
Received 17 May 2022, accepted 2 June 2022, date of publication 29 June 2022, date of current version 11 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3187040

GPU-Accelerated Partially Linear Multiuser
Detection for 5G and Beyond URLLC Systems
MATTHIAS MEHLHOSE 1, GUILLERMO MARCUS 2, DANIEL SCHÄUFELE1,
DANIYAL AMIR AWAN 1, NIKOLAUS BINDER2, MARTIN KASPARICK 1,
RENATO L. G. CAVALCANTE 1, (Member, IEEE),
SŁAWOMIR STAŃCZAK 1,3, AND ALEXANDER KELLER2
1Department of Wireless Communications and Networks, Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute (HHI), 10587 Berlin, Germany
2NVIDIA, 10623 Berlin, Germany
3Department of Telecommunication Systems, Faculty IV-Electrical Engineering and Computer Science, Technical University of Berlin, 10587 Berlin, Germany

Corresponding author: Matthias Mehlhose (matthias.mehlhose@hhi.fraunhofer.de)

This work has been partially funded by the German Federal Ministry of Education and Research (BMBF, Germany) in the project Open
Testbed Berlin - 5G and Beyond (OTB-5G+) under Grant 16KIS0980 and supported as part of the 6G Research and Innovation Cluster
6G-RIC under Grant 16KISK020K.

ABSTRACT We have implemented a recently proposed partially linear multiuser detection algorithm in
reproducing kernel Hilbert spaces (RKHSs) on a GPU-accelerated platform. Our proof of concept combines
the robustness of linear detection and non-linear detection for the non-orthogonal multiple access (NOMA)
based massive connectivity scenario. Mastering the computation of the vast number of inner products (which
involve kernel evaluations) is a challenge in ultra-low latency (ULL) applications due to the sub-millisecond
latency requirement. To address the issue, we propose a massively parallel implementation of the detection
of user data in a received orthogonal frequency-division multiplexing (OFDM) radio frame. The result is
a GPU-accelerated real-time OFDM receiver that enables detection latency of less than one millisecond
that complies with the requirements of 5th generation (5G) and beyond ultra-reliable and low latency
communications (URLLC) systems. Moreover, the parallelization and acceleration techniques explored and
demonstrated in this study can be extended to many signal processing algorithms in Hilbert spaces, such as
projection onto convex sets (POCS) and adaptive projected subgradient method (APSM) based algorithms.
Results and comparisons with the state-of-the-art confirm the effectiveness of our approach.

INDEX TERMS Machine learning, wireless communication, multiuser detection, NOMA, MIMO,
ultra-reliable low latency communication, massively parallel architectures, GPU, CUDA.

I. INTRODUCTION
Recently, a large body of research has been devoted to
nonorthogonal multiple access (NOMA) [1]–[4] because
the requirements of massive connectivity beyond 5G
mobile networks necessitate the efficient use of time-
frequency resources. In contrast to traditional orthogonal
multiple access (OMA), such as orthogonal frequency-
division multiple access (OFDMA), NOMA allocates the
same time-frequency resource to multiple users in the same

The associate editor coordinating the review of this manuscript and

approving it for publication was Turgay Celik .

cell, which may result in strong multiuser interference.
To deal with the strong interference, partially linear multiuser
detection in reproducing kernel Hilbert spaces (RKHSs)
has been proposed (e. g., see [5]–[10]). The reason for
considering partially linear receivers is that, while nonlinear
detectors can outperform linear detectors significantly in
scenarios with strong multiuser interference, they may be
highly sensitive even to small changes in a wireless envi-
ronment (e. g., those caused by intermittent interference and
multipath scattering inmassivemachine-type communication
(mMTC) scenarios). In fact, theoretical studies [11] have
shown that linear detectors can achieve a comparable spectral

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 70937

https://orcid.org/0000-0002-8307-7120
https://orcid.org/0000-0003-4270-4359
https://orcid.org/0000-0002-1135-0204
https://orcid.org/0000-0002-9214-6976
https://orcid.org/0000-0002-8826-7580
https://orcid.org/0000-0003-3829-4668
https://orcid.org/0000-0001-6925-6010

M. Mehlhose et al.: GPU-Accelerated Partially Linear Multiuser Detection for 5G and Beyond URLLC Systems

efficiency to nonlinear methods in massive multiple-input
multiple-output (MIMO) systems. Therefore, in massive
MIMO NOMA systems, purely nonlinear detectors may be
inefficient. Based on these facts, studies in [8]–[10] have
designed a hybridmultiuser detector in RKHSs that combines
the strengths of nonlinear and linear filters. The proposed
supervised projection-based learning algorithm, which is a
special case of the adaptive projected subgradient method
(APSM) [12], has some very desirable features. For example,
the algorithm learns to detect modulation symbols of a
user directly without any intermediate parameter estimation
which is often prone to errors. Furthermore, if the channel
information is available, the algorithm can be initialized by a
conventional linear filter, and the performance can be further
improved in scenarios for which linear filters are insufficient
when dealing with strong interference.

Basically, the APSM-based algorithm tracks the intersec-
tion of time-varying closed-convex sets to which the desired
solution (often a vector or a function) belongs. In this regard,
it resembles a classic projection-based set-membership
estimation1 (e. g., see [13], [14]). In general, such algorithms
consist of a sequence of projections on the constructed
closed convex subsets of an appropriately defined Hilbert
space. The closed convex subsets are often chosen such that
the projections (which require computing inner products)
admit a closed-form solution; for example, projections onto
hyperplanes, closed balls, closed halfspaces, etc. It is known
that the computational effort of projection-based algorithms
is dominated by the cost of computing projections. In ultra-
low latency (ULL) applications, however, straightforward
implementations of a large number of seemingly simple
inner products in an orthogonal frequency-division multi-
plexing (OFDM) radio frame may consume too much time
to satisfy the temporal and latency constraints. Luckily,
many algorithms that involve projections and inner products
in Hilbert spaces lend themselves very well to massive
parallelism. In order to realize our goal of real-time GPU-
accelerated multiuser detection, we exploit the intrinsic
parallelism of APSM and carefully schedule operations
across the memory hierarchy of the graphics processing
unit (GPU).

Before we move on to our contributions, we mention
the fact that in the future many Radio Access Network
(RAN) functions will be virtualized on general-purpose
commercial off-the-shelf (COTS) hardware. Recent industry
trials have shown that virtualization of RAN functions in
the Distributed Units (DUs), consisting of computationally
intensive baseband operations, may not be cost-effective
(compared to traditional Application-Specific Integrated
Circuit (ASIC) hardware) and viable without using modern
acceleration platforms. Therefore, baseband algorithms that
are suited to such platforms are the subject of current interest
in the wireless industry.

