
Received 2 June 2022, accepted 23 June 2022, date of publication 29 June 2022, date of current version 5 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3187203

Less Is More: Lighter and Faster Deep Neural
Architecture for Tomato Leaf
Disease Classification
SABBIR AHMED , MD. BAKHTIAR HASAN , TASNIM AHMED, MD. REDWAN KARIM SONY,
AND MD. HASANUL KABIR , (Member, IEEE)
Department of Computer Science and Engineering, Islamic University of Technology, Dhaka 1704, Bangladesh

Corresponding author: Md. Bakhtiar Hasan (bakhtiarhasan@iut-dhaka.edu)

ABSTRACT To ensure global food security and the overall profit of stakeholders, the importance of
correctly detecting and classifying plant diseases is paramount. In this connection, the emergence of
deep learning-based image classification has introduced a substantial number of solutions. However, the
applicability of these solutions in low-end devices requires fast, accurate, and computationally inexpensive
systems. This work proposes a lightweight transfer learning-based approach for detecting diseases from
tomato leaves. It utilizes an effective preprocessing method to enhance the leaf images with illumination
correction for improved classification. Our system extracts features using a combined model consisting
of a pretrained MobileNetV2 architecture and a classifier network for effective prediction. Traditional
augmentation approaches are replaced by runtime augmentation to avoid data leakage and address the
class imbalance issue. Evaluation on tomato leaf images from the PlantVillage dataset shows that the
proposed architecture achieves 99.30% accuracy with a model size of 9.60MB and 4.87M floating-point
operations, making it a suitable choice for low-end devices. Our codes and models are available at
https://github.com/redwankarimsony/project-tomato.

INDEX TERMS CLAHE, data augmentation, lightweight architecture, MobileNetV2, transfer learning.

I. INTRODUCTION
Tomato, Solanum lycopersicum, is one of the most common
vegetables grown worldwide. According to recent statistics,
around 180.64 million metric tons of tomatoes are grown
worldwide which amounts to an export value of 8.81 bil-
lion US Dollars [1]. However, the production of tomatoes
is on the decline due to the crop being prone to various
diseases [2]. Traditional disease detection approaches require
manual inspection of diseased leaves through visual cues or
chemical analysis of infected areas, which can be susceptible
to low detection efficiency and poor reliability due to human
error. Adding to the problem, the lack of professional knowl-
edge of the farmers and the unavailability of agricultural
experts who can detect the diseases in remote areas also
hamper the overall harvest production. Negligence in this

The associate editor coordinating the review of this manuscript and
approving it for publication was Yongjie Li.

regard poses a significant threat to food security worldwide
while causing great losses for the stakeholders involved in
tomato production. Early detection and classification of dis-
eases implemented using tools and technologies available
to the farmers can go a long way to alleviate all the issues
discussed [3].

Several solutions have been proposed using the traditional
machine learning approaches for plant disease classifica-
tion [4]. Moreover, the emergence of deep learning-based
methods in the agricultural domain has opened a new door
for researchers with outstanding generalization capability
removing the dependencies on handcrafted features [5].
Recently, Convolutional Neural Network (CNN) has become
a powerful tool for any classification task as it automati-
cally extracts important features from images without human
supervision.Moreover, the recent variations of CNN architec-
tures such as AlexNet [6], DenseNets [7], EfficientNets [8],
GoogLeNet [9], MobileNets [10], [11], NASNets [12],

68868 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-5928-4886
https://orcid.org/0000-0001-8093-5006
https://orcid.org/0000-0002-6853-8785

S. Ahmed et al.: Less Is More: Lighter and Faster Deep Neural Architecture for Tomato Leaf Disease Classification

Residual Networks (ResNets) [13], SqueezeNet [14], Visual
Geometric Group (VGG) Networks [15] have enabled the
machines to understand complex patterns enabling even
better performance than humans in many classification
problems.

With the introduction of transfer learning where the reuse
of a model efficient in solving one problem as the start-
ing point of another problem in a relevant domain has sig-
nificantly reduced the requirement of vast computational
resources [16]. Consequently, the utilization of pretrained
AlexNet and GoogLeNet architectures on the publicly avail-
able PlantVillage Dataset [17] has been one of the pioneer
works of leaf disease classification using transfer learning
and paved the way for numerous solutions in the existing
literature [18]. These deep neural architectures have been
found to be extremely helpful for leaf disease classification
tasks for several plants such as, apple [19], cassava [20],
corn [21], cucumber [22], grape [23], maize [24], mango [25],
rice [26], etc. However, most of these solutions propose deep
and complex networks focusing on increasing the accuracy of
detection.

Real-life applications, such as agriculture, often require
small and low latency models tailored explicitly for devices
with small memory and low computational power while also
having comparable, if not better, accuracy. Most of the sys-
tems focusing on lightweight models had to sacrifice accu-
racy and/or work with a limited number of diseases/samples.
In this regard, this work proposes a lightweight and fast
deep neural architecture for tomato leaf disease classification.
The system utilizes a pretrained MobileNetV2 as a feature
extractor followed by a classifier network. Contrast Limited
Adaptive Histogram Equalization (CLAHE) technique has
been used to reduce the effect of poor lighting conditions
from the leaf images and enhance the disease spots without
increasing the noise. We have tackled the dataset imbalance,
overfitting, and data leaking issues by applying runtime aug-
mentation in different dataset splits.

