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ABSTRACT The 3D reconstruction process is very important in a variety of computer vision applications.
Bundle adjustment has a significant impact on 3D reconstruction processes, namely in Simultaneously
Localization and Mapping (SLAM) and Structure from Motion (SfM). Bundle adjustment, which optimizes
camera parameters and 3D points as a very important final stage, suffers from memory and efficiency
requirements in very large-scale reconstruction. Multi-objective optimization (MOO) is used in solving
a variety of realistic engineering problems. Multi-Objective Particle Swarm Optimization (MOPSO) is
regarded as one of the state of the art for meta-heuristic MOO. MOPSO has utilized the concept of crowding
distance as a measure to differentiate between solutions in the search space and provide a high level
of exploration. However, this method ignores the direction of the exploration which is not sufficient to
effectively explore the search space. In addition, MOPSO starts the search from a fully randomly initialized
swarm without taking any prior knowledge about the initial guess into account, which is considered
impractical in applications where we can estimate initial values for solutions like bundle adjustment. In this
paper, we introduced a novel hybrid MOPSO-based bundle adjustment algorithm that takes advantage of
initial guess, angle quantization technique, and traditional optimization algorithms like RADAM to improve
the mobility of MOPSO solutions; the results showed that our algorithm can help improve the accuracy and
efficiency of bundle adjustment (BA).

INDEX TERMS 3D reconstruction, bundle adjustment, multiobjective optimization (MOO), MOPSO.

I. INTRODUCTION
Fine-tuning is the procedure in which parameters of the
system should be modified precisely to match specific
observations. The solver of these problems usually starts
from the initial values of the parameters and adjusts them to
fit the model with given observations. A well-known fine-
tuning technique called Bundle Adjustment is considered
one of the most important procedures to improve the
precision of the 3D reconstruction process. The bundle
adjustment was solved as an NLSE problem using many
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iterative methods like Gauss-Newton, Levenberg-Marquardt,
and others. These methods are sometimes vulnerable to fall
in local minima especially when the initial solution has poor
quality, so they become a bottleneck for computation and
memory. [1]

The Particle Swarm Optimization algorithm, which was
inspired by the motion of bird flocks and schooling fish,
was originally suggested by Eberhart and Kennedy in 1995.
Since then, it has attracted the attention of many researchers
around the world [2]. Due to its efficiency, PSO has been
used in a variety of applications to date. A multi-objective
version was proposed later [3] to adapt the algorithm to solve
multi-objective optimization problems. Since then, many
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improvements were proposed to the MOPSO which enabled
it to be used in different applications [4]. This research aims
to improve the quality of the Bundle Adjustment process
using an improved version of MOPSO. So, in this paper,
we will present how to adapt the MOPSO algorithm to
solve fine-tuning problems, and we will test the modified
algorithm on standard multi-objective test functions as proof
of concept, then we will use it to solve the bundle adjustment.
The key contributions of this study can be summarized as
follows.
• proposing the concept of guess-aided initialization to
evolutionary algorithms to adopt them to fine-tuning
problems.

• Introducing a generalized version of the angle quantiza-
tion concept and deploying it in MOPSO.

• Proposing a novel approach for selecting the leader that
can help to improve the exploitation abilities of the
MOPSObased on hybridizationwith traditional gradient
descent approaches.

• Providing a new method to solve the bundle adjustment
problem in a more efficient way than the traditional
methods.

The remainder of this paper is organized as follows. Section II
presents the background. While Section III presents the
proposed GAMOPSO algorithm followed by Section IV
experiment sets for both standard MOO test functions and
bundle adjustment, in Section V we will show the results
and discussions, followed by Section VI which presents the
summary and conclusions.

