C3: population C4: labour
Assuming that three experts provide information, as shown

in Figure 7, the following is a brief introduction to the con-
struction process of the following DCM. Taking nodesC1 and
C2 as an example, the relationship between nodes C1 and C2
is given by three experts, denotedE1,E2, andE3, respectively,
as follows:

E1 : D1 {−1} = 0.6, D1 {1} = 0.3,

D1 {0} = 0, D1 {−1, 1, 0} = 0.1

E2 : D2 {−1} = 0.7, D2 {1} = 0,

D2 {0} = 0.1, D2 {−1, 1, 0} = 0.2

E3 : D3 {−1} = 0.2, D3 {1} = 0.5,

D3 {0} = 0.1, D3 {−1, 1, 0} = 0.2
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The next five steps illustrate how to integrate multple
experts knowledge in DCMs to calculate the degree of influ-
ence between nodes C1 and C2.
Step 1. Calculate the distance matrix between 3 pieces of

information.

d =

 0 0.11 0.21
0.11 0 0.50
0.21 0.50 0


For example, the calculation method of d12 = 0.11 is as

follows:

ED1 =


0.6
0.3
0
0.1

 , ED2 =


0.7
0
0.1
0.2

 , ED1 − ED2 =


−0.1
0.3
−0.1
−0.1



C =



1 0 0
1
3

0 1 0
1
3

0 0 1
1
3

1
3

1
3

1
3

1


Step 2. Calculate the similarity matrix of matrix d

SMM =

 1 0.89 0.79
0.89 1 0.50
0.79 0.50 1


Step 3. The credibility degree of the evidence is

Sup = (2.68, 2.39, 2.29)
Crd = (0.36, 0.32, 0.31)

Step 4. The discounting coefficient is

α = (1.00, 0.89, 0.86)

Then the discounted expert information is

E1 : D1 {−1} = 0.6, D1 {1} = 0.3,
D1 {0} = 0, D1 {−1, 1, 0} = 0.1

E2 : D2 {−1} = 0.62, D2 {1} = 0,
D2 {0} = 0.09, D2 {−1, 1, 0} = 0.18

E3 : D3 {−1} = 0.17, D3 {1} = 0.43,
D3 {0} = 0.09, D3 {−1, 1, 0} = 0.17

Step 5. Now we combine the information from these three
experts using D-number theory.

First, we combine the information of Expert 1 and
Expert 2.

Q1 = D1 {−1} + D1 {1} + D1 {0} = 0.9

Q2 = D2 {−1} + D2 {1} + D2 {0} = 0.71

KD12 =
1

Q1Q2
× (D1 {−1}D2 {1} + D1 {−1}D2 {0}

+D1 {1}D2 {−1} + D1 {1}D2 {0}

+D1 {0}D2 {−1} + D1 {0}D2 {1})

= 0.42

D12 {−1} =
1

1− KD12

D1 {−1}D2 {−1} = 0.64

D12 {1} =
1

1− KD12

D1 {1}D2 {1} = 0

D12 {0} =
1

1− KD12

D1 {0}D2 {0} = 0

with Q12 = 0.64
Then the result is combined with the information of

Expert 3.

Q3 = D3 {−1} + D3 {1} + D3 {0} = 0.69

KD123 =
1

Q12Q2
× (D12 {−1}D3 {1} + D12 {−1}D3 {0}

+D12 {1}D3 {−1} + D12 {1}D3 {0}

+D12 {0}D3 {−1} + D12 {0}D3 {1})

= 0.04

D123 {−1} =
1

1− KD123

D12 {−1}D3 {−1} = 0.11

D123 {1} =
1

1− KD123

D12 {1}D3 {1} = 0

D123 {0} =
1

1− KD123

D12 {0}D3 {0} = 0

with Q12 = 0.11
Therefore, the final fusion information weight of C1

and C2 is

BPA12 = [0.11, 0, 0]

The result of BPA12 = [0.11, 0, 0] shows that after fus-
ing the uncertain information of three experts, the influence
degree of C1 on C2 can be expressed in DCMs as follows:
D {−1} = 0.11, D {1} = 0, D {0} = 0. It can be seen that
DCMs solves the intersection of node intervals that cannot
be solved in FCMs and DCMs and the incomplete mastery of
information due to the limited level of knowledge. The appli-
cation of step 1, step 4 and step 5 enables DCMs can deal with
language fuzzy variablesmore reasonably and accurately, and
can aggregate the knowledge of multiple experts.