The performance of the model has been evaluated on
tomato leaf images from the PlantVillage dataset incorporat-
ing a healthy and nine disease classes. The baseline accuracy
of the MobileNetV2 architecture was 97.27%. The proposed
pipeline was robust enough to uplift it to 99.30%. Further
comparison with the state-of-the-art tomato leaf disease clas-
sification models showed that the proposed approach is com-
petent enough to achieve high accuracy while maintaining a
relatively small model size and reduced number of compu-
tations. The nearest model producing a similar level of per-
formance required a 2.4 times heavier model with 2.45 times
additional FLOPs count requirements. Hence, this approach
can pave the way for a suitable solution for designing real-life
applications in low-end devices available to the farmers.

The rest of the paper is organized as follows. We dis-
cuss the research gaps in the existing literature to justify
our motivation in Section II. The details of our proposed
methodology are described in Section III. Our experimental
results justifying the efficacy of our proposed method is

provided in Section IV. And finally, in Section V, we deliver
our concluding remarks, discuss our limitations, and provide
directions for future researchers.

II. RELATED WORKS
Current research trends on tomato leaf disease classification
tend to focus on developing solutions using Deep Neural
Architectures, simplifying networks for faster computation
targeting embedded systems, real-time disease detection,
etc. The introduction of intelligent systems incorporating
these solutions could go a long way to reduce crop yield
loss, remove tedious manual monitoring tasks, and minimize
human efforts.

Earlier approaches in tomato leaf disease classification
involved different image-based hand-crafted feature extrac-
tion techniques that were fed into machine learning-based
classifiers. These works mainly focused on only a few dis-
easeswith extreme feature engineering andwere often limited
to constrained environments. To extract features, researchers
focused on utilizing different image-level feature extrac-
tion techniques like Gray-Level Co-occurrence Matrices
(GLCM) [27], Geometric and histogram-based features [28],
Gabor Wavelet Transformation [29], Moth-Flame Optimiza-
tion and Rough Set (MFORS) [30], and similar techniques.
To segment the diseased portion of the leaves, several works
have extracted the Region of Interest (RoI) using k-means
clustering [28], Otsu’s method [31], etc. To predict the class
labels from the extracted features, Support Vector Machine
(SVM) [27], [29], Decision Trees [31], and other classifiers
were used. Due to their sensitivity to the surroundings of
leaf images, machine learning approaches relied on rigorous
preprocessing steps like manual cropping of RoI, color space
transformation, resizing, background removal, and image fil-
tering for successful feature extraction. This increased com-
plexity due to preprocessing limited the traditional machine
learning approaches to classify a handful of diseases from a
small dataset, thus failing to generalize on larger ones.

The performances of a significant portion of the prior
works were not comparable as they were mostly done on
self-curated small datasets. This issue was alleviated to a
great extent when the PlantVillage dataset was introduced
containing 54,309 images of 14 different crop species and
26 diseases [17]. A subset of this dataset contains nine tomato
leaf diseases and one healthy class that has been utilized
by most of the recent deep learning-based works on tomato
leaf disease classification. Several works on tomato leaf dis-
eases also focused on segmenting leaves from complex back-
grounds [32], real-time localization of diseases [33]–[35],
detection of leaf disease in early-stage [36], visualizing the
learned features of different layers of CNN model [37], [38],
combining leaf segmentation and classification [39], and so
on. These works mostly targeted removing the restrictions of
lighting conditions and uniformity of complex backgrounds.

To alleviate the dependency on hand-crafted features
along with achieving better classification accuracy with
large datasets, recent transfer learning-based approaches to

VOLUME 10, 2022 68869

S. Ahmed et al.: Less Is More: Lighter and Faster Deep Neural Architecture for Tomato Leaf Disease Classification

FIGURE 1. Overview of the tomato leaf disease classification architecture.

leaf disease classification have investigated the performance
of different pretrained models using various hyperparam-
eters. Based on their results, they recommended the use
of GoogleNet [37], [40], [41], AlexNet [42], ResNet [43],
DenseNet121 [44] in creating tomato leaf disease detection
systems due to their superior performance compared to other
models. Some of these works have also investigated the effect
of different hyperparameter choices like optimizers, batch
sizes, the number of epochs, and fine-tuning the model from
different depths to see how they impact its performance [40],
[42]. These models were pretrained on massive datasets,
making them the perfect choice for extracting relevant fea-
tures outperforming shallowmachine learning-based models.
Although these systems achieved high accuracy going up
to 99.39% [40], the models were huge and computationally
expensive, often making them infeasible for low-end devices.

