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ABSTRACT In this paper, we investigate the distributed output-feedback tracking control for stochastic
nonlinear multi-agent systems (MASs) with time-varying delays. We propose a new distributed stochastic
homogeneous domination method. Specifically, we first design distributed output-feedback controllers for
the corresponding nominal systems. Then, by selecting the gains of controllers and observers, we solve the
distributed tracking problem for stochastic MASs. After that, based on the coordinates transformation, with
a proper Lyapunov-Krasoviskii (L-K) functional, it can be shown that the tracking error can be adjusted to
arbitrarily small and all the states of the closed-loop system are bounded in probability. Finally, we give a
simulation example to demonstrate the effectiveness of the control scheme.

INDEX TERMS Distributed stochastic homogeneous domination, stochastic nonlinear multi-agent systems,
output-feedback tracking, time-varying delays.

I. INTRODUCTION
Due to the ubiquity of stochastic noise in applications,
the study on stochastic systems has attracted attention in
the fields of biology and environmental science. Since
stochastic stabilization theory was proposed by [1], the
research on its design and stabilization problem has been
made great progress [2]–[6]. Zhang et al. [7] studied the
finite-time stabilization of the feedforward systems by adding
a power integrator and sign function. In addition, stability
of time-delay systems is also an important topic [8]–[10].
Based on matrix inequality, the H-index with Markov jump
systems and its application in H-fault detection filter (FDF)
were studied in [11].

Multi-agent systems (MASs) exist widely in control
engineering, such as power and traffic systems [12], [13].
It has received widespread concern. For nonlinear MASs,
by inequality technique, a leader-following consensus prob-
lem was considered in [14]. Draw support from neural
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network (NN) approximation, [15] solved the unknown
dynamics problem. Wang et al. [16] adopted a two-layer
distributed hierarchical control strategy to deal with systems
with unknown and inconsistent control direction. For stochas-
tic nonlinear MASs, [17] investigated consensus of partially
mixed impulse time-delay systems by comparison principle.
In particular, distributed output tracking is becoming more
and more popular. Li et al. [18], [19] solved the stochastic
distributed output tracking problems by developing a new
distributed integrator backstepping method. Xing et al. [20]
proposed a distributed hybrid event-triggered mechanism to
save communication resources. But the schemes in [18]–[20]
required the all the states of agents are available.

From practical perspectives, the agents’ states may not
always be known or measurable. For this reason, it is
necessary to study output-feedback tracking schemes. For
single-agent systems, [21], [22] first designed homogeneous
observers to estimate unmeasurable states, and then the
output-feedback controller was designed to solve the track-
ing problem. For multi-agent systems, [23], [24] solved
distributed output-feedback tracking problems for nonlinear
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systems. However, there are rare results on distributed
output-feedback tracking control for stochastic systems with
time-varying delay.

Inspired by the previous discussion, this paper studies
the distributed tracking problem of stochastic nonlinear
time-delay MASs by output-feedback. The main contribu-
tions include:

1) The systems under investigation is more general than
that in [18] and [19]. Li et al. [18], Li et al. [19] did
not consider time-delay, and required that all the states
are measurable. The existence of time-varying delay makes
it difficult to select a proper Lyapunov-Krasoviskii (L-K)
functional. The unmeasurable states makes the distributed
controllers design more challenging.

2) Due to the influence of the Hessian term and time-
varying delay, the distributed homogeneous domination
approach developed in [23] is invalid. A new design scheme
is developed in this paper.

The remainder of this paper is organized as follows.
Section II is for preliminaries and problem formulation.
In Section III states the main results. Section IV gives a
simulation example. Section V is the conclusion.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. PRELIMINARIES
Consider the stochastic time-delay system

dx(t) = f (t, x(t), x(t − d(t)))dt

+ gT (t, x(t), x(t − d(t)))dw, ∀t ≥ 0, (1)

with initial data {x(θ ) : −d ≤ θ ≤ 0} =
ξ ∈ CbF0

([−d, 0];Rn), where d(t) : R+ → [0, d]
is time-varying delay; ω is an m-dimensional standard
Wiener process defined on the complete probability space
(�,F , {Ft }t≥0,P); f : R+ × Rn

× Rn
→ Rn, g : R+ ×

Rn
× Rn

→ Rn×m are locally Lipschitz with f (t, 0, 0) ≡ 0,
g(t, 0, 0) ≡ 0.
Definition 1 [10]: For any given V (x(t), t) ∈ C2,1

associated with system (1), the differential operator L is
defined as

LV =
∂V
∂t
+
∂V
∂x

f +
1
2
Tr{g

∂2V
∂x2

gT }.

Lemma 1 [22]: For (x, y) ∈ R2 the inequality holds:

xy ≤
vp

p
|x|p +

1
qvq
|y|q,

where v > 0, the constants p > 1 and q > 1 satisfy
(p− 1)(q− 1) = 1.
Lemma 2 [10]: Let x1, x2, · · · , xn, p be positive real

numbers, then

(x1 + x2 + · · · + xn)p ≤ max{np−1, 1}(xp1 + x
p
2 + · · · + x

p
n ).

In this paper, we consider a network Ḡ = (V̄, Ē)
including N followers and one leader (labeled by 0).
Define the matrix B = diag(b1, b2, · · · , bN), where
bi > 0 if the leader can directly send information to the

ith follower, and bi = 0, otherwise. Let the followers’
digraph be G = (V, E,A). The Laplacian of G is set
as L = diag(

∑
j∈N1

a1j,
∑

j∈N2
a2j, · · · ,

∑
j∈NN

aNj) −
(aij)N×N. Define H = B + L. More notations about graph
theory can be found in [28].