1It is important to mention that the classical set-membership estimation
considers a finite number of sets whereas in our APSM-based algorithm an
infinite number of sets is considered.

A. CONTRIBUTIONS
Our main contribution is a massively parallel GPU-
accelerated NOMA system that can fulfill the real-time
constraints of ULL in an OFDM-based system. Below,
we summarize our contributions.
• Our focus in this study is to accelerate the detection of
an OFDM radio frame which may involve computations
of a large number of inner products. The acceleration
is achieved by state-of-art parallelization and memory
management techniques.

• The performance of the developed GPU-accelerated
system is then demonstrated in a setup with 6 transmit
and 16 receive antennas. Compared to the existing
proof of concept (PoC) MATLAB implementation [8]
we demonstrate that using massively parallel processor
structures on a GPU reduces the processing time to
milliseconds.

• GPU-accelerated signal processing is an important part
of 5G and beyond communication systems [15]. Such
platforms are particularly suited to signal processing
algorithms consisting of a large number of projections
requiring inner products that can be executed in parallel.
This means that the techniques that we have developed
in this work can also be used in other inner product (and
projection) based algorithms, such as projection onto
convex sets (POCS) signal processing in Hilbert spaces.

B. STRUCTURE
The paper is organized as follows. In Section II, we review
the algorithm for multiuser detection proposed in [9].
In particular, some practical aspects of the algorithm are
explained along with its potential for acceleration by parallel
signal processing. Section III discusses the implementation
of the algorithm and the techniques to optimize parallel
processing and memory access on the targeted graphics
processing unit (GPU) platform. Section IV describes the
hardware equipment and the experimental setup deployed
in the proof-of-concept. Finally, the results are presented in
Section V.

II. MACHINE LEARNING BASED MULTIUSER DETECTION
In this section, we describe the APSM-based algorithm for
multiuser detection that has been studied in [8]–[10]. Here,
we focus on the implementation and computational aspects
of the algorithm, and we avoid repeating unnecessary details.

A. PRELIMINARIES
In the following, the sets of natural numbers, non-negative
integers, real numbers, and complex numbers are denoted by
N, N0, R, and C, respectively. We define the range N1,N2 :=

{N1,N1 + 1, . . . ,N2}, where N1,N2 ∈ N0 and N1 ≤ N2.
This study deals with adaptive filtering in special (real)

Hilbert spaces known as RKHSs. Briefly, given an arbi-
trary (linear) subspace U ⊆ Rl , an RKHS (H, 〈·, ·〉H)
is a Hilbert space with the inner product 〈·, ·〉H, uniquely
associated with a positive definite function known as the
reproducing kernel κ : U × U → R of H. In this study, κ is

70938 VOLUME 10, 2022

M. Mehlhose et al.: GPU-Accelerated Partially Linear Multiuser Detection for 5G and Beyond URLLC Systems

either the linear kernel denoted by κL and defined as (∀u, v ∈
U) κL(u, v) := uT v or the Gaussian kernel denoted by κG and

defined as (∀u, v ∈ U) κG(u, v) := exp
(
−
‖u−v‖2

Rl
2σ 2

)
, where

‖ · ‖Rl is the Euclidean norm in Rl and the variance σ 2 >

0 is a design parameter for the kernel width. The RKHSs
associated with κL and κG are denoted by (HL, 〈·, ·〉HL) and
(HG, 〈·, ·〉HG), respectively.
Now consider either of the above-mentioned RKHSs and

the well-known property that (∀u ∈ U) κ(u, ·) ∈ H.
In this study, we deal with functions of the type f :=∑N

n=1 anκ(un, ·) ∈ H, where an ∈ R and un ∈ U .
For two functions f :=

∑N
n=1 anκ(un, ·) ∈ H and g :=∑M

m=1 bmκ(vm, ·) ∈ H, where am, bm ∈ R and un, vm ∈ U ,
we define the inner product

〈f , g〉H :=
N∑
n=1

M∑
m=1

anbmκ(un, vm), (1)

inducing the norm

‖f ‖2H = 〈f , f 〉H . (2)

B. PARTIALLY LINEAR FILTER DESIGN
The studies in [8]–[10] combine the robustness of linear
beamforming filters with a higher spatial resolution of
nonlinear beamforming filters by designing a partially linear
filter in RKHSs. In more detail, the RKHS HG associated
with the Gaussian kernel κG is combined (i. e., summed)
with the RKHS HL associated with the linear kernel κL
to obtain a sum RKHS of partially linear filters. To be
more precise, a partially linear filter f is defined as an
element of the real RKHS H := HL + HG :=

{wLfL + wGfG : fL ∈ HL, fG ∈ HG}, where wL,wG ≥ 0 are
fixed weights for the linear and the Gaussian part, respec-
tively. Fact 1 shows how the kernel and inner products are
computed inH:
Fact 1 (Reproducing kernel of the weighted sum

space [16]): Assume that the input space U ⊆ Rl has a
nonempty interior. Then, given any wL,wG > 0 and u, v ∈ U ,
κ(u, v) := wLκL(u, v)+wGκG(u, v) is the reproducing kernel
of the sum spaceH equipped with the inner product

〈f , g〉H := w−1L 〈fL, gL〉HL
+ w−1G 〈fG, gG〉HG

. (3)

The inner products in the two component RKHSs in (3)
are simple to compute because, according to (1), they consist
of (mainly) kernel evaluations. Note that the closed form in
(3) is in general not valid for arbitrary choices of the two
kernels.

C. MULTIUSER DETECTION
Consider a multiuser uplink with K users and M receive
antennas. We assume a non-dispersive channel so that the
received signal (sampled at a fixed symbol rate) at the time
t ∈ N0 is given by

r : N0 → CM
: t 7→ [r1(t), r2(t), . . . , rM (t)]ᵀ (4)

=

K∑
k=1

√
pkbk (t)hk + n(t), (5)

where pk ∈ R is the transmit power of user k ∈ 1,K ,
and bk (t) ∈ C is the modulation symbol. The vectors
hk ∈ CM and n(t) ∈ CM stand for the channel signature
of user k and additive noise, respectively. Note that we
do not assume any distribution and structure of the noise
and the receive antenna array, respectively. The objective
of multiuser detection considered in this study is to design
a filter gk : CM

→ C for a selected user k , such that
(∀t ∈ N0)

∣∣gk (r(t))− bk (t)∣∣ ≤ ε, where ε > 0 is a small
predefined noise tolerance. In other words, the goal is to
detect the desired modulation symbols directly without any
intermediate parameter estimation.