Several attempts were made to reduce the computational
cost and model size. Durmucş et al. [45] utilized SqueezeNet
to detect tomato leaf diseases. The base SqueezeNet architec-
ture reduces the computational cost by minimizing the num-
ber of 3×3 filters, late downsampling, and deep compression.
The authors conducted the experiments on an NVIDIA Jetson
TX1 device targeting real-time disease detection using robots.
Tm et al. [46] proposed a variation LeNet, one of the earliest
and smallest deep-learning architectures. The authors intro-
duced an additional convolutional and pooling layer to the
base architecture and increased the number of filters in dif-
ferent layers to extract complex features. However, the accu-
racies achieved by these two systems were not on par with
the performance of the deeper models. Bir et al. [47] utilized
pretrained EfficientNet-B0 to achieve a comparable accuracy
with the state-of-the-art while keeping the model size and
computation low. This architecture applies grid search to find
coefficients for width, depth, and resolution scaling to reduce
the size of the baseline model with a minimal impact on
accuracy. However, when classifying the tomato leaves, the
authors had to discard a significant number of samples to
gain a comparable accuracy. Reduction of dataset size in this
manner, even if balanced with augmentation, might result

in discarding complex samples restricting the generalization
capability of the models. All these issues impose the require-
ment of lightweight models that can achieve state-of-the-art
performance with high generalization capability.

III. MATERIALS AND METHODS
Our proposed architecture takes tomato leaf images as input
and outputs the class labels. At first, the input image is
passed through a preprocessing step where it is enhanced
using Adaptive Histogram Equalization. Then, the enhanced
image is fed to a transfer learning block, where we utilize
a pretrained deep CNN model for efficient feature extrac-
tion. To determine a suitable feature extractor, we experi-
mented with nine different pretrained architectures which are
DenseNet121, DenseNet201, EfficientNet-B0, MobileNet,
MobileNetV2, NASNet-Mobile, ResNet50, ResNet152V2,
and VGG19. Based on the results, we have chosen
MobileNetV2 due to its smaller size and faster inference
while maintaining comparable accuracy. Then the features
extracted by the pretrained model are fed through a shallow
densely connected classifier network to get the Softmax prob-
abilities for every class using which we predict the final label.
The general pipeline of the proposed approach is depicted in
Figure 1.

A. DATASET
As of today, the PlantVillage Dataset1 is the largest
open-access repository of expertly curated leaf images for
disease diagnosis. The dataset comprises 54,309 images of
healthy and infected leaves belonging to 14 crops, labeled
by plant pathology experts. Among them, 18,160 images are
of tomato leaves, divided into one healthy and nine disease
classes. This dataset offers a wide variety of diseases and
contains samples of leaves being infected by various diseases
to different extents. One sample image from each class can
be seen in Figure 2.

1https://www.tensorflow.org/datasets/catalog/plant_village

68870 VOLUME 10, 2022

S. Ahmed et al.: Less Is More: Lighter and Faster Deep Neural Architecture for Tomato Leaf Disease Classification

FIGURE 2. Sample tomato leaf images of the 10 classes from the PlantVillage dataset.

TABLE 1. Distribution of samples in the dataset.

From the distribution of the number of samples in different
classes shown in Table 1, it is evident that the dataset contains
an imbalance as different classes have a significantly varying
number of samples. The maximum number of samples is
5357, belonging to Yellow Leaf Curl Virus disease, whereas
the number of samples corresponding toMosaic Virus disease
is as low as 373. Few problems arise because of this class
imbalance. First, the model does not get a good look at the
images of classes with a lower number of samples, leading
to less generalization [48]. Moreover, the overall accuracy
might still be high even if the model is ignoring these small-
sized classes, as they do not contribute much to the overall
accuracy [49]. Different techniques involving undersam-
pling and oversampling can be employed to tackle this issue,
ensuring that the model is equally capable of identifying all
diseases.

B. DATA PREPROCESSING
Disease spots often have close intensity values with the sur-
roundings due to the poor lighting condition of the images

provided in the dataset. Moreover, in real-world applications,
images captured by the end-users might not always be ade-
quately illuminated, and this might fail to provide the model
with enough details to identify the disease, and hence affect
the classification result [50]. Contrast enhancement tech-
niques like histogram equalization can be applied to enhance
the details and correct the illumination problem. Generally,
histogram-based approaches work globally throughout the
image. However, the intensity distribution of the leaf regions
can be different from that of the background. So, the same
transformation function cannot be applied to the entire image.
To tackle the illumination problem by addressing the uneven
distribution of intensity, we opted for Contrast Limited Adap-
tive Histogram Equalization [51].

Furthermore, as mentioned earlier, there exists a class
imbalance in the original dataset. This issue has been tack-
led in various ways in the existing literature. The most
common way of dealing with this has been to undersam-
ple and/or oversample certain classes [41], [43], [44], [47].
Although it makes the dataset balanced to some extent,
it has its own drawbacks. Undersampling may drop some
of the challenging images for certain classes that can con-
tain important information for the model to learn, which
eventually hinders the generalizing capability of the model.
Oversampling utilizes different data augmentation techniques
to produce multiple copies of the original images, each
having slight variations. But if we perform augmentation
before splitting the dataset into train, validation, and test
sets, it might inject slight variations of the training set
into the test set. As the model learns to classify one vari-
ation of the image while training, it is highly likely to
correctly classify the other variations in the test set, over-
estimating the accuracy of the system. This problem is
known as data leakage [52]. As each choice has its pros
and cons, we decided to perform data augmentation during
runtime.