B. PROBLEM FORMULATION
The followers’ dynamics are described by

dxi1(t) = xi2(t)dt + fi1(t, xi1(t), xi1(t − di1(t)))dt

+ gTi1(t, xi1(t), xi1(t − di1(t)))dw,

dxi2(t) = ui(t)dt + fi2(t, x̄i2(t), x̄i2(t − di2(t)))dt

+ gTi2(t, x̄i2(t), x̄i2(t − di2(t)))dw,

yi(t) =
∑
j∈Ni

aij(xi1(t)− xj1(t))+ bi(xi1(t)− y0(t)), (2)

where x̄i2(t) = (xi1(t), xi2(t))T ∈ R2, ui ∈ R, and yi ∈ R are
the state, input, output of the ith follower, respectively. dij(t) :
R+→ [0, d], j = 1, 2, are time-varying delay. The unknown
functions fij and gij are C1 functions with fij(t, 0, 0) = 0,
gij(t, 0, 0) = 0, i = 1, 2, · · ·,N , j = 1, 2. y0(t) ∈ R is the
leader’s output.
Assumption 1: There are constants µi > 0, µ̄i > 0, and

τi > 0 such that

|fi1(t, xi1(t), xi1(t − di1(t)))|

≤ µi

(
|xi1(t)| + |xi1(t − di1(t))|

)
+ τi,

|fi2(t, x̄i2(t), x̄i2(t − di2(t)))|

≤ µi

( 2∑
k=1

|xik (t)| +
2∑

k=1

|xik (t − dik (t))|
)
+ τi,

|gi1(t, xi1(t), xi1(t − di1(t)))|

≤ µ̄i

(
|xi1(t)| + |xi1(t − di1(t))|

)
+ τi,

|gi2(t, x̄i2(t), x̄i2(t − di2(t)))|

≤ µ̄i

( 2∑
k=1

|xik (t)| +
2∑

k=1

|xik (t − dik (t))|
)
+ τi.

Assumption 2: y0(t) ∈ R and ẏ0(t) are bounded and only
apply to those followers satisfying 0 ∈ Ni, i = 1, 2, · · · ,N .
Assumption 3: The leader is the root of a spanning tree

in Ḡ.
Assumption 4: Time-varying delay dij(t) satisfy d ≥ max
{dij(t), i = 1, 2, · · · ,N , j = 1, 2}, and ḋij(t) ≤ γ < 1, where
γ < 1 is a constant.
Remark 1: When τi = 0, Assumption 1 reduces to that

in [25]. In fact, τi admits constant disturbances, while µi
and µ̄i allow diminishing disturbances. τi is independent
of µi and µ̄i.
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III. MAIN RESULTS
A. NOMINAL MASs ANALYSIS
Consider the following nominal MASs:

żi1 = dizi2 −
∑
j∈Ni

aijzj2,

żi2 = vi,

yi = zi1, i = 1, 2, · · · ,N , (3)

where di = bi +
∑

j∈Ni
aij.

From [18, Lemma 1] and Assumption 3, we can conclude
H is invertible. Define

H−1 =


h11 h12 · · · h1N
h21 h22 · · · h2N
...

...
. . .

...

hN1 hN2 · · · hNN

 . (4)

According to [23], we construct distributed reduced-order
observers for (3) as

ẇi2 = −diwi2 +
N∑
j=1

aijwj2 − dizi1 +
N∑
j=1

aijzj1 + ui (5)

and the distributed output-feedback controller as

vi = −αi

(
ẑi2 +

N∑
j=1

hijcj1zj1

)
, (6)

where ẑi2 = zi1 + wi2, αi and cj1 > 0 are constants.
For system (3), construct the Lyapunov function as

V (ξ̄i2(t), e(t)) = U (ξ̄i2(t))+W (e(t)),

U (ξ̄i2(t)) =
1
4

N∑
i=1

(ξ4i1(t)+ ξ
4
i2(t)),

W (e(t)) = (e(t)eT (t))TP(e(t)eT (t)), (7)

where ξi1 = zi1, ξi2 = zi2 − z∗i2, z
∗

i2 = −
∑N

j=1 hijcj1zj1, z
∗

i3 =

−αiξi2, ei2 = zi2 − ẑi2, e = (e12, · · · , eN2), i = 1, 2, · · · ,N .
Defining

Z = (z11, z12, · · · , zN1, zN2,w12,w22, · · · ,wN2)T ,

from (3), (5), and (6), we get

Ż = E(Z)

= (d1z12 −
N∑
j=1

a1jzj2, v1, · · · , dN zN2 −

N∑
j=1

aNjzj2,

vN , f2N+1, · · · , f3N )T , (8)

where f2N+i = −diwi2+
∑N

j=1 aijwj2− dizi1+
∑N

j=1 aijzj1+
ui, i = 1, 2, · · · ,N .
Lemma 3: 1) E(Z) and V (Z) are homogeneous of degree

1 and 3 respectively, with the dilation weight:

4 = (1, 1, · · · , 1, 1,︸ ︷︷ ︸
for z11,z12,··· ,zN1,zN2

1, 1, · · · , 1︸ ︷︷ ︸
for w12,··· ,wN2

). (9)

2) the derivative of V (Z) satisfies

V̇ (Z) =
∂V
∂Z

E(Z) ≤ −c0‖Z‖
4
4
, (10)

where constant c0 > 0 and ‖Z‖4 = (
∑n

i=1 |zi1|
2
+∑n

i=1 |zi2|
2
+
∑n

i=1 |wi2|
2)1/2.

Remark 2: In the corresponding results on deterministic
systems [23], it uses the Lyapunov function of the form

V =
1
2

N∑
i=1

(ξ2i1 + ξ
2
i2)+ e

TPe. (11)

Due to the existence of 1
2Tr{g

∂2V
∂x2

gT } in stochastic differ-
ential, the Lyapunov function (11) is invalid for stochastic
system.

Let’s consider a simple example

dx = udt + dw,

y = x − yr (t),

where yr (t) = sin t .
Define y = z, v = u/L, where L > 1 is a design parameter.

We have

dz = (Lv− cos t)dt + dw,

y = z,

where f = − cos t, g = 1. Clearly, Assumptions 1 is satisfied
with µ1 = µ̄1 = 1, τ1 = 1. When we choose V = 1

2 z
2,

we get
1
2
Tr
{
g
∂2V
∂z2

gT
}
≤

1
2
r

∣∣∣∣g∂2V∂z2 gT
∣∣∣∣
∞

≤
1
2
r
√
r

∣∣∣∣∂2V∂z2 gT g
∣∣∣∣

≤
1
2
. (12)

Obviously, by adjusting the gain L, 1
2Tr

{
g ∂

2V
∂z2

gT
}
cannot

be made arbitrarily small. In this paper, we employ quartic
Lyapunov functions.