D. ADAPTIVE DETECTION IN SUM RKHS
In this section, we describe the APSM-based detection
algorithm of [8]–[10]. We convert the complex vector r(t) ∈
CM into two real vectors r1(t) := [<(r(t))ᵀ =(r(t))ᵀ]ᵀ ∈
R2M and r2(t) := [=(r(t))ᵀ −<(r(t))ᵀ]ᵀ ∈ R2M which
enables processing in real Hilbert spaces as considered
in [12], [17]. Similarly, the training modulation symbols are
converted to [b1(t) b2(t)]ᵀ := [<(b(t))=(b(t))]ᵀ ∈ R2. The
proposed filter f : R2M

→ R operates on r1(t) and r2(t)
separately. The relation between f and the complex-valued
filter g described in Section II-C is given by (∀t ∈ N0)
(C 3)g(r(t)) = f (r1(t)) + if (r2(t)), where i is the solution
to the equation i2 = −1. To simplify indexing, we define a
new time index: (∀t ∈ N0) (∀l ∈ 1, 2) n := 2t + l − 1,
rn = r2t+l−1 := rl(t) and bn = b2t+l−1 := bl(t).
Henceforth, we denote the input space of received signals
by U :=

{
rn ∈ R2M

: n ∈ N0
}
. We now turn our attention

to the design of an adaptive filter f such that (∀n ∈ N0)
|f (rn) − bn| ≤ ε, where the precision is controlled by the
design parameter ε > 0.We assume that f ∈ H and a training
sample (rn, bn) ∈ U ×R is available ∀n ∈ N0. Then, a closed
and convex set of functions in H consistent with the training
sample at time n is given by

Cn :=
{
f ∈ H : | 〈f , κ(rn, ·)〉H − bn| ≤ ε

}
. (6)

In the online learning setting considered here, the training
samples arrive as a sequence and each sample defines a set
of the form in (6). Ideally, the objective is to find a filter
f ∗ ∈ H such that f ∗ is a member of all these sets, i. e.,
f ∗ ∈

⋂
n∈N0

Cn. However, since it is challenging to find a
low-complexity algorithm to solve this problem, we allow a
finite number of sets not to share a common intersection and
consider the simplified problem:

find f ∗ ∈
⋂
n≥no

Cn, (7)

for some no ∈ N0, under the assumption that
⋂

n≥no Cn 6= ∅.
The advantage of the above formulation is that we can find
an f ∈ H that is close to the intersection in (7) utilizing an
APSM-based [12], [18] algorithm which we describe below.

VOLUME 10, 2022 70939

M. Mehlhose et al.: GPU-Accelerated Partially Linear Multiuser Detection for 5G and Beyond URLLC Systems

As in [17], [18], given an index set Jn of size W , and
starting from an arbitrary f0 ∈ H, we construct a sequence
of filter estimates inH given as

(∀n ∈ N0) fn+1 =
∑
j∈Jn

qnj PCj (fn), (8)

where PCj (fn) = fn + βnj κ(rj, ·) = fn + βnj (wL κL(rj, ·) +
wG κG(rj, ·)) is the projection of fn onto the set Cj, with βnj
given by

βnj :=


bj−〈fn,κ(rj,·)〉H−ε

κ(rj,rj)
, if

〈
fn, κ(rj, ·)

〉
H − bj < −ε,

0, if |
〈
fn, κ(rj, ·)

〉
H − bj| ≤ ε,

bj−〈fn,κ(rj,·)〉H+ε
κ(rj,rj)

, if
〈
fn, κ(rj, ·)

〉
H − bj > ε,

(9)

and where (qnj)j∈Jn are non-negative weights satisfying∑
j∈Jn

qnj = 1.
The index set Jn defined as Jn := n−W + 1, n if

n ≥ W − 1, otherwise Jn := 0, n, allows for a
subset of sets C1,C2, . . . ,Cn to be processed concurrently
to accelerate convergence, and the weights qnj can be used to
adaptively prioritize the sets. The computational advantage
of this algorithm is that the projection PCj (fn) only requires
simple inner products, and the overall algorithm is amenable
to parallelization resulting in significant acceleration as
discussed in Section II-E.
Before we move onto the next section, it can be verified

that the filter estimate generated by (8) can be decomposed
as fn :=

∑n−1
i=1 γ

(n)
i κ(ri, ·) =

∑n−1
i=1 γ

(n)
i wLκL(ri, ·) +∑n−1

i=1 γ
(n)
i wGκG(ri, ·) =: fL,n + fG,n, where fL,n ∈ HL

and fG,n ∈ HG [9]. Since HL is nothing but the Euclidean
space R2M , it is spanned by the Euclidean basis (which we
refer to as the linear dictionary in the following) DL :=

{wLκL(e1, ·),wLκL(e2, ·), . . . ,wLκL(e2M , ·)}, where em ∈

R2M is the canonical basis vector having a one at the
m-th index and zeros elsewhere. So, every κL(rn, ·) can be
expressed as

∑2M
m=1[rn]mκL(em, ·), with [rn]m the m-th entry

of rn. As a result, the linear component (∀n ∈ N) fL,n =
wL

∑n−1
i=1 γ

(n)
i κL(ri, ·) = wL

∑2M
m=1 γ

(L,n)
m κL(em, ·) consists

of 2M components with their coefficients γ (L,n)
m updated by

projections PCj (fn) in (8). In contrast to the linear component,
the Gaussian dictionary given by DG,n := {wGκG(r1, ·) ,
wGκG(r2, ·), . . . , wGκG(rn−1, ·)} grows with time n as the
iterations progress.
Remark 1 (ML: Computation and Communication): It is

common in literature to assume that the channels between the
users and the base stations remain constant only for a certain
time period known as the channel coherence time [19].
Therefore, the training time should be much smaller than the
coherence time such that a large portion of the coherence time
can be used for detection/communication. From a processing
and computation point-of-view, the training time is the total
time it takes to collect/sample the training set and learn a
good detection filter. This means that learning algorithms
that have low complexity and can be accelerated are highly
desired. Furthermore, in high-data rate communication fast

detection is also highly desirable, so that as much data as
possible can be detected during the coherence time.