VOLUME 10, 2022 68871

S. Ahmed et al.: Less Is More: Lighter and Faster Deep Neural Architecture for Tomato Leaf Disease Classification

FIGURE 3. Illumination correction using contrast limited adaptive
histogram equalization.

1) CONTRAST LIMITED ADAPTIVE HISTOGRAM
EQUALIZATION (CLAHE)
CLAHE increases the contrast between diseased spots and
the leaf by dividing the image into multiple small regions and
applying a transformation function that is proportional to a
cumulative distribution function. This function is calculated
based on the histogram of the intensity distribution of the
pixels inside each region. CLAHE also limits the amplifi-
cation of the noise, which is prevalent in low light images,
near regions with constant intensity by clipping the histogram
value beyond a threshold. Figure 3 shows the sample output
after applying CLAHE on an original image.

Before applying CLAHE, the leaf image was converted
from RGB color space to Hunter Lab color space. The inten-
sity channel of the leaf image was divided into P×Q regions,
where P denotes the number of contextual regions on the
x-axis, and Q denotes the number of contextual regions on
the y-axis. Our empirical results demonstrated that a value of
7 for both P and Q provided the best results.
A histogram was calculated considering the intensity of

the pixels for each contextual region. Then each histogram
was clipped based on a threshold β, which was set to be
3 upon experimentation. After that, using the Cumulative
Distribution Function, a function was generated to map the
input intensities with the desired output intensities. While
mapping, the function performed Bilinear Interpolation of the
four nearby regions to reduce the blocking effect. Finally, the
leaf image was converted from Hunter Lab color space to
RGB color space.

To maintain consistency, we have preprocessed all the
tomato leaf images of the dataset using CLAHE before feed-
ing them to the model.

2) DATA AUGMENTATION
To reflect real-life scenarios, we have picked height andwidth
shifting, clockwise and counterclockwise rotation, shearing,
and horizontal flipping to augment the leaf images during
runtime.

Height and Width Shifting is performed by translating
each pixel of the image respectively in the horizontal and
vertical direction by a constant factor. In our case, the constant
factor was chosen randomly within the range [0, 0.2]. While

FIGURE 4. Data augmentations. A combination of these augmentations
were applied randomly during run-time.

FIGURE 5. Sample augmentations performed on the images during
training, validation, and testing phase.

shifting, the pixels going outside the boundary are discarded,
and the empty regions are filled with the RGB values of the
nearest pixels. Fig. 4b and 4c shows the effect of performing
height and width shift, respectively.

Rotation is performedwith respect to the center pixel of the
image. For our case, the rotation angle was chosen randomly
within the range [-20, 20] degrees. Fig. 4d shows the effect of
performing rotation. Shearing is performed by moving each
pixel towards a fixed direction by an amount proportional to
the pixel’s distance from the bottom-most pixels of the image
based on a shearing factor. We randomly picked the shearing
factor within the range [0, 0.2]. Fig. 4e shows the effect of
performing shearing. Flipping an image horizontally requires
mirroring the pixels with respect to the centerline parallel to
the x-axis. Fig. 4f shows the effect of performing horizontal
flipping.

Multiple random augmentations are applied to the same
image to ensure that the model sees a new variation on
every epoch and thus learns to recognize a variety of images.
Fig. 5 shows the effect of combining different augmentations
that are used during the training, validation, and testing phase.

Unlike traditional approaches in the existing literature on
tomato leaf disease classification, we decided not to use
data augmentations to increase the number of samples before
training. Instead, these augmentations were performed ran-
domly on different images during runtime in different splits,
ensuring that the model sees different variations of the same

68872 VOLUME 10, 2022

S. Ahmed et al.: Less Is More: Lighter and Faster Deep Neural Architecture for Tomato Leaf Disease Classification

FIGURE 6. MobileNetV2 architecture adopted from [11] and modified for extracting features from 256×256×3 tomato leaf images. Each box represents
the feature maps (not to scale) after going through different layers. Here, f denotes the expansion factor of each Bottleneck Layer. The first layer of each
sequence has a stride value of s, and the remaining use stride 1. r denotes the number of times a layer is repeated to produce the next feature map.

image separately in different epochs. This reduces the pos-
sibility of overfitting, as it cannot see the same image in
every epoch. On the other hand, this ensures that the different
variations of the same image do not appear in both the training
and the test set, thus eliminating the data leaking problem
persistent in the existing literature.