B. DISTRIBUTED OUTPUT-FEEDBACK
CONTROLLER DESIGN
We introduce the following coordinates transformations

zi1 =
N∑
j=1

aij(xi1 − xj1)+ bi(xi1 − y0),

zi2 =
xi2
L
, vi =

ui
L2
, i = 1, 2, · · · ,N , (13)

where L > 1 is a design constant.
Using (13), systems (2) becomes

dzi1(t) = L(dizi2(t)−
N∑
j=1

aijzj2(t))dt

+ f̃i1(t, zi1(t), zi1(t − di1(t)))dt

+ g̃Ti1(t, zi1(t), zi1(t − di1(t)))dw,
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dzi2(t) = Lvi(t)dt + f̃i2(t, z̄i2(t), z̄i2(t − di2(t)))dt

+ g̃Ti2(t, z̄i2(t), z̄i2(t − di2(t)))dw,

yi(t) = zi1(t), i = 1, 2, · · · ,N , (14)

where

f̃i1(t, zi1(t), zi1(t − di1(t)))

= −

N∑
j=1

aijfj1(t, xj1(t), xj1(t − dj1(t)))− biẏ0(t)

+ difi1(t, xi1(t), xi1(t − di1(t))),

f̃i2(t, z̄i2(t), z̄i2(t − di2(t)))

=
1
L
fi2(t, x̄i2(t), x̄i2(t − di2(t))),

g̃i1(t, zi1(t), zi1(t − di1(t)))

= −

N∑
j=1

aijgj1(t, xj1(t), xj1(t − dj1(t)))

+ digi1(t, xi1(t), xi1(t − di1(t))),

g̃i2(t, z̄i2(t), z̄i2(t − di2(t)))

=
1
L
gi2(t, x̄i2(t), x̄i2(t − di2(t))).

We design the observers as

ẇi2 = L
(
− diwi2 +

N∑
j=1

aijwj2 − dizi1 +
N∑
j=1

aijzj1 + ui

)
,

(15)

and distributed output-feedback controllers as

vi = −αi

(
ẑi2 +

N∑
j=1

hijcj1zj1

)
. (16)

Then from (14)–(16) we have

dZ = (LE(Z)+ F(Z))dt + GT (Z)dw, (17)

where

F(Z) = (f̃11, f̃12, · · · , f̃N1, f̃N2, 0, · · · , 0)T ,

G(Z) = (g̃11, g̃12, · · · , g̃N1, g̃N2, 0, · · · , 0)T .

Lemma 4: If Assumptions 1–4 hold, we get∣∣∣∣ ∂V∂Z F(Z)

∣∣∣∣ ≤ (c̄01 + c̄05L1/2 + c̄06L−1)‖Z(t)‖4
4

+ c̄07
N∑
j=1

2∑
k=1

‖Z(t − djk (t))‖44

+
1
4
(L−3/2 + L−1),

1
2
Tr
{
G
∂2V
∂Z2G

T
}
≤ (c̃20 + c̃31L1/2 + c̃32L−1

+ c̃33L−2)‖Z(t)‖4
4

+ c̃34
N∑
i=1

2∑
j=1

‖Z(t − dij(t))‖44

+
1
2
(L−1/2 + L−1 + L−2),

where c̃20, c̄0i, and c̃3j, i = 1, 5, 6, 7, j = 1, · · · , 4, are
positive constants.
Proof. From (13) and [18, Lemma 1], we have z11

...

zN1

 = H

 x11 − y0
...

xN1 − y0

 . (18)

From (4) and (18), we then have

xi1 = y0 +
N∑
j=1

hijzj1, i = 1, 2, · · · ,N . (19)

According to Assumption 2, we get

|y0| + |ẏ0| ≤ M , (20)

where M > 0 is a constant.
From (19)–(20), Assumption 1, and [22, Lemma 2.2],

we obtain

|f̃i1| =

∣∣∣∣− N∑
j=1

aijfj1(t, xj1(t), xj1(t − dj1(t)))− biẏ0(t)

∣∣∣∣
+

∣∣∣∣difi1(t, xi1(t), xi1(t − di1(t)))∣∣∣∣
≤

N∑
j=1

aijµj(|xj1(t)| + |xj1(t − dj1(t))|)+
N∑
j=1

aijτj

+ diµi(|xi1(t)| + |xi1(t − di1(t))|)+ diτi + biM

≤ diµi

( N∑
j=1

|hij||zj1(t)| +
N∑
j=1

|hij||zj1(t − dj1(t))|
)

+ 2diµiM +
N∑
j=1

aijµj

( N∑
s=1

|hjs||zs1(t − ds1(t))|

+

N∑
s=1

|hjs||zs1(t)|
)
+ 2

N∑
j=1

aijµjM +
N∑
j=1

aijτj

+ diτi + biM

≤ diµi
N∑
j=1

|hij|(|zj1(t)| + |zj1(t − dj1(t))|)+ biM

+

N∑
j=1

N∑
s=1

aijµj|hjs|(|zs1(t)| + |zs1(t − ds1(t))|)

+ 2
N∑
j=1

aijµjM + diτi +
N∑
j=1

aijτj + 2diµiM

≤

N∑
j=1

σi1j(|zj1(t)| + |zj1(t − dj1(t))|)+ βi1

≤ c̃01(‖Z(t)‖4 +
N∑
j=1

‖Z(t − dj1(t))‖4)+ βi1, (21)
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where c̃01 > 0 is a constant, σi1j = diµi|hij| +∑N
s=1 aisµs|hsj|, βi1 = 2diµiM + 2

∑N
j=1 aijµjM + diτi +∑N

j=1 aijτj + biM .
Similarly, by (19)–(20), Assumption 1, and

[22, Lemma 2.2], we get

|f̃i2| =

∣∣∣∣ 1L fi2(t, x̄i2(t), x̄i2(t − di2(t)))
∣∣∣∣

≤
1
L
µi

( 2∑
k=1

|xik (t)| +
2∑

k=1

|xik (t − dik (t))|
)
+

1
L
τi

≤
1
L
µi

( N∑
j=1

|hij||zj1(t − dj1(t))| +
N∑
j=1

|hij||zj1(t)|

+L|zi2(t − di2(t))| + 2|y0(t)| + L|zi2(t)|
)
+

1
L
τi

≤
1
L
µi

N∑
j=1

|hij|(|zj1(t)| + |zj1(t − dj1(t))|)+
1
L
τi

+µi(|zi2(t)| + |zi2(t − di2(t))|)+
1
L
2µiM

≤ (L−1c̃02 + c̃03)
( N∑

j=1

2∑
k=1

‖Z(t − djk (t))‖4

+‖Z(t)‖4

)
+ L−1(2µiM + τi), (22)

where c̃02 > 0 and c̃03 > 0 are constants.
By (7) and [22, Lemma 2.2], we obtain ∂V