E. ACCELERATION VIA PARALLEL PROCESSING
As mentioned above, the concurrent projections in (8)
accelerate the convergence. Unfortunately, large values of
W result in significant computational and memory burden
and this may result in intolerable latency in real-time
applications. However, note that the W projections in (8)
are independent, which means that they can be computed
in parallel on platforms equipped with GPUs optimized
for such applications. In addition, the computation of
βnj in (9) involves the inner product

〈
fn, κ(rj, ·)

〉
H. Since

fn :=
∑n−1

i=1 γ
(n)
i κ(ri, ·), this inner product is a sum of n

independent inner products (equivalently kernel evaluations
due to (1)), so these can also be computed in parallel.
Furthermore, each linear kernel evaluation requires the
dot-product (∀u, v ∈ U) uᵀv =

∑2M
i=1[u]i[v]i, while

the Gaussian kernel evaluation requires the calculation of
the Euclidean-norm

√
(u− v)ᵀ(u− v) followed by further

operations. This means that both kernel evaluations are
independent component-by-component computations for any
two input vectors followed by further operations on the
sum or accumulation of these computations. The complexity
of the above operations is linear in the dimension of the
input vectors (the number of antennas M in this study),
however the computation time can be reduced drastically if
each component-by-component computation is executed in
parallel. Finally, each computation requires access to data
stored in various memory locations (discussed in Section III)
on the computing platform which means that, in addition to
the computational aspects, special attention should be paid to
the memory allocation and access. Before we move on to the
real-time implementation of the algorithm in (8), we remark
how this APSM-based algorithm can be implemented in
practical communication systems.
Remark 2 (Focus on Detection): APSM is an online algo-

rithm that keeps track of the set of minima of an infinite
number of time-changing objective functions. As mentioned
in Remark 1, in a traditional communication system, gener-
ally an initial ‘‘training phase’’ is carried out during which
the desired user sends a certain number of training pilots
to the receiver, which allows the receiver to approximate a
good initial receive filter using APSM. The training phase
is then stopped, and it is followed by the communication
or ‘‘detection phase’’ during which the response of the
trained filter is used as an estimate of the desired user’s
modulation symbols. In principle, retraining is only required
if the communication channels change abruptly resulting
in large errors. In situations, such as mobile scenarios,
where communication channels change gradually, we can,
in principle, track these changes using APSM through the
data symbols. Therefore, after the initial training phase, the
latency is mainly dependent on the time incurred during
detection of radio frames, which involves computation of a
large number of inner products according to (1) and (3). Due

70940 VOLUME 10, 2022

M. Mehlhose et al.: GPU-Accelerated Partially Linear Multiuser Detection for 5G and Beyond URLLC Systems

FIGURE 1. CUDA-device mapping. A GPU consists of thousands of CUDA
cores grouped as SMs executing code in SIMT style. The number of SMs is
determined by the size of the device. See Section III-A.

to this reason, the acceleration of detection is the main focus
of our work in the following.

III. REAL-TIME IMPLEMENTATION
In this section, we review the target platform, followed by
a detailed description of the parallelization and optimization
techniques used to achieve real-time performance.

A. PLATFORM OVERVIEW
GPUs are massively parallel processing devices that share
a common architecture for general-purpose programming
using the Compute Unified Device Architecture (CUDA)
programming model. CUDA is a C++ extension that allows
parallel code to be described as threads organized in a
hierarchical structure, while also providing a framework
for the communication between the host and the device.
Each thread represents a logically independent sequence of
instructions, similar to a thread in a classic programming
model. Threads are grouped into blocks (groups of threads)
and grids (groups of blocks). This hierarchical organization
maps very well onto the device structure, with threads
organized within the Streaming Multiprocessors (SMs) as
warps on the hardware cores. A warp is a common grouping
of cores executing in parallel as single instruction multiple
threads (SIMT), and a SM can have one or more warps active
at any given time, depending on the number of cores available
per SM architecture. GPUs are composed of one or more SMs
as depicted in Figure 1.

The above-mentioned hierarchy implies several types
of memory, which differ in their sizes, bandwidths, and
latencies. Global Memory is available to all threads and it is
the largest (several Gigabytes off chip), but it also has the
highest latency (from a hundred up to thousands of cycles).
Shared Memory is available within SMs, and it is only
available to threads belonging to the same block. It has lower
latency (tens of cycles) than Global Memory and is smaller
in size (a few kilobytes on chip). Finally, registers are local to
every thread, small in number (a few per thread in a typical
scenario) with the lowest latency.

Note that threads can cooperate with each other by
collaborating to perform tasks more efficiently or operating
in batches, for example, to reduce the perceived latency of
the overall memory access (known as latency hiding). Finally,

FIGURE 2. Training overview. The received vectors in the sliding window
are processed by the CUDA blocks in parallel, computing projections of fn
onto the W convex sets defined by the W received vectors and the
corresponding modulation symbols. The resulting estimate (bottom) is
used to update the dictionary and the coefficients (left) then
representing fn+1.

the architecture has limited coherence of both execution
and memory consistency at different levels of the hierarchy.
A detailed description of the platform is found in the CUDA
programming guide [20].

B. BASIC IMPLEMENTATION
As discussed at the end of Section II-D, to access the filter
estimate fn in (8), we require access to the overall dictionary
Dn := {DG,n ∪ DL} and the coefficients γ (n)

i at time n. The
new filter estimate fn+1 is computed using projections on
a sequence (sliding window) of W convex sets constructed
from fn, the training sample received at time n, and Dn. The
Gaussian dictionary is then extended with the newly arriving
training sample and, along with the new coefficients γ (n+1)

i ,
it is used to store fn+1.

Every training sample (the received vector (5)) consists of
samples from multiple antennas at time n during the training
phase. One CUDA block can be used for each vector in
the sliding window, with multiple threads inside the block
computing the inner products

〈
fn, κ(rj, ·)

〉
H in parallel. The

final summation is performed in a reduction step, which can
also be executed in parallel. As the new training samples
arrives, the sliding window advances from n to n+ 1 and the
process is repeated. This implementation variant is depicted
in Figure 2. Furthermore, as discussed in Section II-E, since
both the inner products and the per-vector operations can
be computed in parallel, we can use the GPU resources
efficiently, as detailed later in this section.

The detection stage computes fn(rn) (according to the
formulas in (1) and (3)) as an estimate of bn, where fn is
the trained filter at detection time n and rn is the received
vector. It does not modify Dn or γ

(n)
i , instead using them to

access fn :=
∑n−1

i=1 γ
(n)
i κ(ri, ·). Because fn(rn) is essentially

the inner product 〈fn, κ(rn, ·)〉H, the estimation can also be
parallelized by processing each input vector in parallel, one
per block. The required n−1 inner products are computed one
per threadwithin the block. Finally, the results from threads in
a block are summed to produce an estimation from the input
vector as fn(rn) :=

∑n−1
i=1 γ

(n)
i κ(ri, rn). This is depicted in

Figure 3.