IV. DFCM: AN EXTENDED FUZZY COGNITIVE MAPS
BASED ON D-NUMBER
Considering that D-number not only have the ability to repre-
sent uncertainty, but also help to aggregate knowledge from
different experts. Therefore, this section proposes a FCM
construction method based on D-number theory that inte-
grates multiple experts knowledge, and uses an example to
illustrate how to synthesize the causal influence between two
concept nodes based on multiple experts knowledge when
constructing DFCMs. It can effectively solve the comprehen-
sive problem of multiple experts knowledge.

A. MULTIEXPERT KNOWLEDGE SYNTHESIS BASED ON
FCM KNOWLEDGE REPRESENTATION
1) PROBLEM DESCRIPTION
According to the formal definition of FCMs, the opinions
of experts are reflected in the estimation of the strength of
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the causal relationship between the nodes of a given con-
cept set, that is, the estimation of the weights. Therefore,
the problem of expert knowledge synthesis is expressed in
FCMs as the combination of corresponding elements in the
adjacency matrix provided by each expert. This problem can
be regarded as a multiexpert opinion aggregation problem,
where each expert’s assessment of a causal relationship based
on his own knowledge and experience can be regarded as a
piece of evidence, and the possible values of the degree of
influence of the causal relationship between concepts con-
stitute an identification framework, the membership degree
of the fuzzy value evaluated by experts on a certain weight i
used to determine the reliability distribution function m, and
the synthesized reliability distribution function is used as the
basis for the final weight synthesis.

2) MULTIEXPERT KNOWLEDGE SYNTHESIS
Under normal circumstances, there is a reasonable degree of
consensus among experts based on professional knowledge,
with deviations due to personal preferences, knowledge struc-
ture, and other reasons, which is reflected in the FCMmodel.
The number of rows and columns included in the adjacency
matrix is different; that is, the selected concept sets are dif-
ferent, and the description standards of the degree of causal
influence are also different, which brings certain difficulties
to the synthesis of expert knowledge, so standardization prior
to the FCM synthesis is required.

There are n experts and, for a decision problem, they
each establish their own FCM according to their experience
and knowledge, and their adjacency matrices are denoted
F1,F2, . . . ,Fm. The union of all the different concepts
involved by each expert is taken as a concept set, and the
adjacency matrix of each expert is extended to the dimension
m × m. The row and column of the original non-existing
concept node are filled with zeros, and this process is called
the normalization of the adjacency matrix.

Using D-number theory, the general process of fusing the
FCMs of multiple experts is:

1. First, define the identification framework so that our
research on propositions can be transformed into the research
on sets;

2. Establish basic reliability assignments based on
evidence;

3. Combine the basic reliability distribution functions
according to the combination rules of the D-number theory,
and then use the judgement principle based on the basic
reliability assignment to determine the target type;

4. According to the comprehensive reliability, calculate the
weighted average of each element in the framework.

3) SYNTHETIC COMPUTATIONAL COMPLEXITY ANALYSIS
Suppose the identification frame is� = {θ1, θ2, . . . , θn}, and
k experts provide k pieces of evidence. In the extreme case,
each set of evidence has 2n − 1 mass function assignments.
Namely: m({θ1}), m({θ2}), · · · , m({θ1, θ2}), · · · , m({θ}).

In this case, the complexity of the information is O(k × 2n).
The computational complexity of combining the knowl-
edge of k experts with the two-evidence synthesis formula
and the multievidence synthesis formula will be discussed
separately below. For the synthesis formula, the main
operation is the multiplication of two mass function val-
ues, so the computational complexity is (2n − 1) ×
(2n − 1) = O(22n). For the knowledge of k × O

(
22n
)
=

O
(
k × 22n

)
experts, the computational complexity is k . For

the multievidence synthesis formula, the main operation is
k names. The mass function values are multiplied, so the
computational complexity is (2n − 1)k , so the computational
complexity is O

(
2kn
)
.