∂Zi
is homo-

geneous of degree 3. From (21)–(22), using [22, Lemmas
2.1 and 2.2], we have∣∣∣∣ ∂V∂Z F(Z)

∣∣∣∣ ≤ N∑
i=1

(∣∣∣∣ ∂V∂zi1
∣∣∣∣|f̃i1| + ∣∣∣∣ ∂V∂zi2

∣∣∣∣|f̃i2|)
≤ (c̄01 + c̄02L−1)

(
‖Z(t)‖4

4
+

N∑
j=1

2∑
k=1

‖Z(t − djk (t))‖44

)

+

N∑
i=1

(∣∣∣∣ ∂V∂zi1
∣∣∣∣βi1 + ∣∣∣∣ ∂V∂zi2

∣∣∣∣L−1(2µiM + τi))
≤ (c̄01 + c̄02L−1)(‖Z(t)‖4

4
+

N∑
j=1

2∑
k=1

‖Z(t − djk (t))‖44)

+ (c̄03 + c̄04L−1)‖Z(t)‖3
4

≤ (c̄01 + c̄02L−1)(‖Z(t)‖4
4
+

N∑
j=1

2∑
k=1

‖Z(t − djk (t))‖44)

+

(
3
4
c̄4/303 L

1/2
+

3
4
c̄4/304 L

−1
)
‖Z(t)‖4

4
+
L−3/2 + L−1

4

≤

(
c̄01 +

3
4
c̄4/303 L

1/2
+ (c̄02 +

3
4
c̄4/304 )L−1

)
‖Z(t)‖4

4

+ (c̄01 + c̄02L−1)
N∑
i=1

2∑
j=1

‖Z(t − dij(t))‖44

+
1
4
(L−3/2 + L−1), (23)

where constants c̄0i > 0, i = 1, 2, 3, 4,.

Since L > 1, we get∣∣∣∣ ∂V∂Z F(Z)

∣∣∣∣ ≤ (c̄01 + 3
4
c̄4/303 L

1/2
+ (c̄02 +

3
4
c̄4/304 )L−1

)
· ‖Z(t)‖4

4
+

1
4
(L−3/2 + L−1)+ (c̄01

+ c̄02)
N∑
i=1

2∑
j=1

‖Z(t − dij(t))‖44

≤ (c̄01 + c̄05L1/2 + c̄06L−1)‖Z(t)‖4
4

+ c̄07
N∑
i=1

2∑
j=1

‖Z(t − dij(t))‖44

+
1
4
(L−3/2 + L−1),

where c̄0i, i = 5, 6, 7, are positive constants.
Similarly to (21)–(22), by (19)–(20), Assumption 1, and

[22, Lemma 2.2], we obtain

|g̃i1| ≤
N∑
j=1

aijµ̄j|xj1(t)+ xj1(t − dj1(t))| +
N∑
j=1

aijτj

+ diµ̄i|xi1(t)+ xi1(t − di1(t))| + diτi

≤

N∑
j=1

N∑
s=1

aisµ̄s|hsj|(|zj1(t)| + |zj1(t − dj1(t))|)

+ diµ̄i
N∑
j=1

|hij|(|zj1(t)| + |zj1(t − dj1(t))|)

+

N∑
j=1

aijτj + 2
N∑
j=1

aijµ̄jM + 2diµ̄iM + diτi

≤

N∑
j=1

σ̄i1j(|zj1(t)| + |zj1(t − dj1(t))|)+ β̄i1

≤ c1(‖Z(t)‖4 +
N∑
j=1

‖Z(t − dj1(t))‖4)+ β̄i1, (24)

where c1 > 0 is a constant and

σ̄i1j = diµ̄i|hij| +
N∑
s=1

aisµ̄s|hsj|,

β̄i1 = 2diµ̄iM + 2
N∑
j=1

aijµ̄jM + diτi +
N∑
j=1

aijτj.

By (19)–(20), Assumption 1, and [22, Lemma 2.2], we get

|g̃i2| ≤
1
L
µ̄i

( 2∑
k=1

|xik (t)| +
2∑

k=1

|xik (t − dik (t))|
)
+

1
L
τi

≤
1
L
µ̄i

N∑
j=1

|hij|(|zj1(t)| + |zj1(t − dj1(t))|)+
1
L
τi

+ µ̄i(|zi2(t)| + |zi2(t − di2(t))|)+
1
L
2µ̄iM
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≤ (L−1c11 + c12)
( N∑

j=1

2∑
k=1

‖Z(t − djk (t))‖4

+‖Z(t)‖4

)
+ L−1(2µ̄iM + τi), (25)

where c11 and c12 are positive constants.
From (24), Lemmas 1–2, we have

|g̃Ti1||g̃i1| ≤ c21(‖Z(t)‖4 +
N∑
j=1

‖Z(t − dj1(t))‖4)2 + β̄2i1

+ 2β̄i1c1(‖Z(t)‖4 +
N∑
j=1

‖Z(t − dj1(t))‖4)

≤ (2c21N + β̄i1c1)
( N∑

j=1

‖Z(t − dj1(t))‖24

+‖Z(t)‖2
4

)
+ 2β̄i1c1 + β̄2i1

≤ c̃10(‖Z(t)‖2
4
+

N∑
j=1

‖Z(t − dj1(t))‖24)+ c̃11,

(26)

where constants c̃10 > 0 and c̃11 > 0.
By (24)–(25), using [22, Lemma 2.1] and Lemmas 1–2,

we obtain

|g̃Ti2||g̃i2| ≤ (c̃12L−1 + c̃13L−2 + c̃110)
(
‖Z(t)‖2

4

+

N∑
j=1

2∑
k=1

‖Z(t − djk (t))‖24

)
+ c̃15L−2

+ c̃14L−1,

|g̃Ti1||g̃i2| ≤ (c̃16 + c̃17L−1)
( N∑

j=1

2∑
k=1

‖Z(t − djk (t))‖24

+‖Z(t)‖2
4

)
+ (c̃18 + c̃19L−1), (27)

where c̃1i, i = 2, 3, · · · , 9, 10 are positive constants.
From (26)–(27), using [22, Lemmas 2.1 and 2.2], and

Lemma 1, we have

1
2
Tr
{
G(Z)

∂2V
∂Z2G

T (Z)
}

≤
1
2
r

∣∣∣∣G(Z)
∂2V
∂Z2G

T (Z)

∣∣∣∣
∞

≤
1
2
r
√
r

∣∣∣∣G(Z)
∂2V
∂Z2G

T (Z)

∣∣∣∣
≤

1
2
r
√
r

N∑
i=1

2∑
m=1

2∑
s=1

( ∣∣∣∣ ∂2V
∂zim∂zis

∣∣∣∣ ∣∣∣g̃Tim∣∣∣ |g̃is|)
≤ (c̃20 + c̃21L−1 + c̃22L−2)‖Z(t)‖4

4
+ (c̃24L−1

+ c̃23 + c̃25L−2)
N∑
j=1

2∑
k=1

‖Z(t − djk (t))‖44

+ (c̃26 + c̃27L−1 + c̃28L−2)‖Z(t)‖2
4
, (28)

where c̃2i, i = 0, 1, · · · , 8 are positive constants.