II. BACKGROUND
A. MULTI-OBJECTIVE OPTIMIZATION
Optimization problems that have at least two objective
functions are called multi-objective optimization problems.
These objectives sometimes conflict with each other. In other
words, they are represented by different units of measurement
and may have the same importance in the decision-making
process. [1] Assuming that we want to minimize the objective
functions, the problem of multi-objective optimization can be
represented as follows:

Min f (x) := [f1(x),f2(x)..,fk (x)] (1)

Subject to the following restrictions:

gi (x) ≤ 0; i = 1,2,...,m (2)

hj (x) = 0; j = 1,2,...,p (3)

where:
x = [x1, x2, ..., xn] represents the optimized variables

vector
fi:Rn→R, i= 1, 2, ...,k objective functions to be mini-

mized
gi, hj:Rn→ R,i= 1, 2, ...,m, j= 1, 2, ...,p inequalities and

equations of constraints imposed on the problem.
A decision vector x̄ is called Pareto-optimal if it is not

dominated by any other decision vector, the final result of the

optimization problem is a set of Pareto-optimal vectors called
Pareto-front. [2]

B. PREVIOUS WORK
Conventional bundle adjustment methods are mainly based
on the Levenberg-Marquardt algorithm or its improved
versions, which mainly aim to reduce its computational
complexity by manipulating the structure of matrices or
using the reduced camera system and other methods.
The Levenberg algorithm uses the sum of squares of the
projection error as a cost function. So, for n cameras
and m points, Levenberg has O((m + n)3) complexity
and O((m + n)m.n) memory usage. Many methods have
been introduced to reduce the complexity of BA, including
the Schur complement method, which helps reduce the
complexity to O(m3

+ mn) with memory usage O(m.n),
and it can be reduced more depending on secondary sparse
structures. [3] Despite the possibility of reducing complexity,
iterative methods are often vulnerable to fall in local
minima, especially if initial estimates are inaccurate, which
negatively affects the accuracy of the bundle adjustment
process using it.

Many researchers investigated the use of random search
algorithms due to their ability to be immunized against local
minima. The researchers in [4] used the particle swarm
optimization algorithm (PSO) to find the rotation angles, they
used the sum of the absolute projection error as an objective
function. The algorithm helped reduce the number of control
points needed to find the camera parameters, but the solutions
were only for the camera orientation and the values were far
from the ground truth values, which means a failure of the
bundle adjustment.While in [5] the authors provided a bundle
adjustment algorithm for aerial panoramic images based on
the genetic algorithm and the objective function was the sum
of the absolute value of the residual errors, they focused on
estimating the orientation of the camera. In [6] the adaptive
torque researchers used the PSO algorithm, in addition to
the techniques of crossing over and mutations used from
the Genetic Algorithm (GA) to increase the algorithm’s
exploration capabilities, and this algorithm is used to improve
the initial estimations which later used to solve the bundle
adjustment using the Gauss-Newton method. Researchers
in [7] studied the performance of different optimization
algorithms to solve the problem of bundle adjustment in
reconstructing panoramic images. These algorithms include;
Bat Algorithm BA, GrayWolf Optimizer (GWO), Arithmetic
Optimization Algorithm (AOA), Salp Swarm Algorithm
(SSA), and Particles Swarm optimization algorithm (PSO).
They concluded that the optimization algorithms gave better
performance than the traditional Levenberg algorithm. How-
ever, this method is suitable for reconstructing panoramic
images resulting from a purely rotational motion without
translation.

It is worth noticing that most of the previous work focused
on the orientation of the camera or special applications, and
to overcome this shortage, we are proposing a novel bundle
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adjustment algorithm based on amodified version ofMOPSO
as illustrated in the next section.

III. PROPOSED ALGORITHM
The proposed algorithm is a modified version of MOPSO
that can handle fine-tuning engineering problems. Algo-
rithm 1 shows the basic steps of the Guess-aided, Angle
quantization-based Multi-Objective Particle Swarm Opti-
mization (GAMOPSO) algorithm, where the algorithm starts
the process of initializing the initial swarm based on the initial
guesses and with a percentage of the swarm determined by
the InitPercent parameter, as this percentage of the initial
particles is created according to a Gaussian distribution in the
adjacent area of the given initial guess.