C. TRANSFER LEARNING-BASED FEATURE EXTRACTOR
Earlier machine learning approaches assumed that the train-
ing and test data must be in the same feature space. However,
recent advances in deep learning approaches have facilitated
the use of an architecture trained to extract features on the
training data of one domain to be used as a feature extrac-
tor for another domain. As the feature extractors in deep
learning-based tasks became more and more generalized,
this method of knowledge transfer, also known as Trans-
fer Learning, has significantly improved the performance of
learning, reducing a considerable amount of computational
complexity. In this connection, theMobileNetV2 architecture
has enabled real-time applications across multiple tasks and
benchmarks using low computational resources. As shown in
Figure 6,MobileNetV2 consists of a regular 3×3 convolution
with 32 filters, followed by 17 Bottleneck Residual Blocks,
a Pointwise convolution layer, a global average pooling layer,
and a classification layer. The classification layer usually
corresponds to the number of classes of the original dataset.
For our system, the classification layer was replaced with a
classifier network to classify tomato diseases.

At the heart of the MobileNetV2 architecture resides Bot-
tleneck Residual Block containing three convolutional layers
Fig. 7a). The Expansion Layer increases the number of chan-
nels in the input data by performing Pointwise convolution
based on an expansion factor. The feature map output by this
layer is then fed to a 3×3Depthwise Convolution layer which
works as a filter by applying convolution per channel. The
Projection Layer takes these filtered values to generate salient
features. Besides, this layer projects the higher dimensional
data into a much lower number of dimensions, reducing
the number of channels. The Depthwise Convolution layer
combined with the Pointwise Convolution performs Depth-
wise Separable Convolution, reducing the computation by
a factor of O(k2) compared to regular convolutions. Here,
k is the size of the Depthwise convolution kernel. Like most
modern architectures, each of the three convolution layers
is followed by batch normalization to stabilize the learn-
ing process. The activation function used by these layers is
ReLU6. It bounds the activation within [0, 6], making it more
robust than the well-known ReLU function in fixed-point
arithmetic. However, the Projection Layer does not contain
any activation function due to the low dimensionality of the
data produced by this layer. The non-linearity of the ReLU
activation function can destroy valuable features. In addition,
to reduce the effect of diminishing gradients, inverted resid-
ual connections are introduced through the network, which
connects the bottleneck blocks with the same number of
channels (Fig. 7b).

VOLUME 10, 2022 68873

S. Ahmed et al.: Less Is More: Lighter and Faster Deep Neural Architecture for Tomato Leaf Disease Classification

FIGURE 7. Bottleneck residual block. Here, each block represents the feature map output by different layers.

In this work, to compare the performance ofMobileNetV2,
other transfer-learning architectures that are popular in leaf
disease detection: DenseNet121, DenseNet201, EfficientNet-
B0, MobileNet, NASNet-Mobile, ResNet50, ResNet152V2,
and VGG19 were used.

D. CLASSIFIER NETWORK
Instead of directly using the extracted features from pre-
trained models for final prediction, we employed a combi-
nation of dense, dropout, and batch normalization blocks to
fine-tune the extracted traits further. As shown in Figure 8,
dense blocks were added before the final output layer. The
pretrained MobileNetV2 architecture we used was trained on
a large and generalized dataset, making it perfect for feature
extraction. The features extracted from the leaf images by
MobileNetV2 architecture are then fed into the dense blocks
trained from scratch to extract further the relevant features
required to classify the diseases. Upon experimentation with
different numbers of layers consisting of a varying number
of nodes, two dense blocks with 128 and 64 nodes helped us
achieve global minima in terms of loss.

A Batch Normalization [53] block was added between
the output of the MobileNetV2 and the first densely con-
nected block and one between the second densely connected
block and the output layer. A batch normalization block is
used to standardize the inputs for the final layer for each
mini-batch and stabilize the whole learning process, reducing

FIGURE 8. Classifier network.

the epochs needed to train the network. Rectified Linear Unit
(ReLU) [54] was used as the activation function of the two
densely connected blocks. This activation function makes the
models easier to optimize and more generalizable. A dropout
layer [55] in-between these two dense blocks work as a

68874 VOLUME 10, 2022

S. Ahmed et al.: Less Is More: Lighter and Faster Deep Neural Architecture for Tomato Leaf Disease Classification

regularizer, ensuring that the model does not overfit. The
final output layer of the classifier network is also a densely
connected block with a Softmax activation function [56].
The output layer of the classifier network contains ten nodes
corresponding to each class label. The value of each node
represents the probability of the input sample being in that
class. Applying Argmax on this layer provides us with the
predicted class label.

E. EXPERIMENTAL SETUP
The proposed architecture was trained under a Python
environment with TensorFlow, Keras, and other necessary
libraries in Google Colab.2 All experiments were conducted
using an Intel Xeon CPU with a base clock speed of 2.3 GHz
and an NVIDIA Tesla T4 GPU with a VRAM of 15 GB. The
total usable memory of the machine was 13 GB.

From each class, the sample images were randomly split
into 60% for training, 20% for validation, and 20% for the
test set. Following the mini-batch gradient descent tech-
nique [57], the batch size was selected as 16. Since smaller
batch sizes are often noisy, they help create a regularization
effect and reduce the generalization error. They also help fit
training data into memory.