VOLUME 10, 2022 70941

M. Mehlhose et al.: GPU-Accelerated Partially Linear Multiuser Detection for 5G and Beyond URLLC Systems

FIGURE 3. Detection overview. The top depicts the sequence of input
vectors rn for which we need to calculate fn(rn) as an estimate of bn.
Each input vector is processed by one CUDA block in parallel, and inside
each CUDA block, the corresponding inner product is computed by
multiple threads in parallel. The dictionary and the coefficients
represent fn. The result of each block is the approximation of the symbol
bn, which is stored in an array (bottom).

We point out that further parallelization is possible
as the detection of each desired user can be performed
independently. The number of users that can be detected
in parallel is therefore only limited by the GPU resources
available.

C. OPTIMIZATION OF INNER PRODUCTS
Both training and detection share the computation of the inner
products 〈fn, κ(rn, ·)〉H, which is the dominant operation of
projection based algorithms. Implemented as a CUDA kernel
to be executed on the GPU (not to be confused with the kernel
functions κ), it is the primary target for optimization with
respect to the latency of the system.

Parameters like the number of threads per group, the
number of groups per block, and the total amount of vectors
cached in shared memory all influence the performance.
Device properties like type and speed grade of global
memory, number of SMs, and amount of shared memory are
important to consider. The optimal set of parameters is found
by sweeping the parameter space combining experimentation
and guidance by profiling tools.

While optimizing the parameters determining the execu-
tion of the CUDA kernel is part of performance optimization,
algorithm transformations for massively parallel architec-
tures are required beforehand. In the following sections,
we explore such principle techniques that allow us to
achieve the desired performance of a detection latency below
1millisecond.

1) MULTIPLE SAMPLE VECTORS PER BLOCK
Our first technique aims at improving the occupancy of the
device, which is a measure of the utilization of the resources
available within the GPU. Utilization, which is a function of
several factors, can be maximized by allocating enough work
to keep the device busywithin the constraints of the hardware.
The most important constraints are the number of threads per
SM, the number of registers used per thread, and the amount
of shared memory utilized by a CUDA block.

To improve the occupancy of the CUDA kernel,
we describe the algorithm using Cooperative Groups

FIGURE 4. Shared Memory implementation. Each thread in the CUDA
block (center) computes the inner product using one dictionary entry by
performing the required computations over the components of the vector
rn (top). Multiple elements of the dictionary (left) are cached in shared
memory (center, left) in batches, allowing for the efficient processing of a
subset of the dictionary. The final result is accumulated and stored as the
approximated modulation symbol (right).

(which are primitives for partitioning work inside a CUDA
block, see [20]) and assign the processing of an input
vector rn in (5) to a single group. The threads within
this group are responsible for performing the parallel
computations for a particular input vector, and the result is
reduced (accumulated) at the end in parallel to obtain the
estimated symbol. We then assign multiple groups to one
CUDA block, with each group processing a different received
vector within the block. We can therefore use the number of
groups in a block to maximize the occupancy of the SM.

2) USAGE OF SHARED MEMORY
Our second technique benefits from using the shared memory
within the SMs of a device. As mentioned before, each block
processes multiple input vectors and, for each input vector,
computes inner products using the same dictionary entries.
Hence each entry of the dictionary may be loaded once and
reused multiple times. Shared memory is well suited for this
because it is accessible to all groups within a block. As a
consequence global memory traffic is reduced by lowering
the amount of data requested, reducing the time to load the
data.

Every thread in the block reads the vector rn from memory
and then calculates the inner products with one entry of
the cached shared slice of Dn. Once the inner products are
calculated for this slice, a new slice of Dn is read into the
cache and this process continues until the inner products for
all members ofDn are computed. This is depicted in Figure 4
for the threads of one group; other groups (not depicted) in
the same block operate over different input vectors but the
same cached slice of the dictionary.

3) TUNING AND HIDING LATENCY
While calculating the inner products, the CUDA kernel
spends most of its time accessing shared memory, and the
computations that follow memory reads are faster than the
memory accesses, which can be verified by using a profiler
tool. Therefore, it is desirable to have a balance between
memory accesses and computation, so neither will dominate
(and possibly limit) the performance.

Both the inner products (i. e., the linear and the Gaussian
kernel evaluations) require access to the received vector rn
and members of the dictionary Dn. The simple approach

70942 VOLUME 10, 2022

M. Mehlhose et al.: GPU-Accelerated Partially Linear Multiuser Detection for 5G and Beyond URLLC Systems

FIGURE 5. Balanced implementation. Threads in a CUDA block process
subsets of both the input vectors and the dictionary entries in contrast to
Figure 4. Since only a subset of the vector rn is processed, the
intermediate results (before the entire rn is processed) have to be
temporarily stored. The size of the cached dictionary elements is
independent of the number of threads in the block (in contrast to
Figure 4), and it is tuned to balance the time spent in computing and data
load.

described in Section III-C2 can be optimized by changing
the order of the computations and increasing the amount of
data in the cached slice (see Figure 5). By fetching only a
subset of rn once and reusing it across a bigger section of
the cache, without computing the full inner product in one
go, the number of cache loads is reduced and the efficiency
is increased. Note that this comes at a relatively small cost
of requiring intermediate storage in shared memory until the
entire rn is processed. This ‘‘rearrangement’’ of the inner
product computations is shown in Figure 5, and it achieves
a better balance between memory access and computations,
allowing for load and computation to overlap and decrease
the overall inner product computation time by about half.

IV. EXPERIMENTAL SETUP
This section describes the hardware components of our
real-time multiuser detection setup. The transmitter, receiver,
and signal processing equipment are shown in Figure 6.
Except for the Uniform Planar Array (UPA) shown in
Figure 7, the components are COTS devices.

A. SIGNAL PROCESSING
For development and testing, we use different locals servers
and also several high-performance computing (HPC) units
that are equipped with multiple central processing unit (CPU)
cores and at least one GPU. Our local server is shown in
Figure 6(a), this server is equipped with a Xeon W-3245
CPU and two RTX 2080 Ti consumer GPUs. This server also
handles the signal processing part and the data transfer from
and to the Software-Defined Radios (SDRs).