After that, the process of determining dominant solutions
begins through the DetermineDomination method, where
solution A is considered to dominate solution B if the values
of all objective functions of solution A are better or equal to
the corresponding values of objective functions of solution
B, and there is at least one value of objective functions of A
that is better than the corresponding value of the objective
functions of solution B. To this extent, the initialization
process for the initial swarm is finished, and the algorithm’s
iterative cycles begin as follows at each iteration:

1- Create a copy of the current swarm and call it
newSwarm

2- For each particle p in the new swarm apply the
following steps:

• Choose a leader for the particle
• Calculate the speed according to (4):

vij= wvij+c1r
(
pij−xij

)
+c2r

(
pnj−xij

)
(4)

• Move the particle p according to (5):

xij(t + 1) =xij(t)+vij (5)

• Apply the mutation on the particle if it is within the
mutationPercent portion, which gives a new particle p’

• If p’ is better than p, put p’ instead of p in the new
swarm

3- Merge current swarm and newSwarm into Swarm
4- Calculate the Ranks according to the number of

solutions dominating each solution within Swarm
5- Calculate the crowding distance for solutions
6- Calculate the angle quantization for solutions.
7- Extracting new solutions with a number equal to

numberOfParticles from Swarm arranged according to
the rank. When the ranks are equal and we need to
choose one of the solutions, we can use the crowding
distance, angle quantization, or both (based on the
variant of GAMOPSO used), and the resulting swarm
will be used as a current swarm for the next iteration.

8- Finding a Pareto front, or in other words, ranked first
solutions from the resulting swarm which resample the
best solutions found by the algorithm.

Algorithm 1 GAMOPSO
Input:
(1)InitGuess: the initial guess.
(2)InitPercent: the percent of initial solutions.
(3)maxItritions: maximum number of iterations.
(4)numberOfParticles: the number of particles in the swarm.
(5)mutationPercent: the mutation percentage.
(6)STD: the standard deviation of the Gaussian distribution.
Output:
(1)ParetoFront : the optimal solution found by the algorithm.
1: Start Algorithm
2: Swarm = GenerateInitialSwarm(InitGuess; InitP ercent;
numberOfParticles; STD)
3: Swarm=DetermineDomination(Swarm)
4: for itr=1:maxItritions do
5: newSwarm=Swarm
6: for i=1:numberOfParticles do
7: p=newSwarm(i)
8: pL=SelectLeader(p)
9: V=computeVelocity(p,pL)
10: p=moveParticle(p,V)
11: if rand<mutationPercent then
12: p’= mutate(p)
13: if Dominates(p’,p) then
14: newSwarm(i)=p’
15: else if Dominates(p,p’) then
16: newSwarm(i)=p
17: else if rand >0.5 then
18: newSwarm(i)=p’
19: end if
20: end if
21: end for
22: Swarm = [Swarm newSwarm]
23: Ranks=FindRankedParetoFronts(Swarm)
24: Distances=CalculateCrowdingDistance(Swarm)
25: Angles=CalculateCrowdingAngels(Swarm)
26: Swarm=ExtractNextPopulation(Swarm,Ranks, Distances,Angles)
27: ParetoFront=FindPareto(Swarm)
28: end for

29: End Algorithm

A. STRUCTURELESS BUNDLE ADJUSTMENT
The first challenge developers face in any optimization
problem is usually to formulate the problem relevantly, and,
as we showed in the second section of this article, the
representation of the bundle adjustment problem requires
optimizing the camera variables and structure points, so the
size of the optimized variable will be for n cameras and
m points 6n+3m. When working on a large scale, we will
have thousands of points and hundreds of camera positions at
least, and therefore the use of the traditional formulation of
the problem will have a very high computational cost, so an
alternative representation could be used, which is found in [8]
where they algebraically proved the possibility of eliminating
structure points through the use of the three-view constraints
shown in Figure 1 and Equations (6-8):

g2v
(
xk,xl,z

j
k,z

j
l

)
= qk ·

(
tk→l × ql

)
(6)

g2v
(
xl,xm,z

j
l,z

j
m

)
= ql ·

(
t l→m × qm

)
(7)

g3v
(
xk,xl,xm,z

j
k,z

j
l,z

j
m

)
=
(
ql × qk

)
·
(
qm × t l→m

)
−
(
qk × tk→l

)
·
(
qm × ql

)
(8)
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FIGURE 1. The three views constrain illustration [8]: the 3D point lj seen
by the three views zk, zl, and zm. So, the constrain can be applied to find
the best relative location of the three views.