While working with mini-batches, there is always a pos-
sibility of choosing batches that are not representative of the
entire dataset, resulting in an inaccurate estimate of the gradi-
ent. Thus the training images were shuffled after each epoch
throughout the experiments. This increases the probability
that themodel will converge and not be trappedwith toomany
inferior batches.

For experimentingwithmini-batches, it is crucial to shuffle
the data after each epoch. The goal of shuffling data is to
reduce variance and ensure that models generalize well and
do not overfit.

The model was trained for at most 1000 epochs with
early stopping. Early stopping helps reduce overfitting and
improves the generalization of neural networks. Validation
accuracy was selected as the scheme for evaluating the model
so that early stopping can be triggered. In our proposed
approach, a change in validation accuracy between epochs
was considered significant if it was greater than 10-4. Oth-
erwise, it was considered a patient epoch. The training was
stopped early if there are ten consecutive patient epochs.
Consequently, it was observed that our proposed architecture
was able to converge after 70 epochs on average.

To ensure the rapid learning of salient features, we have
used Adam optimizer [58] for training our model. Compared
to other optimizers, Adam can help multilayer deep learning
networks converge faster for computer vision problems. Since
this is a multiclass classification task, we have used categori-
cal cross-entropy loss. The initial learning rate was set to 10-5.
For every four consecutive patient epochs, the learning rate
was decreased by a factor of 0.1 to help the model learn a set

2https://colab.research.google.com/

of globally optimal weights that leads to better optimization
of the loss function.

The models can be initialized with different weights dur-
ing the training phase, e.g., 0, random values, or pretrained
weight values. In our work, we initialized the feature extrac-
tor part of the network with the respective pretrained weights
from ImageNet Dataset [59] for the models and the classifier
network with randomweights. Model Checkpoints were used
to save the model with the best validation accuracy so that
they can be loaded later to continue the training from the
saved state if required.

F. EVALUATION METRICS
1) ACCURACY
Accuracy is the ratio between the total number of predictions
that were correct and the total number of predictions. To get a
better estimation of the generalization capability of a model,
the accuracy is calculated using the samples from the test set,
which is unseen to the model during training.

Accuracy =
M
N
× 100% (1)

Here, N is the number of samples in the test set andM is the
number of samples for which the class labels were correctly
predicted by the model.

2) PARAMETER COUNT
Parameters are the model’s learnable weights, which are
changed during the backward propagation phase based on the
chosen optimization algorithm. The number of parameters
can not only provide us with an idea regarding the training
time of the model but also helps determine the model size
and inference time.

Parameter Count =
L∑
i=1

pi (2)

Here, pi is the number of parameters in the ith layer and L is
the total number of layers in the model.

3) MODEL SIZE
Trained models can be stored as a Hierarchical Data For-
mat version 5 (HDF5) file. The saved model contains the
model’s configuration, trained weights, and optimizer state.
The model, along with its saved weights, can be loaded again
to run inference. The size of the saved model is called the
model size. Model size can be measured in MB (Megabyte)
or GB (Gigabyte).

4) FLOPs COUNT
FLOPs Count is the theoretical maximum number of
floating-point operations that a model requires to perform
inference. Since the time taken for inference can vary from
device to device, FLOPs Count is a better measurement to
compare the relative inference time of deep learning models.
It is usually measured inmegaFLOPs (MFLOPs), gigaFLOPs

VOLUME 10, 2022 68875

S. Ahmed et al.: Less Is More: Lighter and Faster Deep Neural Architecture for Tomato Leaf Disease Classification

(GFLOPs), or teraFLOPs (TFLOPs). The higher the value,
the larger the number of computations required for a model
to perform inference.

5) PRECISION
Precision is the ratio of the sum of the number of true positive
predictions among all classes and the sum of the number of
true positive predictions and false-positive predictions among
all classes. In amulticlass problem, for each class, precision is
used to evaluate the correctly classified samples of that class
among all the samples that were classified as of that class.
Precision is also called Positive Predictive Value (PPV).

Precision for each class c can be calculated considering the
one-vs-all strategy.

Precisionc =
TPc

TPc + FPc
(3)

Here, TPc is the number of samples correctly classified as c,
and FPc is the number of samples wrongly classified as c.

For imbalanced classes, macro-average precision is calcu-
lated where the precision for each class is calculated sepa-
rately, and their average is taken. This ensures that the model
gets equally penalized for each false positive instance of any
class.

For a set of classes C ,

Macro Average Precision =

∑
c∈C

Precisionc

|C|
(4)

Here, Precisionc is the precision value for class c, and |C| is
the total number of classes.

6) RECALL
Recall is the ratio of the sum of the number of true positive
predictions among all classes and the sum of the number
of true positive predictions and false-negative predictions
among all classes. In a multiclass problem, recall is used to
evaluate howmany samples are correctly classified among all
the samples that should have been classified as of that class.
Recall is also called Sensitivity.

Recall for each class c can be calculated considering the
one-vs-all strategy.