B. RADIO ACCESS
The basestation is composed of four Ettus USRPN310 SDRs.
Furthermore, we use a single National Instruments (NI)
OctoClock for a global positioning system (GPS) disciplined
clock and timing source for our SDRs. With this setup, all
four SDRs, each equipped with four ports on the transmitter
(Tx) and receiver (Rx) path, behave like a single SDR system
with up to sixteen synchronized physical antenna ports for
both the Rx and Tx paths.

TABLE 1. NOMA system parameters.

FIGURE 6. Real-time machine learning based multiuser detection setup.

FIGURE 7. Antenna array configurations.

A subset of our system parameters is shown in Table 1
and is also given in the following Section V. For over the air
signal transmission, we use an OFDM system mode with a
sampling rate of 30.72MHz.Note that we can switch between
radio signals from our UPA shown in Figure 7(a) and our
Uniform Circular Array (UCA) shown in Figure 7(b). The
receive antenna arrays and user equipment (the transmitters)
are described below.

1) USERS ANTENNAS
Each user antenna is installed on a tripod, allowing for
conveniently adjusting location and height, relative to the
receiving antenna array. Every single antenna shown in
Figure 6(b) represents a single transmitting user, sending its
radio signal, and is connected to one of the eight transmitter
ports on our SDR module [21]. According to the datasheet,
the antenna gain is 5 dBi at 2.5GHz and up to 7 dBi at
5.7GHz, and the antenna polarization is vertical.

2) UNIFORM PLANAR ARRAY
The UPA, shown in Figure 7(a), is equipped with 32 cross-
polarized patch antenna elements. These elements are

VOLUME 10, 2022 70943

M. Mehlhose et al.: GPU-Accelerated Partially Linear Multiuser Detection for 5G and Beyond URLLC Systems

FIGURE 8. Average relative bit error rate for different modulation
schemes. Black bars show the ±1SD confidence interval. BPSK and QPSK
were omitted from the plot because the BER is negligible.

arranged in 4 rows and 8 columns. Each of 32 equidistant
patch elements operates at a center frequency of 2.442GHz.

3) UNIFORM CIRCULAR ARRAY
The sixteen physical Rx antennas are arranged as a UCA,
as shown in Figure 7(b). Uniform spacing is ensured by a ring
retainer around the 16 antennas. The antenna operates in the
2.4GHz and 5GHz Wireless Local Area Network (WLAN)
band with an omnidirectional radiation pattern and vertical
polarisation.

V. PERFORMANCE RESULTS
In this section, we present performance results for the
experiments based on the setup presented in Section IV. The
objective is to demonstrate the real-time performance of the
partially linear filtering algorithm presented in Section II-D
in combination with the parallelization techniques and opti-
mizations presented in Section III. In the following, we first
show the performance of the partially linear filtering for
various simulation settings and parameters. We then compare
the detection latencies of multiple platforms and show the
acceleration in processing using techniques proposed in this
study.

For the algorithm in (8), unless noted otherwise, we use
uniform Gaussian and linear weights, i. e., wL = wG =

0.5, a sliding window size of W = 20, and a Gaussian
kernel variance of σ 2

= 0.05. We use 16 antennas, and
6 users with uniform transmit power. Each data point is
an average of 100 transmissions, consisting of 685 training
symbols and 3840 data symbols each. The symbols consist
of Gray-coded constellation points. Modulated training and
data symbols occupy up to 144 subcarriers on 5 OFDM
symbols, and 27 OFDM symbols, respectively. We use
15 kHz subcarrier spacing, which results in a total signal
bandwidth of 2.16MHz.

Figure 8, shows the BER performance of standard
modulation schemes. All experiments were performed
with the above-mentioned parameters. The error rate
is negligible for binary phase-shift keying (BPSK) and

FIGURE 9. The average relative bit error rate for different numbers of
antennas using QPSK. Shaded regions show the ±1SD confidence interval.

TABLE 2. Summary of the performance improvements of the detection
CUDA kernel for various optimization steps as described in Section III-C.

quadrature phase-shift keying (QPSK), while for higher-order
modulations a significant number of bit errors occur.
As shown in Figure 6(b), the angular separation of the users
is very small, which renders the task of separating them
difficult. Nevertheless, we observe that our algorithm can
reach acceptable bit error rates even for high modulation
schemes. Note that in a practical system our algorithm would
be followed by forward error correction (FEC), which will
correct the remaining bit errors.

In Figure 9, we demonstrate the BER performance as a
function of an increasing number of antennas, where the
specified number of antennas was chosen randomly among
the 16 antennas available in our system. As mentioned in
Section II-D, the algorithm does not assume any particular
antenna array structure. The measurements are executed for
the two types of antenna arrays presented in Section IV.
We note that the results for both antenna types are very
similar. We observe that the users become simpler to separate
with an increasing number of antennas, and hence the bit
error rate tends toward zero. Even for a relatively small
number of antennas as compared to the number of users,
the performance is acceptable because the Gaussian kernels
provide the capability to separate users that cannot be
separated linearly.

In Table 2, we present the detection latencies of the
different implementations presented in Section III-C on
different GPUs. The GPUs represent two different device
families: The RTX 2060 super and RTX 2080 Ti are
consumer-grade boards with Graphics Double Data Rate
(GDDR) memory, while the Titan V is a data-center class
board equipped with High Bandwidth Memory (HBM) and

70944 VOLUME 10, 2022

M. Mehlhose et al.: GPU-Accelerated Partially Linear Multiuser Detection for 5G and Beyond URLLC Systems

with more computing resources. All used GPU cards execute
the same code (neither device-specific optimizations nor
tuning was carried out). The table does not show the time
elapsed during training, which amounts to roughly 100ms.
As mentioned in Remark 2, the relatively long training
time is not of concern because retraining is, in principle,
only required if the environment changes abruptly. For
comparison, a MATLAB implementation of our algorithm
takes more than 40 s to execute on an i7-6700T CPU with
simple parallelization (up to 8 Threads on 4 Cores) from
the native Parallel Toolbox. The comparison with signal
processing in MATLAB may not be fair, because we did not
optimize the MATLAB code for speed. Nevertheless, one
may conclude that the optimized CUDA implementation is
several orders of magnitude faster than a native CPU-based
implementation.