FIGURE 2. Solution representation in GAMOPSO, (a). the first call of
GAMOPSO x1 is fixed x2, and x3 are varying. (b). the second call of
GAMOPSO x1, x2, and x3 are fixed only x4 is varying.

where:

qi
.
=RTi K

−1
i pi (9)

g2v : A two-view constraint that matches points from two
scenes

g3v : A three-view constraint that matches points from
three scenes.

tk→l : The linear transition vector from frame k to frame l.
Ri : the rotation matrix of the camera i.
Ki : the matrix of intrinsic parameters of the camera i.
Pi : the positions of the pixels corresponding to the

structure points in the camera i.
It can be seen that this representation greatly helps in
reducing the size of the optimized variables, as we only
optimize the camera variables instead of the camera vari-
ables and the structure points, and thus this representation
will reduce the computational and memory requirements
significantly.

Further reduction was gained by sequentially process-
ing the coming frames. In the first call of GAMOPSO,
it processes the first three frames as in monocular bundle
adjustment we can predict the position of the frames up to
a specific scale, the first frame (x1) is fixed as the reference
frame and frames (x2, x3) position and orientation were
optimized relatively to x1 to minimize the three objectives
functions (G1, G2, G3) as shown in Figure (2-a). On the other
hand, when a new frame arrives, GAMOPSO will be called
to optimize the position and orientation of the new frame (x4
for example) to minimize only two of the objective functions
(G2, G3) as G1 was optimized in the previous call as shown
in Figure(2-b).

B. GUESS-AIDED INITIALIZATION
As the fine-tuning problems start with an initial solution
that needs to be optimized, so to give GAMOPSO this
ability a guess-aided initialization mechanism was proposed.
Algorithm 2 shows the initialization process based on the
initial guess, where a portion of the particles equivalent to
the required ratio (InitPercent) is generated around the initial
guess within specified standard deviation (STD) using a
Gaussian distribution. After the required number of particles
around the initial guess, the remaining particles are randomly
generated along with the search space. The goal of initial
guess is to help the algorithm to converge quickly as soon
as possible; To understand the idea, let us analyze the
performance of the algorithm in all possible scenarios related
to the quality of initial guess; actually, there are two scenarios:
• For the first one, we have an accurate guess, so part of
the initial solution will be close to the optimal solution;
thus, the convergence of the algorithmwill be faster than
the random initialization case.

• The second scenario is to have a bad guess, but since we
have only a small portion of the solution initiated based
on the guess and the greatest portion generated randomly
throughout the space, in this case, the performance of
GAMOPSO will be approximately equivalent to the
performance of traditional MOPSO.

Each particle is tested in case the boundaries of the search
space are exceeded; the values are fixed and made within the
search space. The final step is to calculate the values of the
objective functions of the particles. Figures (2) and (3) illus-
trate the differences between the random and Guess-aided
initialization processes.

Algorithm 2 Guess Aided Initialization
Input:
(1)InitGuess: the initial guess.
(2)numberOfSolutions: the number of solutions.
(3)InitPercent: the percent of initial solutions.
(4)STD: the standard deviation of the Gaussian distribution.
Output:
(1)Swarm: the initialized swarm.
1: Start Algorithm
2: IGParticlesNum round(numberOfSolutions _ InitP ercent)
3: for i=1:numberOfSolutions do
4: if i<= IGParticlesNum then
5: Swarm(i).position= InitGuess+GausianRand(STD)
6: else
7: Swarm(i).position= LowerBound+Rand∗[UpperBound LowerBound]
8: end if
9: Swarm(i).position = CheckBounds(Swarm(i).position)
10: Swarm(i).Cost = objectiveFunction(Swarm(i).position)
11: end for

12: End Algorithm

C. ANGLE QUANTIZATION
The concept of angle quantization was proposed by [9] to
improve the exploration process in the NSGA-II algorithm.
Figure (4) illustrates the concept of angle quantization, as we
can see that the algorithm has only selected the solutions with
red color because theymaintain equal distribution concerning
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FIGURE 3. The randomly initialized swarm solutions were generated
randomly without taking the initial guess into account.