By using Lemma 1, we obtain

c̃26‖Z(t)‖2
4
≤

1
2
c̃226L

1/2
‖Z(t)‖4

4
+

1
2
L−1/2,

c̃27L−1‖Z(t)‖2
4
≤

1
2
c̃227L

−1
‖Z(t)‖4

4
+

1
2
L−1,

c̃28L−2‖Z(t)‖2
4
≤

1
2
c̃228L

−2
‖Z(t)‖4

4
+

1
2
L−2. (29)

Noting L > 1 and substituting (29) into (28), we get

1
2
Tr
{
G(Z)

∂2V
∂Z2G

T (Z)
}

≤

(
c̃20 +

1
2
c̃226L

1/2
+ (c̃21 +

1
2
c̃227)L

−1
+ (c̃22

+
1
2
c̃228)L

−2
)
‖Z(t)‖4

4
+ (c̃23 + c̃24L−1

+ c̃25L−2)
N∑
j=1

2∑
k=1

‖Z(t − djk (t))‖44

+
1
2
(L−1/2 + L−1 + L−2)

≤ (c̃20 + c̃31L1/2 + c̃32L−1 + c̃33L−2)‖Z(t)‖4
4

+ (c̃26 + c̃27 + c̃28)
N∑
j=1

2∑
k=1

‖Z(t − djk (t))‖44

+
1
2
(L−1/2 + L−1 + L−2)

≤ (c̃20 + c̃31L1/2 + c̃32L−1 + c̃33L−2)‖Z(t)‖4
4

+ c̃34
N∑
i=1

2∑
j=1

‖Z(t − dij(t))‖44 +
1
2
(L−1/2

+L−1 + L−2),

where constants c̃3i > 0, i = 1, · · · , 4.

C. MAIN RESULTS
Theorem 1: If Assumptions 1–4 hold, under the dis-
tributed observer (15) and controller (16), the distributed
output-feedback tracking problem of the system (2) is
solvable. Specifically,

1) For any given ε and initial value x(t0), there is a finite-
time T (x(t0), ε) such that

E|xi1(t)− y0(t)|4 < ε, ∀t > T (x(t0), ε), i = 1, 2, · · · ,N .

2) All the states of the closed-loop system are bounded in
probability.
Proof. Step 1. We construct a L-K functional

T (Z(t)) =
N∑
i=1

2∑
j=1

c̄07 + c̃34
(1− γ )e−d

∫ t

t−dij(t)
eσ−t‖Z(σ )‖4

4
dσ

+V (Z(t))

= Y (Z(t))+ V (Z(t)), (30)
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where c̄07 and c̃34 are positive parameters and

Y (Z(t)) =
N∑
i=1

2∑
j=1

c̄07 + c̃34
(1− γ )e−d

∫ t

t−dij(t)
eσ−t‖Z(σ )‖4

4
dσ.

We can verify that T (Z(t)) is C2 on Z(t). By [26, Lemma
4.3], there exist two class K∞ functions δ1 and δ2, such that

δ1(|Z(t)|) ≤ V (Z(t)) ≤ δ2(|Z(t)|). (31)

From dij(t) : R+ → [0, d], (31), and [22, Lemma 2.2], there
exist constants c̃ > 0, c > 0 and a class K∞ functions δ3, δ̄3,
such that

c̄07 + c̃34
(1− γ )e−d

∫ t

t−dij(t)
eσ−t‖Z(σ )‖4

4
dσ

≤ c̃
∫ t

t−dij(t)
δ3|Z(σ )|dσ

σ=s+t
≤ c̃

∫ 0

−dij(t)
δ3|Z(s+ t)|d(s+ t)

≤ c sup
−d≤s≤0

(δ3|Z(s+ t)|)

≤ δ̄3

(
sup
−d≤s≤0

|Z(s+ t)|
)
. (32)

Since |Z(s + t)| ≤ sup
−d≤s≤0

|Z(s + t)|, so δ2(|Z(s + t)|) ≤

δ2( sup
−d≤s≤0

|Z(s+ t)|).

Defining δ4 = δ2 + δ̄3, from (30)–(32), we get

δ1(|Z(t)|) ≤ T (Z(t)) ≤ δ4( sup
−d≤s≤0

|Z(s+ t)|). (33)

Step 2. From (30) and Lemmas 3–4, we have

LT (Z(t))

≤ L
∂V
∂Z

E(Z)+
∂V
∂Z

F(Z)− Y (Z(t))

+
1
2
Tr
{
G(Z)

∂2V (Z(t))
∂Z2(t)

GT (Z)
}
+ 2N

c̄07 + c̃34
(1− γ )e−d

· ‖Z(t)‖4
4
−

N∑
i=1

2∑
j=1

(c̄07 + c̃34)‖Z(t − dij(t))‖44

≤ −L
(
c0 − (c̄05 + c̃31)L−1/2 + (c̄06 + c̃32)L−2

×(c̄01 + c̃20 + 2N
c̄07 + c̃34
(1− γ )e−d

)L−1 + c̃33L−3
)
‖Z(t)‖4

4

+
1
4
(L−3/2 + L−1)+

1
2
(L−1/2 + L−2 + L−1)− Y (Z(t))

≤ −L(c0 − (c̄05 + c̃31 + c̄01 + c̃20 + 2N
c̄07 + c̃34
(1− γ )e−d

+ c̄06 + c̃32 + c̃33)L−1/2)‖Z(t)‖4
4
− Y (Z(t))+ β∗,

(34)

where

β∗ =
1
4
L−3/2 +

1
2
L−1/2 +

3
4
L−1 +

1
2
L−2.