VI. CONCLUSION
Our proof-of-concept provides a practical and fast implemen-
tation of recently proposed partially linear adaptive filter-
ing for multiuser detection on GPU-accelerated platforms.
We exploit the parallelism intrinsic to the mathematical
formulation and distribute the computations in an ‘‘optimal’’
way across the targeted GPU. The techniques developed
for hiding latency and accelerating memory access are key
to reaching real-time performance. As a result, we can
performmultiuser detection with a detection latency of below
1millisecond with our commercial off-the-shelf (COTS)
laboratory setup. In future work, similar techniques will be
applied to drastically reduce the total amount of processing
time spent on training. Moreover, channel coding will be
included in the future. Finally, we note that APSM shares
many operations with similar projection-based algorithms in
Hilbert spaces which have seen many applications in signal
processing and machine learning. Therefore, our acceleration
techniques may be generalized to such projection-based
algorithms and algorithms based on reproducing kernel
Hilbert spaces. The developed and used CUDAAPSM library
code is publicly available on the GitHub server of the
Fraunhofer HHI [22].

REFERENCES
[1] W. Shin, M. Vaezi, B. Lee, D. J. Love, J. Lee, and H. V. Poor, ‘‘Non-

orthogonal multiple access in multi-cell networks: Theory, performance,
and practical challenges,’’ IEEE Commun. Mag., vol. 55, no. 10,
pp. 176–183, Oct. 2017.

[2] Y.Wang, B. Ren, S. Sun, S. Kang, andX. Yue, ‘‘Analysis of non-orthogonal
multiple access for 5G,’’ China Commun., vol. 13, no. 2, pp. 52–66,
Feb. 2016.

[3] Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and
V. K. Bhargava, ‘‘A survey on non-orthogonal multiple access
for 5G networks: Research challenges and future trends,’’ CoRR,
vol. abs/1706.05347, pp. 1–32, Jun. 2017.

[4] H. Tabassum, M. S. Ali, E. Hossain, M. J. Hossain, and D. I. Kim, ‘‘Non-
orthogonal multiple access (NOMA) in cellular uplink and downlink:
Challenges and enabling techniques,’’ 2016, arXiv:1608.05783.

[5] K. Higuchi andA. Benjebbour, ‘‘Non-orthogonal multiple access (NOMA)
with successive interference cancellation for future radio access,’’ IEICE
Trans. Commun., vol. E98.B, no. 3, pp. 403–414, 2015.

[6] X. Su, H. Yu,W. Kim, C. Choi, and D. Choi, ‘‘Interference cancellation for
non-orthogonal multiple access used in future wireless mobile networks,’’
EURASIP J. Wireless Commun. Netw., vol. 2016, no. 1, pp. 1–12,
Dec. 2016.

[7] S. M. R. Islam, N. Avazov, O. A. Dobre, and K.-S. Kwak, ‘‘Power-domain
non-orthogonal multiple access (NOMA) in 5G systems: Potentials and
challenges,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 2, pp. 721–742,
2nd Quart., 2017.

[8] M. Mehlhose, D. A. Awan, R. L. G. Cavalcante, M. Kurras, and
S. Stanczak, ‘‘Machine learning-based adaptive receive filtering: Proof-of-
concept on an SDR platform,’’ in Proc. IEEE Int. Conf. Commun. (ICC),
Jun. 2020, pp. 1–5.

[9] D. A. Awan, R. L. G. Cavalcante, M. Yukawa, and S. Stanczak, ‘‘Detection
for 5G-NOMA: An online adaptive machine learning approach,’’ in Proc.
IEEE Int. Conf. Commun. (ICC), May 2018, pp. 1–6.

[10] D. A. Awan, ‘‘Robust learning in wireless networks: Efficacy of models
and prior knowledge in learning from small sample sets,’’ Ph.D. thesis,
Netw. Inf. Theory (NetIT), Faculty IV, Tech. Univ. Berlin, Berlin,
Germany, 2021, doi: 10.14279/depositonce-11266.

[11] E. Bjornson, J. Hoydis, and L. Sanguinetti, Massive MIMO Net-
works: Spectral, Energy, and Hardware Efficiency. Norwell, MA, USA:
Now Foundations and Trends, 2017.

[12] I. Yamada and N. Ogura, ‘‘Adaptive projected subgradient method for
asymptotic minimization of sequence of nonnegative convex functions,’’
Numer. Funct. Anal. Optim., vol. 25, nos. 7–8, pp. 593–617, Jan. 2005,
doi: 10.1081/NFA-200045806.

[13] P. L. Combettes, ‘‘The foundations of set theoretic estimation,’’ Proc.
IEEE, vol. 81, no. 2, pp. 182–208, Feb. 1993.

[14] H. Stark, Y. Yang, and Y. Yang, Vector Space Projections: A Numerical
Approach to Signal and Image Processing, Neural Nets, and Optics.
New York, NY, USA: Wiley, 1998.

[15] NVIDIA Aerial: Build and Deploy GPU-Accelerated 5G Virtual Radio
Access Networks (vRAN). Accessed: Jun. 24, 2022. [Online]. Available:
https://developer.nvidia.com/aerial-sdk

[16] M. Yukawa, ‘‘Adaptive learning in Cartesian product of reproducing
kernel Hilbert spaces,’’ IEEE Trans. Signal Process., vol. 63, no. 22,
pp. 6037–6048, Nov. 2015.

[17] K. Slavakis, S. Theodoridis, and I. Yamada, ‘‘Adaptive constrained
learning in reproducing kernel Hilbert spaces: The robust beamforming
case,’’ IEEE Trans. Signal Process., vol. 57, no. 12, pp. 4744–4764,
Dec. 2009.

[18] S. Theodoridis, K. Slavakis, and I. Yamada, ‘‘Adaptive learning in a world
of projections,’’ IEEE Signal Process. Mag., vol. 28, no. 1, pp. 97–123,
Jan. 2011.

[19] J. Du and R. A. Valenzuela, ‘‘How much spectrum is too much in
millimeter wave wireless access,’’ IEEE J. Sel. Areas Commun., vol. 35,
no. 7, pp. 1444–1458, Jul. 2017.

[20] CUDA Programming Guide. Accessed: Jun. 24, 2022. [Online]. Available:
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

[21] N.A.T. GmbH NAMC-SDR. Accessed: Jun. 24, 2022. [Online]. Available:
https://www.nateurope.com/products/NAMC-SDR.html

[22] CUDA APSM Library. Accessed: Jun. 24, 2022. [Online]. Available:
https://github.com/fraunhoferhhi/libapsm

MATTHIAS MEHLHOSE received the Dipl.-Ing.
(FH) degree in telecommunications and com-
munications techniques from the University of
Applied Sciences for Engineering and Economics
(FHTW), Berlin, in 2008, and the Master of
Science degree in electrical engineering from
the Technical University of Berlin (TU Berlin),
in 2011.