FIGURE 4. In the guess-aided initialized swarm, part of the solutions was
generated around the initial guess.

FIGURE 5. The concept of angle quantization-based selection, we chose
the solutions from the less explored angular sector. [9].

FIGURE 6. The extended angle quantization concept, where a12 is the
angle after projecting the values of the objective functions on the plane
specified by the objective functions F1 and F2 and the same for a13 on
the plane specified by the objective functions F1 and F3 and so on.

angular sectors in addition to domination. So, the idea is
to divide the objective space into equal angular sectors and

calculate the number of solutions in each sector, then new
solutions are chosen from the less explored sectors, which
helps in a more balanced distribution of solutions over the
whole searching space.

The algorithm will begin by sorting the solutions into non-
dominated ranks. Next, each non-dominated rank is chosen
one at a time to build the next generation, starting from
the first rank, until reaching a rank at which the number of
solutions exceeds the required number to complete the new
swarm. In this stage, the algorithm will select the solutions
that have a lower crowding angle range rank from the last
rank. As a contribution of this research, the concept of angle
quantization was adapted to the GAMOPSO algorithm and
extended to be able to deal with more than two objective
functions. To illustrate the idea, simply map the values of
the objective functions on a plane specified by two objective
functions each time, so that an independent crowding angle is
generated between every two axes of the objective functions,
as shown in Figure (5), where a12 is the angle after projecting
the values of the objective functions on the plane specified by
the objective functions F1 and F2 and the same for a13 on the
plane specified by the objective functions F1 and F3, etc. So,
in general, for problems with N objective functions, we need
CA crowding angles as follows:

CA =N
2 C =

N!
(N− 2) 2!

(10)

A probabilistic method was used to choose the plane to be
explored each time we have to select from the same rank
solutions; simply we chose one of the crowding angles based
on uniform distribution with probability equals:

P =
1

CA
(11)

Using uniform distribution guarantees equal chances for
exploration on each objective axis, thus improving explo-
ration of the whole space.

D. SELECTING THE HYBRID LEADER
The traditional MOPSO selects the particle leader based on
the roulette wheel, where a solution is chosen randomly
from the repository, but this mechanism does not guarantee
rapid convergence of the algorithm, especially in complex
applications such as bundle adjustment, so we developed
a hybrid mechanism that helps to boost convergence by
integrating the RADAM algorithm [10], which is one of the
latest and best gradient algorithms, so we choose one of the
superior solutions in the previous cycles and apply gradient
for a small number of iterations to improve its quality, and
then use it as a leader for a proportion of swarm particles
and thus deploy the effect of this solution, which in turn may
help in discovering better solutions as the remaining particles
move towards the leader.

Basically, the third constraint -which was illustrated
previously in Equation (3) contains elements from the first
and second constraints; thus, it could be a good absolute
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FIGURE 7. Results of the generational distance metric: The proposed algorithm variants outperform the standard MOPSO, which means that
the optimal solutions found by the GAMOPSO variants are closer to the ideal solutions. (a) GD metric POL. (b) GD metric KUR. (c) GD metric
FON. (d) GD metric ZDT2. (e) GD metric ZDT1. (f) GD metric SCH. (g) GD metric ZDT6. (h) GD metric ZDT4. (i) GD metric ZDT3.