Since c0 is independent of c̄20, c̄0i, and c̃3j, i = 1, 5, 6, 7,
j = 1, · · · , 4, we can choose

L ≥ max
{
1
c0
(c̄05 + c̃31 + c̄01 + c̃20 + c̄06

+ 2N
c̄07 + c̃34
(1− γ )e−d

+ c̃32 + c̃33)2, 1
}
. (35)

Then for any constant c̃0 > 0, (34) can be rewritten as

LT (Z(t)) ≤ −c̃0‖Z‖44 − Y (Z(t))+ β∗. (36)

By [22, Lemma 2.2], there are constants č > 0, ĉ > 0 such
that

č‖Z‖4
4
≤ V (Z(t)) ≤ ĉ‖Z‖4

4
. (37)

By (36) and (37) we get

LT (Z(t)) ≤ −c̃0ĉ−1V (Z(t))− Y (Z(t))+ β∗

≤ −c∗0T (Z(t))+ β∗, (38)

where c∗0 = min{ c̃0ĉ , 1}.
By (38) and [27, Th.1] system (2) and (14) have an almost

surely unique solution on [0,∞].
Let

ηl = inf{t : t ≥ t0 |Z(t)| ≥ l}, ∀l > 0,

and tl =min{ηl, t} for any t ≥ t0. Since |Z(·)| is bounded on
[t0, tl] a.s., T (Z) is bounded on [t0, tl] a.s. It then follows from
(38) that LT is bounded on [t0, tl] a.s. By Dynkin formul,
we have

E(ec
∗

0tlT (Z(tl)) ≤ E
∫ tl

t0
ec
∗

0sLT (Z(s))ds+ ET (Z(t0))

· ec
∗

0t0 + c∗0E
∫ tl

t0
ec
∗

0sT (Z(s))ds. (39)

Note that lim
l→∞

ηl = ∞. Then, letting l →∞, we get

ec
∗

0tE(T (Z(t)) ≤ E
∫ t

t0
ec
∗

0sLT (Z(s))ds+ ET (Z(t0))

· ec
∗

0t0 + c∗0E
∫ t

t0
ec
∗

0sT (Z(s))ds. (40)

From (38), we get

ec
∗

0tET (Z(t)) ≤ ec
∗

0t0ET (Z(t0))+
β∗

c∗0
ec
∗

0t −
β∗

c∗0
ec
∗

0t0 ,

or equivalently,

ET (Z(t)) ≤ e−c
∗

0(t−t0)ET (Z(t0))+
β∗

c∗0
(1− e−c

∗

0(t−t0)).

(41)

Step 3. Denoting z1(t) = (z11(t), · · · , zN1(t))T , by (41) we
can obtain

E |z1(t)|4 = E(z211(t)+ z
2
21(t)+ · · · + z

2
N1(t))

2

≤ NE(z411(t)+ z
4
21(t)+ · · · + z

4
N1(t))

≤ 4NET (Z(t))

≤ 4N
(
e−c

∗

0(t−t0)ET (Z(t0))+
β∗

c∗0

−
β∗

c∗0
e−c

∗

0(t−t0)
)
. (42)
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From (13), we get

z1(t) =
( N∑
s=1

a1s(x11(t)− xs1(t))+ b1(x11(t)− y0(t)),

· · · ,

N∑
s=1

aNs(xN1(t)− xs1(t))+ bN (xN1(t)

− y0(t))
)T

=

( N∑
s=1

a1s(x11(t)− y0(t))−
N∑
s=1

a1s(xs1(t)

− y0(t))+ b1(x11(t)− y0(t)),

· · · ,

N∑
s=1

aNs(xN1(t)− y0(t))−
N∑
s=1

aNs(xN1(t)

− y0(t))+ bN (xN1(t)− y0(t))
)T

= H (x1(t)− 1N y0), (43)

where x1(t) = (x11(t), · · · , xN1(t))T and 1N =

(1, 1, · · · , 1︸ ︷︷ ︸
N

)T .

By (42)–(43) we obtain

E|x1(t)− 1N y0|4 ≤ 4N |H−1|4
(
e−c

∗

0(t−t0)ET (Z(t0))

+
β∗

c∗0
(1− e−c

∗

0(t−t0))
)
. (44)

Since β∗ = 1
4L
−3/2
+

1
2L
−1/2
+

3
4L
−1
+

1
2L
−2, by tuning the

gain L, β∗ can bemade arbitrarily small. From (44), we obtain
that for any ε > 0 and initial value x(t0), there is a finite-time
T (x(t0), ε), such that

E|xi1(t)− y0(t)|4 ≤ ε, ∀t > T (x(t0), ε), i = 1, 2, · · · ,N ,

(45)

which means that conclusion 1) holds.
Step 4. From (41) we obtain

ET (Z(t)) ≤ ET (Z(t0))+
β∗

c∗0
. (46)

Let ξ = Z(t) and

ET (ξ ) ≥
∫
|ξ |>c

T (ξ )P(dw) ≥ inf
|ξ |>c

T (ξ )P(|ξ | > c). (47)

From (46)–(47) we have

P(|ξ | > c) ≤
ET (Z(t0))+

β∗

c∗0

inf
|ξ |>c

T (ξ )
, (48)

together with (41) we get

lim
c→∞

sup
t>t0

P(|ξ | > c) ≤ lim
c→∞

sup
t>t0

ET (Z(t0))+
β∗

c∗0

inf
|ξ |>c

T (ξ )
. (49)

By (49) and [19, Definition 1], ξ is bounded in probability.
Using (43) andAssumption 2, we get yi(t) = zi1(t) is bounded
in probability, and

ξi2 = zi2 +
N∑
j=1

hijcj1zj1, i = 1, · · · ,N . (50)

Notice that ξi1(t), ξi2(t) and zi1(t) are bounded in probability,
by (50), we get zi2(t) is bounded in probability, i =
1, 2, · · · ,N . By (13), we can conclude xi1(t) and xi2(t) are
bounded in probability, i = 1, 2, · · · ,N . Thence, we are able
to conclude that all the states of the closed-loop system are
bounded in probability.

