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ABSTRACT Lithium-ion (Li-ion) battery systems are critical elements of future energy systems and electric
vehicles. Accurate prediction of the state of charge (SoC) is necessary for the safe and reliable functioning of
Li-ion battery systems. Achieving a precise SOC estimate is challenging due to the nonlinear characteristics
and variations ofmodel parameters caused over the cell lifetime. This paper introduces an adaptive estimation
strategy that can compensate for the effect of cell degradation for achieving high accuracy SoC estimation.
The proposed method uses an integral correction-based SoC estimation loop utilizing a Li-ion cell model.
The effect of model parameter variation is corrected by introducing two additional correction factors, the
cell model resistance, and capacity correction factor. These correction factors are employed to update the
Li-ion cell model, resulting in an adaptive integral correction-based SoC estimation technique that can
compensate for the influence of cyclic degradation-induced parameter change. The proposed method is
validated through extensive simulations in the Matlab-Simulink environment, and its output is compared
to the existing unscented Kalman filter-based SoC estimation method. The proposed estimation strategy can
adapt to the cell circumstances and correct for model uncertainties. The results indicate that the proposed
adaptive SoC estimation strategy provides more precise and accurate SoC estimates for the entire lifespan
of the Li-ion cell.

INDEX TERMS Adaptive estimation, battery management systems, cell degradation, Kalman filter, lithium-
ion cell, state of charge estimation, state of health.

I. INTRODUCTION
Lithium-ion batteries are extensively used in the electric
vehicle and renewable energy industries. The high energy
density and long life of Li-ion batteries make them a perfect
choice in energy storage systems. Li-ion batteries help to
store more energy and facilitate long-range electric vehi-
cles and uninterrupted access to renewable energy systems
[1], [2]. In addition to the advantages, these batteries can also
cause dangerous explosions, if the Li-ion cells are operated
beyond their safe operating limits [3], [4].

Battery management systems (BMS) are used along with
Li-ion batteries to enhance their capacity utilization without
going over the safety limits. By monitoring cell voltage,
current, and temperature, BMS ensures the cell’s safe and
reliable operation. BMS’s functions include SoC estimation,
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cell balancing, range estimation, power estimation, and com-
munication with the main control unit [5]–[8].

For the smooth functioning Li-ion battery and for the reli-
able functioning of BMS, the remaining discharge capacity
of the individual Li-ion cells has to be known. The state of
charge (SoC) describes the remaining discharge capacity of a
cell relative to its total discharge capacity. SoC is a decisive
state in BMS, as most of its functionalities are dependent
on the SoC of individual Li-ion cells. For the smooth func-
tioning of BMS and to extract maximum energy from the
battery pack, accurate SoC measurement is required. [9].
Since SoC is a cell’s internal state, it is difficult to get a direct
measurement. It is often estimated using direct or indirect
methods [10]–[14].

Open circuit voltage (OCV), a key indicator of SoC,
is one of the main direct measurement methods [15]–[18].
SoC-OCV relationships are recorded at the cell equilibrium
condition, and OCV can be directly mapped to identify the
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cell SoC. Because Li-ion cells require a long rest time to reach
equilibrium, direct OCV-based SoC estimate in practical sit-
uations is limited.

Coulomb counting (Ah Method) is another direct method
used for SoC estimation [19]–[21]. The Ah-method counts
the total charge-discharge ampere-hours (Ahs) relative to the
total cell discharge capacity. This method works quite accu-
rately, but the initial SoCmust be known in advance. Also, the
measurement noise and variation in total discharge capacity
can cause SoC estimation errors. SoC-OCV relationships
are often used to re-calibrate coulomb counting-based SoC
estimation.

Electrochemical impedance spectroscopy(EIS) is another
direct SoC measurement technique. It measures the
impedance of the cell at a range of frequencies and the mea-
sured impedance is used for identifying the SoC of the
cell [22]–[24]. EIS requires to apply sinusoidal voltage sig-
nals for extracting the impedance values and its applications
are limited in online SoC estimation.