indicator of the solution quality and used as a selection
criterion for the superior solution. After selecting the superior
solution, RADAM is used to apply a gradient on the second
constraint - because the first constraint will be constant,
as we illustrated in Figure (2-b), using its derivative in
Equation (12) to compute the loss:

g
′
2v (xl,xm) = q

′
l ·
(
t l→m × qm

)
+ql ·

(
t
′
l→m × qm

)
+ ql ·

(
t l→m × q

′
m

)
(12)

where:
q′l : is the derivative of ql with respect to camera position

and orientation.

t ′l→m : is the derivative of the transformation from
frame l to frame m with respect to camera position and
orientation.
q′m : is the derivative of qm with respect to camera position

and orientation.
We used the epsilon greedy method to balance between

the random behavior of the algorithm (using a roulette
wheel to choose the leader) and the deterministic
behavior (using an improved solution as a leader) as
follows:

leader =

{
roulette wheel r < ε

improved solution r ≥ ε
(13)
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TABLE 1. The standard test functions used in experiments.

IV. EXPERIMENT SETS
A. STANDARD MULTI-OBJECTIVE EXPERIMENTS
DESCRIPTION
To investigate the effect of each suggested contribu-
tion, 3 variants of the GAMOPSO algorithm were
implemented:
• GAMOPSOD: which uses the crowding distance only
to choose from the same ranked particles.

• GAMOPSOA: which uses angle quantization only to
choose from the same-ranked particles.

• GAMOPSODA: which uses probability to select either
crowding distance or angle quantization to choose from
the same ranked particles.

The three variants were compared with the MOPSO imple-
mentation suggested by [11].

A set of standard mathematical functions suggested for
multi-objective optimization problems illustrated in Table (1)
was used to evaluate the performance of algorithms. These

functions have been used in many previous studies in this
field. Veldhuizen [12] used a set of these functions and two
of them were selected (FON) [13], and (KUR) in our case,
in addition to (POL) [14] and (SCH). In 1999 Deb [15]
proposed methodological approaches for developing test
functions of multi-objective optimization algorithms, Zit-
zler and his colleagues [16] followed this methodology
and proposed six optimization functions, five of them
were used in this research ZDT1, ZDT2, ZDT3, ZDT4,
ZDT6.

Three standard MOO metrics were used to compare the
performance:

1) GENERATIONAL DISTANCE METRIC (GD)
This metric is given by the following formula:

GD(S, P) =
1

|S|

(∑
s∈S

min
r∈p
‖ F(s)− F(r) ‖p

) 1
p

(14)
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where |S| is the number of points in the Pareto set
approximation and P is a discrete representation of the Pareto
front. Generally, p = 2. In this case, it is the Euclidean
distance between the Pareto set approximation and the true
Pareto. [17]

2) HYPER-VOLUME METRIC
Sometimes called an S-metric, the hypervolume is
described as the volume of the space in the objec-
tive space dominated by the Pareto front approxima-
tion S and delimited from above by a reference point
r∈Rmsuch that for all z∈S, z ≺ r . The hypervolume metric is
given by:

HV(S, r) =λm
(⋃

z∈S
[z; r]

)
(15)

where λm is the m-dimensional Lebesgue measure[18]

3) COVERAGE OF TWO SETS METRIC (C)
Let A and B be two Pareto set approximations. The C-metric
maps the ordered pair (A, B) to the interval [0; 1] and is
defined as follows:

C(A,B)=
| {b ∈ B, there exists a ∈ A such that a ≺ b} |

|B|
(16)

If C(A,B) = 1, all elements of B are dominated by (or
equal to) the elements of A. If C(A,B) = 0, all elements of
B strictly dominate the elements of set A. Both orderings
must be computed since C (A, B) is not always equal to
1 -C (A, B). This metric captures the proportion of points
in a Pareto set approximation A dominated by the Pareto set
approximation B [18]

The experiments were conducted 10 times to verify
the performance of the algorithms, each time the seed
of the random number generator was changed to ensure that
the series of generated random numbers did not affect the
results obtained by averaging the measurements of the ten
experiments.