B. CONSTRUCTING FCM BASED ON D-NUMBER THEORY
Definition 6: Let D be a D-number on a finite nonempty
set U ; the degree of information completeness in D is
quantified by

Q =
∑
B∈U

D (B) (21)

In Dempster-Shafer theory, Dempster’s rule of combina-
tion plays a central role in synthesizing all the knowledge
of the initial BPAs. Correspondingly, in D-numbers theory,
which is treated as a generalization of Dempster-Shafer the-
ory, a D-numbers combination rule is proposed to combine
the information indicated by D-numbers.
Definition 7: Let D1 and D2 be two D-numbers; the

combination of D1 and D2, indicated by D = D1 � D2,
is defined by
D(∅) = 0

D (B) =
1

1−KD

∑
B1∩B2=B

D1 (B1)D2 (B2) , B 6= ∅ (22)

where

KD =
1

Q1Q2

∑
B1∩B2=∅

D1 (B1)D2 (B2)

Q1 =
∑
B1∈U

D1 (B1)

Q2 =
∑
B2∈U

D2 (B2) (23)

Similar to the Dempster-Shafer theory, when multiple
expert evidence is synthesized, a step-by-step method of
synthesizing two at a time can be implemented:

D = {[[D1 � D2]� D3]� · · · } � Dn (24)

It can also be solved by the formula given below:

D (B) = D1 � D2 � · · · � Dn

=


0, B = ∅∑
B1∩B2∩···∩Bn

n∏
i=1

Di (Bi)

1− KD
, B 6= ∅

(25)
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where

KD =
1

n∏
i=1

Qi

∑
B1∩B2∩···∩Bn=∅

n∏
i=1

Di (Bi)

Qi =
∑
Bi∈U

Di (Bi) i = 1, 2, . . . , n (26)

With the proposed combination rule of D-number is actu-
ally the generalization of multi-expert knowledge based on
Dempster-Shafer theory. If we defineD1 andD2 on FOD and
Q1 = 1, Q2 = 1, the combination rule of the D-number
will become the combination rule of Dempster-Shafer
theory.

The construction process of DFCM can be summarized as
the following 4 steps:

Step 1: Calculate the membership degree distribution of
the evaluation value of the weight given by each expert;

Step 2: Calculate the KD and D (B) from the membership
degree distribution of any two experts;

Step 3: Continue to iterate, and carry out knowledge syn-
thesis based on D-number for other experts in turn;

Step 4: Calculate the final weight.

V. COMPARATIVE ANALYSIS
In this section, we compare and analyze DFCMwith existing
research through 2 examples. Example 4 and Example 5 are
compared to illustrate the differences between the FCM con-
struction method based on Dempster-Shafer theory and the
FCM construction method based on D-number theory, so as
to highlight that DFCMs is more suitable for dealing with
incomplete and uncertain information.

A. AN EXAMPLE OF FCM CONSTRUCTION METHOD
BASED ON DEMPSTER-SHAFER THEORY
Remark 3: The membership degrees given in Examples 4 and
5 are obtained according to the evaluation results of a certain
weight on the framework by expert i. The following Example
3 is the expert 1 of Example 4 to illustrate the determination
of the reliability distribution function.
Example 3: Expert 1’s evaluation value of the weight

between C1 and C2 is 0.46, and the membership
function is:

µ0 (x) =


0.2− x
0.2

, 0 < x 6 0.2

0, others

µ0.2 (x) =


0.2− x
0.2

, 0 < x 6 0.2

0.4− x
0.2

, 0.2 < x 6 0.4

0, others

µ0.4 (x) =


x − 0.2
0.2

, 0.2 < x 6 0.4

0.6− x
0.2

, 0.4 < x 6 0.6

0, others

µ0.6 (x) =


x − 0.4
0.2

, 0.4 < x 6 0.6

0.8− x
0.2

, 0.6 < x 6 0.8

0, others

µ0.8 (x) =


x − 0.6
0.2

, 0.6 < x 6 0.8

1.0− x
0.2

, 0.8 < x 6 1.0

0, others

µ1.0 (x) =


1.0− x
0.2

, 0.8 < x 6 1.0

0, others

So the weight of 0.46 has a membership of 0.7 in ‘‘weak
(0.4)’’ and a membership of 0.3 in ‘‘strong (0.6),’’ so the
reliability distribution is: m = [0, 0, 0.7, 0.3, 0, 0].
Example 4: Three experts have the following judgements

(see Remark 3) on the degree of causal influence between
the conceptual nodes C1 and C2 in the FCM, as shown
in Figure 1.

Step 1. We calculate the composite result for expert 1 and
expert 2:

k12 =
∑

A1∩A2=∅

m1 (A1)m2 (A2)

= m1 (0.4)m2 (0.2)+ m1 (0.4)m2 (0.6)
+m1 (0.6)m2 (0.2)+ m1 (0.6)m2 (0.4)

= 0.7× 0.1+ 0.7× 0.1+ 0.3× 0.1+ 0.3× 0.8
= 0.41

m12(0.4) =
1

1− k12

∑
A1∩A2=0.4

m1 (0.4)m2 (0.4)

=
1

1− 0.41
× (0.7× 0.8)

= 0.95

m12(0.6) =
1

1− k12

∑
A1∩A2=0.6

m1 (0.6)m2 (0.6)

=
1

1− 0.41
× (0.3× 0.1)

= 0.05

The synthesized result 1 of expert 1 and expert 2 is:
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Step 2.We synthesize the results from expert 1 and expert 2
with expert 3:

k123 =
∑

A12∩A3=∅

m12 (A12)m3 (A3)

= m12 (0.4)m3 (0.6)

+m12 (0.6)m3 (0.4)

= 0.95× 0.1+ 0.05× 0.9

= 0.14

m123(0.4) =
1

1− k123

∑
A12∩A3=0.4

m12 (0.4)m3 (0.4)

=
1

1− 0.41
× (0.95× 0.9)

= 0.9942

m123(0.6) =
1

1− k123

∑
A12∩A3=0.6

m12 (0.6)m3 (0.6)

=
1

1− 0.41
× (0.05× 0.1)

= 0.0058

The synthesized result of expert 1 and expert 2 with
expert 3 is:

Step 3. From the results of the above table, we can obtain
the following: the result of the synthesis of the knowledge
of the three experts is that the degree of causal influence
is 0.4 with a reliability of 0.9942, and the degree of causal
influence is 0.6 with a reliability of 0.0058. According to the
final composite reliability, find the composite weight:

ω12 = 0.4× 0.9942+ 0.6× 0.0058 = 0.4012

Therefore, the degree of causal influence between the two
conceptual nodes C1 and C2 of the constructed FCM is
ω12 = 0.4012.

B. AN EXAMPLE OF FCM CONSTRUCTION METHOD
BASED ON D-NUMBER THEORY AND ITS
ADVANTAGE ANALYSIS
Example 5: Three experts have the following judgements on
the degree of causal influence between the conceptual nodes
C4 and C5 in the FCM, as shown in Figure 1.

Expert 1 said that the probability that the degree of influ-
ence between these two nodes is weak (0.4) is 0.7, the
probability that the degree of influence is medium (0.6) is
0.1, and the probability that the degree of influence is 0.2 is
unknown. Expert 2 said that the probability that the degree of
influence between these two nodes is very weak (0.2) is 0.1,
the probability that the degree of influence is weak (0.4) is
0.8, and the probability of 0.1 is unknown. Expert 3 said that
the probability that the degree of influence between these two
nodes is weak (0.4) is 0.6, the probability that the degree of
influence is medium (0.6) is 0.2, and the probability that the
degree of influence is 0.2 is unknown.

We first consider constructing the influence degree rela-
tionship between the conceptual nodes C4 and C5. FCM
based on the Dempster-Shafer theory.