When dynamic load conditions are present, direct measure-
ment of SoC will not be accurate and reliable. Model-based
estimation methods are used for more accurate estimates of
SoC during operation. Model-based methods employ cell
models to describe the behavior of cells to estimate the SoC.
Models such as the electrochemical model, equivalent cir-
cuit model, and data-driven models frequently appear in the
literature [10]–[14], [25]–[27]. These models are used with
direct SoC measurement methods to improve SoC estimation
accuracy.

Model-based SoC estimation method uses a cell model
and inputs the model with cell current and temperature.
The model calculates the internal states and predicts the
SoC. The main source of estimation error in model-based
techniques are measurement noises and model parameter
uncertainties. To correct the estimation error, the difference
between the measured cell terminal voltage and model output
value is applied to an algorithm or feedback observer to
correct the estimated model states. Popular feedback algo-
rithms or observers are PI-based, Kalman filter-based, slid-
ing mode observers, etc. These model-based SoC estimation
methods can provide accurate SoC estimation results with
measurement noises and slightmodel uncertainties [28]–[39].
When Li-ion cells cycle and age, the cell parameters will
get deviated from those in new cell conditions. This param-
eter variation causes higher model parameter uncertainties
and makes the cell model inaccurate for the estimation
of SoC.

In practice, it is necessary to update the cell model to
match the current cell conditions in order to get higher SOC
estimation accuracy. As the cell ages, the cell discharge
capacity reduces and reaches its end of life. The reduction
in cell capacity is represented using state of health (SoH).
It is the relative measure of the cell’s present total discharge
capacity to its rated capacity. SoH estimation algorithms are
used for identifying the capacity fade and to update the model
to achieve better SoC estimation results [40]–[48].

Along with loss in cell capacity, the cell’s internal resis-
tance values also increase with the usage of the Li-ion cell.
Thesemodel parameter variations in cell capacity and internal
resistances increase with cell usage. These variations cause
increased model errors and low estimation accuracy. In order
to correct the model uncertainties induced by cycling and
degradation, the model parameters must be updated to reflect
cell conditions.

Adaptive SoC estimation methods which can suit the bat-
tery conditions have to be used in practical applications.
In [49], [50] sliding mode observers and Lyapunov-based
adaptive law is used for adjusting the model parameters, but
does not account for actual variations in the cell capacity.
References [51], [52] relays on the estimated SoC for cal-
culating the present cell capacity, which can lead to an inac-
curate SoC estimation. Most of the adaptive methods in the
literature rely on the same cell measurements and estimated
SoC for correcting the model parameters. Relying on the
same estimated SoC for correcting the model errors can lead
to higher estimation errors. The SoC can also be estimated
accurately using data-driven neural network-based models.
The usage patterns of battery systems in various applications
will be different. The training of a data-driven model accom-
modating all these variations requires quite a large amount
of data and resources, which makes it more complex and
costly [53]–[56].

This paper aims to provide a simple and adaptive technique
for accurate estimation of SoC in Li-ion cells, considering
parameter variations under practical conditions. The pro-
posed adaptive methodology combines the equivalent circuit
model and thermal model. To improve the SoC estimation
accuracy, two additional control loops are used. These control
loops update the model’s resistances and cell capacities to
match the cell conditions. The main contributions of this
work are:-
• The article proposes a novel and simplemethodology for
adaptively estimating the state of charge of a Li-ion cell
over its entire lifespan.

• The idea proposed in this paper which combines the
cell’s equivalent circuit model and the thermal model
enables to correct the model errors in cell resistances and
cell capacity caused due to the cell’s cyclic degradation.

• The cell capacity correction control loop proposed in
this work enables to compensate for the errors caused
by the reduction in total discharge capacity and a model
resistance correction control loop to compensate for the
errors caused by the change in the internal resistance of
the Li-ion cell.

• The proposed methodology is capable of estimating the
state of charge with minimal error over the entire life of
the Li-ion cell.

This paper is structured as follows: Section II discusses the
Li-ion cell characteristics and cell model. Section III explains
the working methodology and evolution of the proposed
adaptive integral correction-based SoC estimation method-
ology. Section IV validates the proposed AIC-SE method
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using Matlab, and its results are compared with basic integral
correction and UKF-based SoC estimation methods. Finally,
the paper concludes in Section V.