The proof is completed.
Remark 3: The parameter ε is an arbitrary positive con-

stant, which is pre-given according to the control objective.
In the control scheme, We first set ε, then we design the
control (depends on ε). Usually, the smaller requires larger
control.
Remark 4: The nonlinear drift terms and nonlinear dif-

fusions terms in (2) make all the existing distributed control
methods invalid. To overcome this difficulty, we develop a
new distributed stochastic homogeneous domination method.
Specifically, we first focus on the nominal MASs analysis
to produce negative terms, then we use these negative terms
to dominate nonlinear terms appeared in the distributed
output-feedback control design. The novelty of this approach
is that no precise information of the nonlinearities is needed.
Thus, this approach provided a new perspective to deal with
the distributed output-feedback control problem.

IV. A SIMULATION EXAMPLE
Consider the following MASs. Fig. 1 shows the topology.

dxi1(t) = xi2(t)dt + fi1(t, xi1(t), xi1(t − di1(t)))dt

+ gTi1(t, xi1(t), xi1(t − di1(t)))dw,

dxi2(t) = ui(t)dt + fi2(t, x̄i2(t), x̄i2(t − di2(t)))dt

+ gTi2(t, x̄i2(t), x̄i2(t − di2(t)))dw,

yi(t) =
N∑
j=1

aij(xi1(t)− xj1(t))+ bi(xi1(t)− y0(t)), (51)

where f11 = x11(t − d11(t)), g11 = 0, f12 = 0, g12 =
1
2x12(t − d12(t)), f21 = x21(t − d21(t)), g21 = 1

2x21(t), f22 =
1
2x22(t), g22 =

1
5x22(t − d22(t)), f31 = x31(t − d31(t)), g31 =

x31(t), f32 = x32(t), g32 = x32(t − d32(t)), d11(t) =
1
4 sin t, d12(t) =

1
10 cos t, d21(t) =

1
5 sin t, d22(t) =

1
4 cos t, d31(t) =

1
4 sin t, d32(t) =

1
10 sin t, y0(t) =

1
1+t .

Assumptions 1 and 4 are satisfied with µi = µ̄i = 1, τi =
1, dij(t) ≤ 1 and ḋij(t) ≤ 1, i = 1, 2, 3, j = 1, 2.
Following the design scheme in Section III, choosing c11 =

5
4 , c12 = 1, c21 = 9

4 , c22 = 14.8, c31 = 5
4 , c32 =

1
4 and

L = 38, we can get the following distributed observers:

ẇ12 = L(−w12 − y1 + u1),

ẇ22 = L(−w22 − y2 + y1 + u2),

ẇ32 = L(−w32 − y3 + u3), (52)
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FIGURE 1. Directed topology Ḡ.

FIGURE 2. The response of the closed-loop system (52)–(55).

and the following distributed controllers:

u1 = −51.8x11 − 23.02w12 +
51.8
1+ t

,

u2 = −355.5x21 − 50.625x11 − 22.5w22 +
406.125
1+ t

,

u3 = −7.2x31 − 3.2w32 +
7.2
1+ t

. (53)

Letting ei2 = zi2−zi1−wi2, we can get the following observer
errors:

eo1 = −x11 − w12 −
1
38
x12 +

1
1+ t

,

eo2 = x11 − x21 − w22 +
1
38
x22,

eo3 = −x31 − w32 +
1
38
x32 +

1
1+ t

. (54)

The tracking errors is defined by

ey1 = x11 −
1

1+ t
,

ey2 = x21 −
1

1+ t
,

ey3 = x31 −
1

1+ t
. (55)

By choosing initial conditions x11(0) = 2.6, x12(0) = 10,
w12(0) = 1, x21(0) = 1, x22(0) = 0.5,w22(0) = 1, x31(0) =
0.01, x32(0) = 0.01,w32(0) = −0.1. Fig. 2 shows the
responses of the closed-loop system (52)–(55).

V. CONCLUSION
For stochastic nonlinear MASs, a new distributed output-
feedback tracking scheme is proposed in this paper. The
MASs simultaneously consider time-varying delays, unmea-
surable states, and Hessian terms. We construct a L-K
functional to deal with the time-delays terms. Distributed
observers and distributed output-feedback controllers are
designed to solve the output tracking problem.

In the future work, we will consider generalizing the
results in this paper to more general systems such as
those in [28]–[30].

REFERENCES
[1] H. J. Kushner, Stochastic Stability and Control. New York, NY, USA:

Academic, 1967, pp. 36–75.
[2] H. Deng and M. Krstić, ‘‘Stochastic nonlinear stabilization—I: A

backstepping design,’’ Syst. Control Lett., vol. 32, no. 3, pp. 143–150,
Nov. 1997.

[3] Z. Pan and T. Basar, ‘‘Backstepping controller design for nonlinear
stochastic systems under a risk-sensitive cost criterion,’’ SIAM J. Control
Optim., vol. 37, no. 3, pp. 957–995, Mar. 1999.

[4] W. Li and M. Krstic, ‘‘Stochastic adaptive nonlinear control with filterless
least squares,’’ IEEE Trans. Autom. Control, vol. 66, no. 9, pp. 3893–3905,
Sep. 2021.

[5] W. Li and M. Krstic, ‘‘Mean-nonovershooting control of stochastic
nonlinear systems,’’ IEEE Trans. Autom. Control, vol. 66, no. 12,
pp. 5756–5771, Dec. 2021.

[6] W. Li and M. Krstic, ‘‘Stochastic nonlinear prescribed-time stabilization
and inverse optimality,’’ IEEE Trans. Autom. Control, vol. 67, no. 3,
pp. 1179–1193, Mar. 2022.

[7] X. Zhang, A. Zhang, and G. Pang, ‘‘Stochastic finite-time output feedback
stabilization of feedforward nonlinear systems,’’ IEEE Access, vol. 7,
pp. 77083–77090, 2019.

[8] K. Q. Gu, V. L. Kharitonov, and J. Chen, Stability of Time-Delay Systems.
Boston, MA, USA: Birkhauser, 2003, pp. 10–15.

[9] L. Liu and X.-J. Xie, ‘‘Output-feedback stabilization for stochastic high-
order nonlinear systems with time-varying delay,’’ Automatica, vol. 47,
no. 12, pp. 2772–2779, Dec. 2011.

[10] Z. Hu, F. Deng, P. Shi, S. Luo, and M. Xing, ‘‘Robust exponential stability
of uncertain stochastic systems with probabilistic time-varying delays,’’
Int. J. Robust Nonlinear Control, vol. 28, no. 9, pp. 3273–3291, Mar. 2018.