Recallc =
TPc

TPc + FNc
(5)

Here, TPc is the number of samples correctly classified as
c, and FNc is the number of samples of c that are wrongly
classified as other classes.

For imbalanced classes, macro average recall is calculated
where the recall for each class is calculated separately and
their average is taken. This ensures that the model gets
equally penalized for each false-negative instance of any
class.

For a set of classes C ,

Macro Average Recall =

∑
c∈C

Recallc

|C|
(6)

Here, Recallc is the Recall value for class c, and N = Total
number classes.

7) F1-SCORE
F1-Score is the weighted average of precision and recall that
considers both the number of false positive predictions and
false negative predictions. While working on an imbalanced
dataset, having a high F1-Score is crucial to reduce the num-
ber of false positive and false negative predictions.

F1-Score for each class c can be calculated using the
following formula:

F1-Scorec =
2× Pc × Rc
Pc + Rc

(7)

Here, Pc is the precision value for class c, and Rc is the recall
value for class c.

For imbalanced classes, the macro average F1-score is
calculated where the F1-score for each class is calculated
separately and their average is taken. This ensures that each
class gets equal priority in classification.

For a set of classes C ,

Macro Average F1-Score =

∑
c∈C

Fc

|C|
(8)

Here,Fc is the F1-Score for class c, and |C| is the total number
of classes.

8) AUC-ROC SCORE
Precision, recall, and the majority of the commonly utilized
metrics have their individual set of restrictions. Precision is
a measurement that determines how accurate a classification
task is and it is only based on true positive and false positive
predictions; a score of 1.0 for precision can be achieved
with just one true positive prediction. On the other hand,
recall is all about completeness and is solely based on true
positive and false negative responses. As a result, predicting
all the samples as positive will result in a recall of 1.0,
but the precision will be very low. The Receiver Operating
Characteristic (ROC) curve and the area under the ROC curve
(AUC-ROC) are utilized as evaluation methods in this regard
by combining the True Positive Rate (TPR) and False Positive
Rate (FPR).

These methods allow models to be evaluated according to
how well they separate classes from one another. The FPR
and TPR for a series of predictions generated by the model at
various thresholds are calculated to summarize the behavior
of the model and can also be used to examine its ability
to differentiate classes. Each probability threshold is rep-
resented by a point, linked to form a curve in the ROC
graph. A model with no discriminating power is depicted
by a diagonal line from FPR 0 and TPR 0 (coordinates:
0, 0) to FPR 1 and TPR 1. (co-ordinates: 1, 1). A perfect
model is represented as a point in the upper-left corner of the
plot.

68876 VOLUME 10, 2022

S. Ahmed et al.: Less Is More: Lighter and Faster Deep Neural Architecture for Tomato Leaf Disease Classification

TABLE 2. Comparison of the performance and characteristics among the baseline architectures on the original dataset.

IV. RESULT AND DISCUSSION
For our experiments, we first investigated the performance
of different baseline Deep CNN architectures to choose the
best fit for our requirements. After that, an ablation study
was conducted to justify how the different considerations in
our proposed pipeline and modifications over the baseline
contributed to improving our model’s performance. Next,
we inspected per-class precision, recall, and F1-score to eval-
uate how the proposed architecture addresses the class imbal-
ance issue. Then, we compared the performance of our model
with the existing state-of-the-artwork of tomato leaf disease
classifications to establish its superiority. Finally, an error
analysis was conducted to figure out where to invest the future
improvement efforts.

A. PERFORMANCE OF DIFFERENT BASELINE
ARCHITECTURES
To choose the baseline model, several state-of-the-art Deep
CNN architectures were implemented to perform tomato leaf
disease classification. A comparison of their performance is
shown in Table 2.

The models were initialized with their pretrained weights
on the ImageNet dataset and fine-tuned using the original
tomato leaf samples from the PlantVillage dataset. The ben-
efit of this initialization was that the models were already
capable of learning complex patterns leading to faster con-
vergence. Since our goal was to pick the best-suited baseline
for the proposed system, we only changed the final softmax
layer with the number of classes of our dataset and trained
without any enhancement or augmentations.

While choosing the appropriate architecture, we have con-
sidered the accuracy, number of trainable parameters, estima-
tion of the number of floating-point operations (FLOPs), and
the model’s size. The VGG19 and DenseNet201 architectures
achieved an accuracy higher than 99% percent, and the per-
formance of the ResNets also came close. These models are
superior in terms of accuracy but have a significant disadvan-
tage considering the other metrics. For example, the VGG19
model has achieved 99.48% accuracy, which is 2.2% higher

TABLE 3. Ablation study of different components of the proposed
pipeline.

than the accuracy of MobileNetV2 architecture. However,
this improvement is costly in terms of memory and inference
time. The model consumed 8.5 times the storage space and
8.8 times higher FLOPs count than MobileNetV2. Similar
can be said for DenseNet201 as well. On the other hand, the
relatively lighter models such as EfficientNet-B0,MobileNet,
and NASNet-Mobile had lower accuracy than MobileNetV2
despite having higher values in terms of other metrics.