II. LITHIUM-ION CELL MODEL
Cell models are the mathematical representations of the
actual cell characteristics. The cell model tracks the terminal
voltage of the Li-ion cell during operation. In estimating SoC,
the cell model is a vital part of BMS. Since SoC estimation
is highly dependent on model accuracy, a reliable model is
essential in BMS. Despite the availability of many differ-
ent models such as electrochemical models, neural network-
based black-box models, and so on, equivalent circuit models
are widely used in BMS applications. These equivalent circuit
models use less computational burden and are simple to
understand.

FIGURE 1. Equivalent circuit model of Li-ion cell.

The state of charge estimation accuracy is highly depen-
dent on the accuracy of the cell model that we use in the
estimation algorithm. An infinite number of RC branches
is required to model Li-ion cell dynamics. To improve the
accuracy of the SoC estimation, we have chosen a third-order
equivalent circuit to model the Li-ion cell. An equivalent
circuit model as shown in Fig. 1 is utilized in this work for
SoC estimation [57]. The model consists of a voltage source
OCV (z,T ) which is the open-circuit voltage of the Li-ion
cell.OCV is a nonlinear function of the SoC and temperature.
R0 represents the ohmic resistance and RC1−3 branches are
used for accurately representing the diffusion characteristics
of the Li-ion cell.Qc represents the cell charge capacity of the
cell in Ah. All these model parameters are functions of SoC
and temperature. The cell’s internal states can be expressed
using the following equations (1-4).

ż =
−Ib

Qc · 3600
(1)

v̇1 =
v1

R1C1
−

Ib
C1

(2)

v̇2 =
v2

R2C2
−

Ib
C2

(3)

v̇3 =
v3

R3C3
−

Ib
C3

(4)

The voltages v1, v2, and v3 represent the voltage polariza-
tion across each RC branch. z represents the SoC of the cell,
and Ib is the cell current. Based on the model, the modeled
terminal voltage, Vt of a lithium-ion cell can be expressed as
follows:

Vt = OCV (z,T )− IbR0 − v1 − v2 − v3 (5)

Hybrid pulse power characterizing (HPPC) tests at various
temperatures are commonly used for cell model parameter
identification. Due to model inaccuracies, the cell model
may differ slightly from actual cell behavior. Noise in the
measurement can also cause small error from the actual value.
These variations can affect the SoC estimation accuracy.
In the literature, many methods such as the Kalman filter,
extended Kalman filters, unscented Kalman filters, PI-based
observers, sliding mode observers, and others have been used
to compensate for these effects and have achieved satisfactory
results. Our approach utilizes an integral correction method
for compensating the initial model uncertainties and the effect
of measurement noise.

III. SoC ESTIMATION METHODOLOGY
SoC estimation accuracies are highly dependent on the cell
model accuracy. The SoC can be precisely estimated using
observers or filters such as the Kalman filter along with
an accurate cell model. But when the cell cycles and ages,
the cell’s internal parameters like cell capacity and internal
resistances vary. As cell cycles,
• Internal resistance increases
• Cell capacity decreases
• Self-discharge increases
These variations in cell parameters make the cell model

inaccurate and lead to a less accurate and uncertain SoC esti-
mation. Since the safety and functionality of the Li-ion pack
depend on the individual cell SoC, these erroneous estimates
cannot be relied on to guarantee the proper performance of
the battery pack. An adaptive SoC estimation method that
can compensate for these model errors due to aging effects is
proposed in this paper.

The proposed adaptive estimation method contains an
integral correction-based SoC estimation algorithm (IC-SE)
utilizing a third-order RC equivalent circuit model. If the
model is accurate, the IC-SE method alone can predict SoC
quite accurately. Two additional control loops are combined
with the IC-SE method to compensate for model inaccuracy
caused by cyclic degradation and aging.

A resistance correction loop is formed using the thermal
model of the cell to compensate for the model resistance
values. Also, another cell capacity correction loop is utilized
to correct the errors caused by the variation in cell capacity.
The IC-SE method combined with the parameter correction
loops forms the adaptive integral correction-based estimation
method (AIC-SE). The evolution of the proposed AIC-SE
SoC estimation strategy is detailed below.
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A. INTEGRAL CORRECTION SoC ESTIMATION METHOD
Open-circuit voltage and SoC of Li-ion cells are directly
related. The cell OCV cannot be retrieved from the cell
terminals while the cells are in operation. The internal volt-
age drops hinder directly measuring the OCV. Cells must
reach an equilibrium condition for measuring OCV from cell
terminals. Since direct measurement of OCV under loading
conditions is difficult, it must be estimated using a cell model.
But the measurement noises, model inconsistencies, and the
initial condition errors have to be corrected for obtaining an
accurate OCV.