Step 1.We first calculate the composite result for expert 1
and expert 2 based on Dempster-Shafer theory. According to
the analysis of these three experts, two BPAs can be obtained

m1 (0.4) = 0.7, m1 (0.6) = 0.1, m1 (S) = 0.2

m2 (0.2) = 0.1, m2 (0.4) = 0.8, m2 (S) = 0.1

m3 (0.4) = 0.6, m3 (0.6) = 0.2, m3 (S) = 0.2

where S = (0, 0.2, 0.4, 0.6, 0.81).

k12 =
∑

A1∩A2=∅

m1 (A1)m2 (A2)

= m1 (0.4)m2 (0.2)+ m1 (0.6)m2 (0.2)
+m1 (0.6)m2 (0.4)

= 0.7× 0.1+ 0.1× 0.1+ 0.1× 0.8
= 0.16

m(0.2) =
1

1− k12

∑
A1∩A2=0.2

m1 (0.2, S)m2 (0.2, S)

=
1

1− 0.16
× (0.2× 0.1)

= 0.0238

m(0.4) =
1

1− k12

∑
A1∩A2=0.4

m1 (0.4, S)m2 (0.4, S)

=
1

1− 0.16
× (0.7× 0.8+ 0.7× 0.1+ 0.8× 0.2)

= 0.9405

m(0.6) =
1

1− k12

∑
A1∩A2=0.6

m1 (0.6, S)m2 (0.6, S)

=
1

1− 0.16
× (0.1× 0.1)

= 0.0119

The synthesized result 1 of expert 1 and expert 2 is:
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Step 2. We synthesize the results from expert 1 and
expert 2 with expert 3 based on Dempster-Shafer theory:

k123 =
∑

A12∩A3=∅

m12 (A12)m3 (A3)

= m12 (0.2)m3 (0.4)+ m12 (0.2)m3 (0.6)

+m12 (0.4)m3 (0.6)+ m12 (0.6)m3 (0.4)

= 0.0238× 0.6+ 0.0238× 0.2+ 0.9405× 0.2

+ 0.0119× 0.6

= 0.2143

m(0.2) =
1

1− k123

∑
A12∩A3=0.2

m12 (0.2, S)m3 (0.2, S)

=
1

1− 0.2143
× (0.2× 0.0238)

= 0.0061

m(0.4) =
1

1− k123

∑
A12∩A3=0.4

m12 (0.4, S)m3 (0.4, S)

=
1

1− 0.2143
× (0.9405× 0.6+ 0.9405× 0.2

+ 0.0238× 0.6)

= 0.9758

m(0.6) =
1

1− k123

∑
A12∩A3=0.6

m12 (0.6, S)m3 (0.6, S)

=
1

1− 0.2143
× (0.0119× 0.2+ 0.0119× 0.2

+ 0.0238× 0.2)

= 0.0121

The synthesized result of expert 1 and expert 2 with
expert 3 is:

Step 3. Therefore, the degree of causal influence between
the two conceptual nodes C4 and C5 of FCM based on
Dempster-Shafer theory is:

ω45 = 0.2× 0.0061+ 0.4× 0.9758+ 0.6× 0.0121

= 0.3998

In the above calculation process, there is an unreasonable
assumption; that is, the unknown possibility is attributed to
the possibility equal to {0, 0.2, 0.4, 0.6, 0.8, 1}. In other
words, the degree of causal influence between the two
conceptual nodes of C4 and C5 is equivalent to the set
{0, 0.2, 0.4, 0.6, 0.8, 1}, containing only these six possible
weights. Obviously, this is not convincing. In fact, implicit
assumptions are almost ignored in applications based on
Dempster-Shafer theory to reduce complexity.

Next, let us consider this problem with D-number theory,
which can handle the situation of incomplete information.

Step 1.We first calculate the composite result for expert 1
and expert 2 based on D-number theory. According to the
analysis of these three experts, three D-numbers can be
obtained

D1 (0.4) = 0.7, D1 (0.6) = 0.1

D2 (0.2) = 0.1, D2 (0.4) = 0.8

D3 (0.4) = 0.6, D3 (0.6) = 0.2

It is worth noting that the unknown information of the
three experts here is not assigned to any set, the sum of their
respective basic probabilities is not equal to 1, and the three
D-numbers constructed are incomplete forms of information.