B. BUNDLE ADJUSTMENT EXPERIMENTS
To evaluate the performance of the proposed algorithm,
bundle adjustment was applied to two artificial trajectories
generated based on the simulation of camera movement and
the projection of 3D points with noise to model the projection
error of the camera projection error [19]. The first trajectory
consists of 200 points distributed over 20 overlapping frames,
and the second consists of 200 points distributed over
50 overlapping frames. GAMOPSO was compared to the
traditional Levenberg-Marquardt-based bundle adjustment
algorithm [20] and the finite-deference approximation-based
bundle adjustment [21].

The experiments were repeated five times using a different
seed for the random number generator to statistically test the
performance of the algorithm.

V. RESULTS AND DISCUSSIONS
A. STANDARD MULTI-OBJECTIVE RESULTS
1) GENERATIONAL DISTANCE
As can be seen in Figure (7), there is a significant difference
in the generational distance between the GAMOPSO variants
and the standard MOPSO, and since the less, the better,
the proposed variants outperform the standard MOPSO in
this metric. This means that the optimal solutions found by
the GAMOPSO variants are closer to the ideal solutions.
Also, sometimes GAMOPSOA outperforms GAMOPSOD,
so in some cases, angle quantization helped to improve the
diversity of solutions more than the crowding distance, which
helped the algorithm find more appropriate solutions.

2) HYPER-VOLUME METRIC
Figure (8) shows the average hypervolume metric, which
provides a qualitative measure of convergence and solution
sparsity at the same time. The more the merrier, the results
show that the proposed algorithms are superior to theMOPSO
algorithm in the hypervolumemetric; therefore, the quality of
the solutions is better and their spread is more balanced, as it
covers a larger area of the search space than the benchmark
algorithm, which confirms the superiority of the proposed
algorithm in all its variants over the benchmark algorithm in
terms of hypervolume.

3) SET COVERAGE METRIC
Figure (9) shows the two-set average coverage metric, which
calculates the percentage of solutions in a set A dominated
by at least one of the solutions of another set B. The results
show that the coverage ratio of the solutions found by the
GAMOPSO algorithm ranged from 60% to 100%, compared
to a low opposite coverage that ranged between 0 and 5%,
indicating that the quality of the solutions obtained from the
proposed variants is better than the quality of the solutions
obtained by the benchmark, which confirms the absolute
superiority of the proposed algorithms over the benchmark
MOPSO algorithm in this metric.

B. BUNDLE ADJUSTMENT RESULTS
1) FIRST TRAJECTORY RESULTS
A camera trajectory was generated over 20 frames that
detected 200 distinct points with large rotation steps between
frames (6 degrees), as shown in Figure (10). A comparison
was made between the proposed algorithm and the two
benchmark algorithms (Levenberg-Marquardt and finite-
deference approximation). The results showed an obvious
superiority of the proposed algorithm in terms of accuracy
and execution time. Figure (11) shows the box plot of the
results of the first trajectory, where the red line expresses the
mean error value for each algorithm during the experiment,
while the blue rectangle represents the range of values within
which the error ranged during the experiment. It is worth
noting that the error values in the five experiments for
each of the two benchmark algorithms are fixed as they are

VOLUME 10, 2022 71515



M. Alndiwee et al.: Novel Bundle Adjustment Approach Based on GAMOPSO for 3D Reconstruction Applications

FIGURE 8. Results of the hypervolume metric: The variants of the proposed algorithm are superior to the MOPSO algorithm in the hypervolume
metric, as the volume occupied by their solutions (shown in columns 2, 3, and 4 in each subfigure) is greater than the volume occupied by the
solutions of the benchmark algorithm. (a) HV metric POL. (b) HV metric KUR. (c) HV metric FON. (d) HV metric ZDT2. (e) HV metric ZDT1. (f) HV metric
SCH. (g) HV metric ZDT6. (h) HV metric ZDT4. (i) HV metric ZDT3.

deterministic, while the proposed algorithm uses the random
search technique, so there is a discrepancy in the error values
according to the seed, despite that, the highest value of the
error for GAMOPSO is less by 5% from the minimum error
value of the benchmark algorithms.