FIGURE 2. Integral correction-based SoC correction method.

A third-order RC equivalent circuit model with an integral
correction loop is used to estimate the SoC of the Li-ion
cell. The RC model shown in Fig. 1 is used to estimate the
terminal voltage of the Li-ion cell. The error in the estimated
terminal voltage to actual measured terminal voltage is given
to an integrator to calculate the correction factor. In order to
correct the error in the estimated SoC, this correction factor is
added to the cell model’s SoC. Fig. 2 shows the block diagram
representation of the integral correction method.
Zc, the integral correction factor can be expressed as,

Zc = KZ

∫
(VtMeasured − Vt )dt (6)

VtMeasured and Vt are the measured and estimated terminal
voltage of the cell. KZ is the loop gain of integral correction
loop. Zc is added to (1)compensate the model uncertainties,
measurement noises, and initial SoC error.

The estimated SoC (z) can be obtained by integrating (1)
and adding the integral correction factor Zc. The SoC, z of a
cell can be ex[ressed as,

z =

∫
−Ibdt

Qc · 3600
+ Zc (7)

The integral correction based SoC estimation method can
provide accurate SoC estimates if the cell models is accurate.

B. ADAPTIVE INTEGRAL CORRECTION-BASED
SoC ESTIMATION
The integral correction method can only compensate for
minor model uncertainties. When the cell cycles and ages,

the amount of active lithium in the electrodes reduces. As the
result cell resistance increases, and the cell’s total discharge
capacity reduces. This causes a significant deviation in cell
parameters from the fresh cell, and the model behavior devi-
ates from reality. As the estimation accuracy is limited to the
model accuracy, these deviations cause unacceptable errors
in the estimated SoC.

In order to compensate for these model parameter uncer-
tainties caused by the cyclic degradation and aging process,
two additional control loops are added along with the integral
correction method to form an adaptive estimation method.

1) MODEL RESISTANCE CORRECTION
It is necessary to compensate for the variations in model
parameters caused by cyclic degradation of Li-ion cells in
order to achieve high SoC estimation accuracy. The cell resis-
tance increases and deviates from the model parameters dur-
ing the degradation process. To compensate for the increase
in internal resistance, a correction factor is introduced. This
model resistance correction term is found using the thermal
model of the Li-ion cell [58]. The internal resistances of the
Li-ion cells contribute to the power loss in the cell during
operation. Using the thermal model, the temperature of the
Li-ion cell can be estimated. Fig. 3 shows the thermal model
of the Li-ion cell [58].

FIGURE 3. Thermal model of Li-ion cell.

Ts and TAmp represent the cell surface and ambient temper-
atures, respectively. Cb is the heat capacity of the cell, and RT
is the thermal resistance from the cell surface to surroundings,
which are assumed to be constant for a cell in an assembled
battery pack. The total power dissipated in the Li-ion cell,
PLoss, can be expressed as,

PLoss = Ib2R0 +
v12

R1
+
v22

R2
+
v32

R3
(8)

The thermal model of a Li-ion cell can be represented as,

dTs
dt
=
PLoss
Cb
−
Ts − TAmb
CbRT

(9)

The thermal model of the Li-ion cell can be used to esti-
mate the surface temperature of the cell.

TS =
∫
(
PLoss
Cb
−
Ts − TAmb
CbRT

)dt (10)
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The variation between the estimated temperature and mea-
sured temperature can be considered either because of the
thermal model parameter variations or due to the mismatch in
the power loss in the Li-ion cell. Since there will not be any
change in the mechanical configuration after the assembly,
the thermal model parameters Cb and RT are assumed to be
constant for a cell in an assembled battery pack. The power
loss in the Li-ion cell can be expressed as,

PLoss = Ib2R0 + I12R1 + I22R2 + I32R3 (11)

where I1, I2, I3 are the currents through resistances
R1,R2,R3 respectively. From (11) it can be seen that the
power loss inside the Li-ion cell is directly related to the
internal resistances. As the cell cycles and degrades, the cell’s
internal resistance increases. Any deviation seen between
estimated cell surface temperature and the actual measure-
ment is regarded as an error in calculated power loss. A higher
measured temperature than the estimated cell temperature
indicates an increase in internal resistance, so the equivalent
model resistances must be updated accordingly.