Q1 = D1 (0.4)+ D1 (0.6) = 0.8

Q2 = D2 (0.2)+ D2 (0.4) = 0.9

Q3 = D3 (0.4)+ D3 (0.6) = 0.8

KD12 =
1

Q1Q2

∑
B1∩B2=∅

D1 (B1)D2 (B2)

=
1

0.8× 0.9
× [D1 (0.4)D2 (0.2)

+D1 (0.6)D2 (0.2)+ D1 (0.6)D2 (0.4)]

=
1

0.8× 0.9
× (0.7× 0.1+ 0.1× 0.1+ 0.1× 0.8)

= 0.2222

D (0.4) =
1

1− KD12

∑
B1∩B2=B

D1 (B1)D2 (B2)

=
1

1− KD12

D1 (0.4)D2 (0.4)

=
1

1− 0.2222
× (0.7× 0.8)

= 0.72

The synthesized result 1 of expert 1 and expert 2 is:

Step 2. We synthesize the results from expert 1 and
expert 2 with expert 3 based on D-number theory.

KD123 =
1

Q1Q2Q3

∑
B12∩B2=∅

D12 (B12)D3 (B3)

=
1

0.8× 0.9× 0.8
× [D12 (0.4)D2(0.6)]

=
1

0.8× 0.9
× (0.72× 0.2)

= 0.2

D (0.4) =
1

1− KD123

∑
B21∩B3=B

D12 (B12)D3 (B3)
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=
1

1− KD123

D12 (0.4)D3 (0.4)

=
1

1− 0.2
× (0.72× 0.6)

= 0.54

The synthesized result of expert 1 and expert 2 with
expert 3 is:

Step 3. Therefore, the degree of causal influence between
the two conceptual nodes C4 and C5 of FCM based on the
D-number is:

ω45 = 0.4× 0.54 = 0.216

Comparing the two processing procedures and results, it is
evident that, in contrast with the Dempster-Shafer theory,
in the D-number theory proposed, the size of the weight rep-
resenting the unknown situation is inherited in the inference
process. D-number theory has inherent advantages in dealing
with incomplete information. It relaxes the exclusive assump-
tion of FOD and BPA integrity constraints in Dempster-
Shafer theory, making the resulting FCM more natural and
reasonable. And it can be seen from Example 5 that the
calculation method of DFCM is more concise and clear.

VI. CONCLUSION
This paper analyses the deficiency of uncertain informa-
tion representation and processing ability of ECMs and
FCMs. Combined with the uncertain information represen-
tation framework of D-number theory and the latest research
results of D-number theory in conflict information process-
ing, a new cognitive graph model DCMs is proposed. DCMs
expand the ability of ECMs to express uncertain information
and have the flexibility to express and process uncertain
information. As an intelligent technology, Dempster-Shafer
theory in ECMs provides a powerful tool for integrating multi
expert knowledge to obtain scientific calculation results, but
its FOD exclusivity assumption and BPA integrity constraints
cannot deal with uncertain information. Therefore, this paper
systematically puts forward a new theory of constructing
DCMs. In D-number theory, D-number is the extension of
BPA and D-number combination rule that is an extension of
the Dempster-Shafer combination rule.

When constructing FCMs, neither intuitionistic fuzzy cog-
nitive maps (IFCMs) [33], [34] nor interval-valued fuzzy
cognitive maps (IVFCMs) [35] fully consider the problem
of knowledge composition. Therefore, this paper proposes
a new theory for constructing DFCMs. DFCMs make full
use of the characteristics of FCMs, use imprecise reasoning
methods, effectively integrate the knowledge and experience

of experts, and more intuitively reflect the comprehensive
situation of many experts’ opinions.

Future research will study other approaches to FCMs and
ECMs, such as fuzzy logic, expert systems, and uncertainty
theory. Additionally, we will further study the properties of
D-number theory and extend it to more practical applications.
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