[11] T. Zhang, F. Deng, and W. Zhang, ‘‘H_ index for linear time-varying
Markov jump stochastic systems and its application to fault detection,’’
IEEE Access, vol. 7, pp. 23698–23712, 2019.

[12] L. Bakule, ‘‘Decentralized control: An overview,’’ Annu. Rev. Control,
vol. 32, no. 1, pp. 87–98, Apr. 2008.

[13] R. Yan, Z. Dong, T. K. Saha, and R.Majumder, ‘‘A power system nonlinear
adaptive decentralized controller design,’’ Automatica, vol. 46, no. 2,
pp. 330–336, 2010.

[14] W. Zhu and D. Cheng, ‘‘Leader-following consensus of second-order
agents with multiple time-varying delays,’’ Automatica, vol. 46, no. 12,
pp. 1994–1999, 2010.

[15] W. Meng, Q. Yang, J. Sarangapani, and Y. Sun, ‘‘Distributed control of
nonlinear multiagent systems with asymptotic consensus,’’ IEEE Trans.
Syst., Man, Cybern., Syst., vol. 47, no. 5, pp. 749–757, May 2017.

[16] Y. Wang, Y. Lei, and Z. Guan, ‘‘Distributed control of nonlinear
multiagent systems with unknown and nonidentical control directions via
event-triggered communication,’’ IEEE Trans. Cybern., vol. 50, no. 5,
pp. 1820–1832, May 2020.

[17] Y. Tang, H. Gao, W. Zhang, and J. Kurths, ‘‘Leader-following consensus
of a class of stochastic delayed multi-agent systems with partial mixed
impulses,’’ Automatica, vol. 53, pp. 346–354, Mar. 2015.

[18] W. Li, L. Liu, and G. Feng, ‘‘Cooperative control of multiple stochas-
tic high-order nonlinear systems,’’ Automatica, vol. 82, pp. 218–225,
Aug. 2017.

[19] W. Li and J.-F. Zhang, ‘‘Distributed practical output tracking of high-order
stochastic multi-agent systems with inherent nonlinear drift and diffusion
terms,’’ Automatica, vol. 50, no. 12, pp. 3231–3238, Dec. 2014.

VOLUME 10, 2022 69331



H. Wang et al.: Distributed Output-Feedback Tracking for Stochastic Nonlinear MASs

[20] M. L. Xing and F. Q. Deng, ‘‘Tracking control for stochastic multi-agent
systems based on hybrid event-triggered mechanism,’’ Asian J. Control,
vol. 21, no. 5, pp. 2353–2363, Jul. 2018.

[21] S. Jin, Y. Liu, and F. Li, ‘‘Global practical tracking for nonlinear systems
with more unknowns via adaptive output-feedback: Global practical
tracking for nonlinear systems,’’ Asian J. Control, vol. 20, no. 1, pp. 22–38,
Jan. 2018.

[22] W. Li, L. Liu, and G. Feng, ‘‘Output tracking of stochastic nonlinear
systems with unstable linearization,’’ Int. J. Robust Nonlinear Control,
vol. 28, no. 2, pp. 466–477, Jan. 2018.

[23] W. Li, L. Liu, and G. Feng, ‘‘Distributed output-feedback tracking of
multiple nonlinear systems with unmeasurable states,’’ IEEE Trans. Syst.,
Man, Cybern., Syst., vol. 51, no. 1, pp. 477–486, Jan. 2021.

[24] G. Wang, C. Wang, Y. Yan, L. Li, and X. Cai, ‘‘Distributed adaptive output
feedback tracking control for a class of uncertain nonlinear multi-agent
systems,’’ Int. J. Syst. Sci., vol. 48, no. 3, pp. 587–603, Feb. 2017.

[25] H. Min, S. Xu, B. Zhang, and Q. Ma, ‘‘Output-feedback control for
stochastic nonlinear systems subject to input saturation and time-varying
delay,’’ IEEE Trans. Autom. Control, vol. 64, no. 1, pp. 359–364, Jan. 2019.

[26] H. K. Khalil, Nonlinear Systems. Beijing, China: Publishing House of
Electronics Industry, 2007, pp. 657–662.

[27] S.-J. Liu, J.-F. Zhang, and Z.-P. Jiang, ‘‘Decentralized adaptive output-
feedback stabilization for large-scale stochastic nonlinear systems,’’
Automatica, vol. 43, no. 2, pp. 238–251, 2007.

[28] W. Li, L. Liu, and G. Feng, ‘‘Cooperative control of multiple nonlinear
benchmark systems perturbed by second-order moment processes,’’ IEEE
Trans. Cybern., vol. 50, no. 3, pp. 902–910, Mar. 2020.

[29] W. Li, X. Yao, and M. Krstic, ‘‘Adaptive-gain observer-based stabilization
of stochastic strict-feedback systemswith sensor uncertainty,’’Automatica,
vol. 120, pp. 1–12, Oct. 2020.

[30] W. Li and M. Krstic, ‘‘Prescribed-time output-feedback control of
stochastic nonlinear systems,’’ IEEE Trans. Autom. Control, early access,
Feb. 14, 2022, doi: 10.1109/TAC.2022.3151587.

HUI WANG received the M.S. degree in opera-
tional research and control theory from Ludong
University, China, in 2015. She is currently a
Lecturer with Ludong University. Her research
interests include stochastic nonlinear control and
distributed control of multi-agent systems.

YUYAO YOU received the bachelor’s degree
in mathematics and applied mathematics from
Shanxi Datong University, China, in 2018. She is
currently pursuing the master’s degree in systems
control and optimization with the College of
Mathematics and Statistical Science, Ludong Uni-
versity. Her research interest includes stochastic
control.

WUQUAN LI (Senior Member, IEEE) received
the Ph.D. degree from the College of Information
Science and Engineering, Northeastern University,
China, in 2011. From 2012 to 2014, he was a Post-
doctoral Researcher with the Institute of Systems
Science, Academy of Mathematics and Systems
Science, Chinese Academy of Sciences, China.
He was a Visiting Scholar with the University of
California at San Diego, San Diego, USA. He is
a Young Taishan Scholar in China. Since January

2011, he has been with the School of Mathematics and Statistics Science,
Ludong University, where he is currently a Professor. His research interests
include stochastic nonlinear systems control and identification of nonlinear
systems.

He serves as an Associate Editor for two international journals: Systems
and Control Letters and Asian Journal of Control.

69332 VOLUME 10, 2022

http://dx.doi.org/10.1109/TAC.2022.3151587