In order to update the equivalent circuit model resistances,
a resistance correction loop is added to the integral correction-
based SoC estimation method. The resistance correction
loops will reduce the model inaccuracies by modifying the
equivalent circuit parameters by using the correction fac-
tor MR. Fig. 4 shows the control block diagram of the resis-
tance correction loop. The resistance correction factor, MR
can be calculated as,

MR = KR

∫
(TSMeasured − TS )dt (12)

where, KR is the loop gain of the resistance correction loop
and TSMeasured is the measured cell surface temperature. The
resistance correction factor,MR is identified using an integral
controller to minimize the cell temperature estimation error.

FIGURE 4. Block diagram representation of resistance correction loop.

Updated model resistances can be expressed as,

Ri = Riinitial ·MR (13)

where Riinitial ( i = 0 − 3) represents the model resistance
values for a new cell. The resistance correction factor, MR
is multiplied with initial cell model resistance parameters

to compensate for the cyclic degradation effects on internal
resistances.

2) CELL CAPACITY CORRECTION
The total discharge capacity, Qc, of the Li-ion cell decreases
as the cell cycles and ages, due to the loss of active Lithium
in the electrodes. Since Qc is part of the cell model, the
changes in cell capacity reflect in SoC estimation accuracy.
As cell capacity changes, the errors in the SoC estimation also
increase. To estimate capacity fade, and to update the model
cell capacity, state-of-health estimation algorithms are com-
monly used. This paper presents a new method for correcting
cell capacity and improving the accuracy of SoC estimation.

The SoC estimation algorithm has to account for the model
uncertainties like model resistance and cell capacity devi-
ations from the actual values. The integral correction loop
corrects the model error by adding the integral correction
factor to the model SoC. If the cell model were accurate, the
correction effort taken by the integral correcting loop will be
less.

The inaccuracy in model resistance can be corrected using
the thermal model-based resistance correction loop. So the
correction effort produced by the integral SoC correction
loop is mostly used to compensate for deviations in cell
capacity. A higher value of the correction factor means a
higher level of capacity deviation from the actual value. If cell
capacity is different from the cell model, the amplitude of
oscillations in the integral correction factor from its mean
value will increase, as shown in Fig. 5(a). The deviation of the
integral SoC correction term from its mean value is treated
as a measure of capacity deviation and can be utilized for
correcting the model’s cell capacity.

FIGURE 5. Block diagram representation of the capacity correction loop,
(a) symbolic representation the integral correction factor, (b) mean value
of integral correction factor, (c) deviation of integral correction factor
from its means value(Ẑc ), (d) absolute deviation of Zc from its mean
value, (e) ZMRef

, (f) deviation of Ẑc from ZMRef
, (g) cell capacity

correction factor MQ.

Fig. 5 shows the control block diagram representation of
the capacity correction loop. The correction loop finds the
mean value of the integral correction factor in each cycle and
calculates the absolute deviation of Zc from its mean value.
This deviation, Ẑc is taken as the measure of capacity change.
When the deviation in Zc is more than a threshold value ZMRef ,
it is passed to the integrator to find the capacity correction
factor,MQ.KQ is the loop gain of the capacity correction loop.
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FIGURE 6. Block diagram representation of adaptive integral correction based SoC estimation method.

The capacity correction factor,MQ can be calculated as,

MQ = KQ

∫
(Ẑc − ZMRef )dt (14)

MQ is multiplied with the initial cell capacity to modify
the model discharge capacity. The updated model discharge
capacity can be expressed as,

Qc = Qcinitial ·MQ (15)

where Qcinitial represents the discharge capacity value for a
new cell.MR is the cell resistance correction factor.