He started his employment at theWireless Com-
munications and Networks Department, Fraun-

hofer Institute for Telecommunications, Heinrich Hertz Institute (HHI),
in 2007, with an internship. Until 2012, he works there as a Student Assistant.
Since 2012, he has been working as a Research Associate and an Engineer
with the Wireless Communications and Networks Department, Fraunhofer
Institute for Telecommunications, HHI. His research interest includes
implementation of real-time signal processing algorithms on multi-core
processors with high-speed data links to SDR systems equippedwithmassive
MIMO antenna arrays.

VOLUME 10, 2022 70945

http://dx.doi.org/10.14279/depositonce-11266
http://dx.doi.org/10.1081/NFA-200045806

M. Mehlhose et al.: GPU-Accelerated Partially Linear Multiuser Detection for 5G and Beyond URLLC Systems

GUILLERMO MARCUS received the degree
in electronics engineering from Simón Bolívar
University, Venezuela, the M.Sc. degree from the
Instituto Tecnológico y de Estudios Superiores
de Monterrey, Mexico, and the Ph.D. degree
(magna cum laude) from Heidelberg University,
Germany. He joined NVIDIA, in 2013. He is
currently a Senior Software Engineer at NVIDIA
at the intersection of graphics, communications,
and machine learning. He is interested in software

engineering and applied scientific computing with a focus on accelerated
computing and application-specific accelerators. He received the PRACE
Award at ISC 2011.

DANIEL SCHÄUFELE received the B.Sc. degree
in IT-systems engineering from the Hasso-
Plattner-Institute, University of Potsdam, Ger-
many, in 2012, and the B.Sc. and M.Sc. degrees
in computer engineering from the Technical
University of Berlin, Germany in 2015 and 2017,
respectively.

He is currently a Research Associate with
the Fraunhofer Institute for Telecommunications,
Heinrich Hertz Institute, Berlin, Germany. His

research interest includes applying machine learning algorithms to wireless
communication systems.

DANIYAL AMIR AWAN received the M.Sc. and
Ph.D. (summa cum laude) degrees in electrical
engineering from the Technical University of
Berlin (TU Berlin), Germany, in 2013 and 2020,
respectively. He is currently a Research Associate
with the Fraunhofer Institute for Telecommuni-
cations, Heinrich Hertz Institute (HHI), Berlin,
Germany. Previously, he worked as a Research
Associate at the TU Berlin and as a Guest
Researcher at the HHI. His research interests

include application of optimization theory, function analysis, and machine
learning to problems in wireless communication systems.

NIKOLAUS BINDER received the M.S. degree
in computer science from the University of Ulm,
Germany.

He is currently a Senior Research Scientist at
NVIDIA. He joined NVIDIA, in 2011. He helped
planning and implementing several government
funded projects for two companies, maintained
their IT infrastructure, and worked for the men-
tal images GmbH as a Research Consultant.
His research, publications, and presentations are

focused on quasi-Monte Carlo methods, photorealistic image synthesis, ray
tracing, and rending algorithms with a strong emphasis on the underlying
mathematical and algorithmic structure.

MARTIN KASPARICK received theDipl.-Ing. and
Dr.-Ing. degrees from the Technische Universität
Berlin (TU Berlin), Germany, in 2009 and 2015,
respectively. From 2010 to 2013, he had been a
Research Associate with the Heinrich Hertz Chair
of Information Theory and Theoretical Informa-
tion Technology, TU Berlin. Since 2013, he has
been with the Fraunhofer Institute for Telecommu-
nications, Heinrich Hertz Institute (HHI), Berlin.
He currently leads the Signal and Information

Processing Group, Fraunhofer HHI. His current research interests include
network optimization, V2X communications, software-defined radio, and
the application of machine learning to wireless communication systems.

RENATO L. G. CAVALCANTE (Member, IEEE)
received the Electronics Engineering degree from
the Instituto Tecnológico de Aeronáutica, São José
dos Campos, Brazil, in 2002, and the M.E. and
Ph.D. degrees in communications and integrated
systems from the Tokyo Institute of Technology,
Tokyo, Japan, in 2006 and 2008, respectively. He is
currently a Research Fellow with the Fraunhofer
Institute for Telecommunications, Heinrich Hertz
Institute (HHI), Berlin, Germany, and a Lecturer

with the Technical University of Berlin. Previously, he held appointments
as a Research Fellow with the University of Southampton, U.K., and
as a Research Associate with The University of Edinburgh, U.K. His
current research interests include signal processing for distributed systems,
multiagent systems, convex analysis, machine learning, and wireless
communications. He received the Excellent Paper Award from the Institute
of Electronics, Information and Communication Engineers in 2006 and the
IEEE Signal Processing Society (Japan Chapter) Student Paper Award in
2008. He also coauthored a study that received a Best Student Paper Award
at the 13th IEEE International Workshop on Signal Processing Advances in
Wireless Communications in 2012. From April 2003 to April 2008, he was
a recipient of the Japanese Government (MEXT) Scholarship.

SŁAWOMIR STAŃCZAK received the Dipl.-Ing.
and Dr.-Ing. (summa cum laude) degrees in elec-
trical engineering from the TU Berlin, in 1998 and
2003, respectively, and the Habilitation Degree
(venialegendi), in 2006. He studied electrical
engineering with specialization in control theory
at the Wroclaw University of Technology and at
the Technical University of Berlin (TU Berlin).
Since 2015, he has been a Full Professor of
network information theory with the TU Berlin

and the Head of the Wireless Communications and Networks Department,
Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute
(HHI). He is the coauthor of two books and more than 200 peer-reviewed
journal articles and conference papers in the area of information theory,
wireless communications, signal processing, and machine learning. From
February 2018 to July 2020, he was the Chairperson of the ITU-T
Focus Group on machine learning for future networks, including 5G.
From 2012 to 2015, he was an Associate Editor of the IEEE TRANSACTIONS

ON SIGNAL PROCESSING.

ALEXANDER KELLER received the Dr.Rer.Nat.
degree (summa cum laude) from the Technical
University of Kaiserslautern.

He is currently the Director of Research at
NVIDIA. Before, he had been the Chief Scientist
of mental images. Prior to industry, he worked
as a Full Professor of computer graphics and
scientific computing at Ulm University. He has
more than three decades of experience in ray
tracing, pioneered quasi-Monte Carlo methods for

light transport simulation that are used across industries, and connected the
domains of machine learning and transport simulation. His research interests
include wireless communication systems, machine learning, and computer
graphics.

70946 VOLUME 10, 2022