Figure (12) shows the execution time of the algorithms
on the first trajectory, the proposed algorithm is faster and
consumes approximately 50% of the time consumed by the
Levenberg algorithm and approximately 60% of the time of
Finite Deference.

2) SECOND TRAJECTORY RESULTS
A camera trajectory was generated over 50 frames that
detected 200 distinct points with smaller rotation steps
between frames (3 degrees), as shown in Figure (13).
A comparison was made between the proposed algorithm
and the two benchmark algorithms (Levenberg-Marquardt
and finite-deference approximation). The results showed an

obvious superiority of the proposed algorithm in terms of
accuracy and execution time. Figure (14) shows the box plot
of the results of the second trajectory, where the red line
expresses the mean error value for each algorithm during the
experiment, while the blue rectangle represents the range of
values within which the error ranged during the experiment.
It is worth noting that the error values in the five experiments
for each of the two benchmark algorithms are fixed as they are
deterministic, while the proposed algorithm uses the random
search technique, so there is a discrepancy in the error values
according to the seed, despite that, the highest value of the
error for GAMOPSO is less by 20% from the minimum error
value of the benchmark algorithms.

Figure (15) shows the execution time of the algorithms on
the second trajectory, the proposed algorithm is faster and
consumes approximately 56% of the time consumed by the
Levenberg algorithm and approximately 58% of the time of
finite differences.
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FIGURE 9. Set coverage metric results: the coverage ratio of the solutions from the variants of the GAMOPSO algorithm ranged from 60% to 100%,
compared to a low ratio of the opposite coverage ranging between 0 and 5%, which indicates that the quality of the solutions obtained from the
proposed variants is better than the quality of solutions obtained by the benchmark. (a) Set Coverage POL. (b) Set Coverage KUR. (c) Set Coverage
FON. (d) Set Coverage ZDT2. (e) Set Coverage ZDT1. (f) Set Coverage SCH. (g) Set Coverage ZDT6. (h) Set Coverage ZDT4. (i) Set Coverage ZDT3.

FIGURE 10. The first trajectory of the camera has 200 3D points, 20 frames, and a 6 degree
angular step.
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FIGURE 11. The RMSE value for the entire trajectory as a boxplot: The highest value of the error
for GAMOPSO is less than 5% of the minimum error value of the benchmark algorithms.

FIGURE 12. The total execution time of algorithms as boxplot: the proposed algorithm is faster
and consumes approximately 50% of the time consumed by the Levenberg algorithm and
approximately 60% of the time of finite deference.

FIGURE 13. The Second trajectory of the camera is 200 3D points, 50 frames, and 3 degrees angular step.
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FIGURE 14. The RMSE value for the entire trajectory as a boxplot: The highest error value for
GAMOPSO is less than 20% of the minimum error value of the benchmark algorithms.

FIGURE 15. The total execution time of algorithms as boxplot: the proposed algorithm is faster
and consumes approximately 56% of the time consumed by the levenberg algorithm and
approximately 58% of the time of finite deference.

VI. CONCLUSION
Bundle adjustment plays a vital role in 3D reconstruction
processes. Therefore, improving the performance of bundle
adjustment can be useful in a variety of applications,
including Visual Simultaneously Localization and Mapping
(VSLAM), Structure from Motion (SfM), Virtual Reality
(VR), and others. So future research could examine the
use of this algorithm in real 3D reconstruction applications
like Visual Simultaneous Localization and Mapping and
Structure from Motion. Or it might apply the same tech-
niques proposed in this paper for GAMOPSO like guess-
aided initialization, and hybridization with gradient descent
algorithms to improve other evolutionary algorithms like
(NSGAII, NSGAII, etc.).

In this paper, we proposed a novel bundle adjustment
algorithm based on a developed version of MOPSO. The
proposed algorithm used initial guess, angle quantization
technique, and RADAM optimizer to improve the mobility
and quality of the solutions, the results showed that our

algorithm can help improve the accuracy and the efficiency
of BA.
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