3) ADAPTIVE INTEGRAL CORRECTION-BASED
SoC ESTIMATION
To compensate for the model uncertainties caused by the
cyclic degradation, the resistance correction loop, and cell
capacity correction loop are employed along with the integral
correction-based SoC estimation method. This new adaptive
integral correction-based SoC estimation method can com-
pensate for the aging effects of the Li-ion cells and can
provide better SoC estimation accuracy. Fig. 6 shows the
complete block diagram representation of the proposed adap-
tive integral correction-based SoC estimation technique.

The complete algorithm of the proposed adaptive inte-
gral correction-based SoC estimation strategy is given in
Algorithm 1. The equivalent circuit model resistance is
updated using the resistance correction factor, and the cell
capacity is updated using the capacity correction factor.

Algorithm 1 Adaptive Integral Correction Based SoC Esti-
mation Algorithm
1: Initialize: Cell model parameters
2: Measure: VtMeasured , Ib,,TSMeasured , and TAmb

SoC estimation
3: Estimate cell terminal voltage using equivalent circuit

model, Vt :
Vt = OCV (z,T )− IbR0 − v1 − v2 − v3

4: Calculate the SoC correction factor, Zc:
Zc = KZ

∫
(VtMeasured − Vt )dt

5: Estimate the SoC of the Li-ion cell, z:
z =

∫
−Ibdt

Qc·3600
+ Zc

6: Return: SoC = z
Model Correction: Cell resistance correction

7: Estimate cell surface temperature, TS using thermal
model of Li-ion cell:

TS =
∫
(PLossCb

−
Ts−TAmb
CbRT

)dt
8: Calculate the resistance correction factor:

MR = KR
∫
(TSMeasured − TS )dt

9: Update: Cell equivalent circuit model resisters:
Ri = Riinitial ·MR; For i = 0− 3
Model Correction: Cell capacity correction

10: If (Ẑc > ZMRef ): calculate the resistance correction factor,
MQ = KQ

∫
(Ẑc − ZMRef )dt

11: Update: Cell capacity of Li-ion cell model:
Qc = Qcinitial ·MQ

12: Goto Step 2
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The updated model values are used for accurately estimating
the SoC using the integral correction-based SoC estimator.

IV. RESULTS AND DISCUSSION
To demonstrate the proposed method the test setup can be
arranged as shown in Fig. 7. The proposed adaptive inte-
gral correction-based estimation methodology requires the
knowledge of cell current, cell terminal voltage, cell surface
temperature, and ambient temperature for the estimation of
SoC. Test setup also contains controlled charging and loading
arrangements to charge and discharge the Li-ion cell.

FIGURE 7. Test setup for demonstration.

The charging and discharging modes are decided based on
the state of charge of the Li-ion cell. The cell is operated
between 20% and 90% of SoC so that the cell will never be
overcharged or discharged. When the cell SoC reaches 90%,
charging stops, and discharging starts at an average C-rate of
1C. Discharging mode stops when the SoC reaches 20%, and
the cell is charged in CCCV mode at a C-rate of 0.5C. The
CC-CV method limits the output voltage to a fully charged
level and prevents the cells from overcharging.

TABLE 1. Li-ion cell specifications.

The test setup is arranged in a Matlab-Simulink environ-
ment for the demonstration of the proposed methodology.
Matlab Li-ion cell model is used for replicating the Li-ion cell
dynamics and effects of cyclic degradation effects. A Matlab
model of NMC Li-ion cell with 31Ah capacity [57] is utilized
for validating the proposed method.Matlab model-based vali-
dation aids in gaining access to the internal states of the Li-ion
cell and comparing them to their estimated value. Cell speci-
fications are listed in Table 1. As the effect of cell degradation

after 300 cycles, an increase of 25%, 20%, 30% and 30% of
the cell’s first, second, and third polarization resistances and
terminal resistance is applied in the cell model. The model
is set to lose 25% of its initial total discharge capacity after
300 cycles. In order to introduce measurement noise to the
system, white noise is added to the cell current and terminal
voltage. Noise power for cell current and terminal voltage is
chosen as 2.5× 10−3 and 0.05× 10−3, respectively.
Extensive simulation studies have been conducted using

Matlab Simulink to evaluate the effectiveness of the proposed
integral correction-based SoC estimation method (IC-SE)
and adaptive integral correction-based SoC estimation
method (AIC-SE).

RC equivalent circuit and thermal models are formulated to
match the Matlab Li-ion cell behavior. The equivalent circuit
model parameters of the Li-ion cell are shown in Fig. 9.
All cell parameters are a function of SoC and tempera-
ture. The total discharge capacity of the model is 31Ah.
The thermal model parameters are Cb = 810J/◦C and
RT = 2 W/◦C .

The proposed IC-SE method was validated by subjecting
the cell to many charge-discharge cycles and estimating the
SoC. The initial SoC of the cell was 50%, and the ambient
temperature was 20◦C. The model was initialized to 60%
SoC at the beginning of the estimation. Because the cell is
new and not subjected to cyclic degradation, the cell model
characteristics should match the actual cell.

FIGURE 8. Modeled terminal voltage of Li-ion cell for the first cycle by
IC-SE.

The IC-SE estimation method predicts the cell terminal
voltage and compares it with the measured terminal voltage.
The IC-SE estimation algorithm corrects this error through
the integral feedback loop. Noise in voltage measurements is
assumed to be Gaussian white noise. Since the mean value of
white noise is zero, the integral feedback loop can remove the
effect of these noise signals from the estimation. The actual,
measured, and estimated terminal voltage of the Li-ion cell
using the IC-SE method is shown in Fig. 8. The cell model
of the IC-SE algorithm was initialized 60% SoC, where the
actual cell was at 50%. The results demonstrate that the
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FIGURE 9. The equivalent circuit parameters identified by cell characterization at three different temperatures. Figure shows open circuit voltage, three
diffusion capacitance, cell internal ohmic resistance and three diffusion resistances plotted against SoC. blue, green, red lines indicates the parameter
values at temperatures 5◦C, 25◦C and 40◦C respectively.

FIGURE 10. Comparison of SoC estimation results for first cycle of the
Li-ion cell by IC-SE and UKF-SE.

IC-SE method can predict the actual terminal voltage while
accounting for initial SoC errors and measurement noise.

A UKF-based estimation algorithm is run alongside the
IC-SE method to compare performance. The SoC estimation
results for IC-SE and UKF-SE are shown in Fig. 10. The
results show that, during fresh cell conditions, both IC-SE and
UKF-SE provide very good estimation results. The UKF-SE
method corrects the initial SoC error taking around 3000s,
where IC-SE takes only 1000s. The UKF-SE is able to track
SoC with 0.5% error and IC-SE tracks SoC with less than
0.7% error.

FIGURE 11. Comparison of SoC estimation results after
300 charge-discharge cycles of the Li-ion cell by IC-SE and UKF-SE.

When the cell cycles and degrades, the model parameters
deviate from the actual cell parameters. Since SoC estimation
relies on the cell model, these model errors can contribute to
high SoC estimation errors. Fig. 11 shows the performance
of IC-SE and UKF-SE for the same cell after 300 charge-
discharge cycles. In degraded conditions, IC-SE is able to
limit the errors between −11% to 8%, whereas UKF-SE has
error levels between −5% to 11%. The IC-SE and UKF-SE
have estimated SoC RMS errors of 6% and 5%. SoC esti-
mation results after 300 cycles have a significant error in
estimated SoC.Most of the time, both IC-SE andUKF-SE fail
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FIGURE 12. Li-cell surface temperature and cell temperature estimated
by the temperature observer.

FIGURE 13. Evolution of resistance correction factor when cell cycled
upto 300 cycles.

in tracking the actual SoC. The SoC estimation errors have
reached an unreliable level.

To improve the accuracy of SoC estimation, model param-
eters have to be updated to match the degrading cell. Resis-
tance correction loop and cell capacity correction loop are
added to IC-SE to form an adaptive integral correction SoC
estimator. AIC-SE has the ability to change to suit changing
conditions using the parameter correction loops.

Fig. 12 shows the estimated and actual temperature at
the cell surface. The temperature estimator is able to track
the Li-ion cell surface temperature by correcting the model
resistance values by using the resistance correction factor.
Fig. 13 shows the evolution of the resistance correction factor
from 0-300 cycles. The resistance correction factor, MR is
multiplied with initial model resistance values for modifying
the model parameters. The resistance correction factor starts
at 1 and reaches around 1.3 by the end of the 300th cycle.

To compensate for the capacity loss during the cyclic
degradation process, the cell capacity correction loop is
used. As the actual cell parameters deviate from the model

FIGURE 14. Integral correction factor changes for a degrading cell from
its first cycle to 300th cycle.

FIGURE 15. Evolution of cell capacity factor when cell cycled upto
300 cycles.

parameters, the control effort introduced by the IC-SE inte-
gral correction loop increases. The deviation of the integral
correction factor for a degrading cell is shown in Fig. 14
for the IC-SE method. It can be seen that the amplitude of
oscillations in integral correction factor is increasing with
number of charge-discharge cycles. The deviation from inte-
gral correction factor from its average value over that cycle
is utilized for correcting the cell capacity variation. When the
deviation from mean Zc is given to the capacity correction
loop to calculate the capacity correction factor. Fig.15 shows
the evolution of cell capacity correction factor. As the cell
degrades, the cell capacity correction factor decreases. This
correction factor is used for updating the model cell capacity.

Resistance correction loop and capacity correction loop is
combined with IC-SE method to form an adaptive integral
correction SoC estimation method. This AIC-SE method is
applied for estimating SoC along with IC-SE and UKF-SE
methods. Fig. 16 shows the AIC-SE estimated and actual
terminal voltage of the cell after 300 charge-discharge cycles.
The results show that the proposed AIC-SE algorithm is
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able to capture the cell dynamics quite accurately even after
300 cycles. The resistance and capacity correction loops in
the algorithm help the model parameters to change and suit
the cell conditions.

FIGURE 16. Modeled terminal voltage of Li-ion cell for the 300th cycle by
AIC-SE.

The SoC estimation results for the proposed AIC-SE
method, as well as UKF-SE and IC-SE, for the 300th charge-
discharge cycle of the Li-ion cell, are shown in Fig. 17. The
proposed AIC-SE method is able to track the SoC of the cell
with RMS errors limited to less than 0.25% for the entire
charge-discharge cycles. Themaximum error in the estimated
SoC is also limited to −0.4% to 0.8%.

FIGURE 17. SoC estimation results for AIC-SE, IC-SE and UKF-SE for 300th

cycle.

Table 2 lists the performance comparison of proposed
AIC-SE with UKF-SE, IC-SE, data-driven methods, and co-
estimation method from the literature. It can be seen that
the proposed adaptive integral correction method provides
excellent SoC estimation accuracy for degrading cells. The
performance of data-driven-based SoC estimation methods
is highly dependent on the amount and quality of training
data. Reference [51] use the estimated SoC to calculate the

TABLE 2. SoC estimation performance comparison.

present cell capacity, which limits the maximum error only
to 1%. In sliding mode-based SoC estimation [49], the esti-
mation error is 2%. ThemaximumSoC estimation error in the
proposed adaptive estimation method is only 0.8%, whereas
in existing methods it is greater than 1%. In the proposed
method the RMS SoC estimation error is only 0.3%, whereas
in existing methods RMS error is greater than 0.5%.

V. CONCLUSION
In this paper, an adaptive integral correction-based
estimation method is proposed for estimating the SoC of
lithium-ion cells while accounting for model parameter
uncertainties caused by cyclic degradation. The proposed
method uses a third-order equivalent circuit model with an
integral correction-based SoC estimation and a simple ther-
mal model of the Li-ion cell for temperature estimation. The
effect of parameter variation is corrected by introducing two
additional correction factors, resistance correction factor and
capacity correction factor. These correction factors update
the equivalent circuit model to form an adaptive integral
correction-based SoC estimation technique that can compen-
sate for the effect of parameter variation caused by cyclic
degradation. Simulation results verify the capability of the
proposed AIC-SE method. Under the aging condition, where
the unscented Kalman filter and simple integral correction
method fail to estimate accurately, the proposed adaptive
integral correction-based SoC estimation method predicts the
SoC of the Li-ion cell with great accuracy. In comparison
with UKF, which has an error of 11%, the proposed AIC-SE
method has a significant improvement in estimation accuracy.
In AIC-SE method, the maximum SoC estimation error
observed was around ±0.8%, and the RMS error was less
than 0.3%. Future works may focus on the applications of
AIC-SE algorithm in distributed BMS systems, and also to
calculate the SoH of Li-ion batteries.
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