The MobileNetV2 architecture has the smallest model size
and the lowest FLOPs count, making it ideal for real-time
disease detection in devices with memory constraints.
In addition to that, the fewer parameters of MobileNetV2
architecture result in faster training and inference. For these
reasons, we chose MobileNetV2 as our base transfer learn-
ing architecture. We further aimed to improve the baseline
performance by utilizing preprocessing techniques and an
additional classifier network.

B. ABLATION STUDY
An ablation study was conducted to understand the contri-
bution of different components of the proposed pipeline to
the overall performance.We considered several combinations
of the design choices like the preprocessing steps, such as
CLAHE, data augmentation, and the introduction of a classi-
fier network to analyze their effects. A summary of the result
in different settings can be found in Table 3.

VOLUME 10, 2022 68877

S. Ahmed et al.: Less Is More: Lighter and Faster Deep Neural Architecture for Tomato Leaf Disease Classification

A positive impact can be seen on the results when
the images are preprocessed using CLAHE. This can be
attributed to CLAHE for enhancing the leaf images’ dis-
ease spots, making them more prominent and easier to iden-
tify for the models. For example, the baseline performance
of 97.27% was improved to 97.71% after we introduced
CLAHE. We noticed a further improvement in the results
when data augmentation was introduced. The runtime aug-
mentations allow the model to learn from different represen-
tations of the images in every epoch, allowing the model to
focus on the features highlighted by CLAHE.

Experiments were performed to find out how data aug-
mentation in different splits affects the overall performance.
We found that performing data augmentation on all three
splits resulted in the best accuracy. As a result of the aug-
mentation, the model learns to recognize different variations
of the original image during the training phase. However,
without augmenting the test set, no such variations are to be
found. This violates the key assumption in dataset splitting
for general classification tasks, that the distribution of images
found in the training and validation set should be similar to
the distribution in the test set.

One key factor here is that, as all our samples are being aug-
mented with random probability during run-time, the model
never sees the same version of an image twice. Augmenta-
tion in training and validation splits ensures that the model
hardly gets any chance to overfit and learns generic feature
representations. In addition, augmentations performed on the
test set ensure that those samples represent real-life scenar-
ios, making the classification task even more challenging.
However, this begets a problem. Since the augmentation is
performed randomly, the model sees different images in each
test run. As a result, the accuracy for each runmight not be the
same; instead, it gives us a value within a range. To resolve
this issue, we tested the trained model 100 times whenever
we used augmentation and reported the average accuracy.
The benefits of doing this are two-fold. First, as the test
set is randomly augmented, the average accuracy is a better
descriptor of themodel’s performance, preventing any chance
of getting lucky. Moreover, these trials are testing the model
with a variety of samples, more thanwhat could be done using
a static test set. So a model being able to do well in this
setup will be robust and can be expected to achieve similar
accuracy in real-life scenarios. It is worth mentioning that the
maximum accuracy achieved by our best model was 99.53%.

Our hypothesis of introducing the classifier network was
that the model would be able to consider further combina-
tions of the extracted features from the MobileNetV2 net-
work, leading to improved overall performance. Since this
networkwas trained from scratch on the provided information
from the feature extractor network, it extracted even more
meaningful features for leaf disease classification. Thus we
found an improvement in the overall accuracy every time the
classifier network was introduced in different setups.

Initially, the performance of the baseline MobileNetV2
model was only 97.27%. The combination of the

FIGURE 9. ROC curve for the tomato leaf diseases.

preprocessing techniques increased it up to 98.84% showing
how these choices improve the generalizing capability of the
model. Finally, themodel’s competence was further enhanced
with the classifier network leading to a mean accuracy of
99.30% (Standard Deviation: 0.00095) over 100 runs.

C. ADDRESSING THE CLASS IMBALANCE
As mentioned earlier, there exists a class imbalance in the
PlantVillage dataset. Thus drawing a conclusion on a model’s
performance solely based on the accuracy metric might be
unwise as the accuracy might still be in the 90th percentile
even if the model is incapable of classifying half of the
samples of the least populated classes. To tackle this issue,
macro-averaged precision, recall, and F1-score values were
taken under consideration, which gives equal importance to
all the classes regardless of the number of samples. Our
proposed model achieves 99.18 precision, 99.07 recall, and
99.12 F1-score. The high values of precision and recall sig-
nify that our model does a great job identifying the True
Positives. At the same time, it penalizes the accidental False
Positive and False Negative cases. Taking a harmonicmean of
these two metrics, the 99.12 value of the F1-score proves the
robustness of the proposed architecture even in imbalanced
datasets.

Furthermore, Table 4 shows the precision, recall, and
F1-score for each class. From the table, it is evident that
our data augmentation technique solved the class imbalance
problem as these values are high even for the classes with a
low number of samples.

D. CLASS SEPARABILITY
The AUC-ROC curve can assess the performance of a pre-
dictive model by describing the trade-off between the True
Positive Rate and False Positive Rate by employing multiple
probability thresholds. A perfect classifier will have a ROC
where the graph reaches 100% true positives and zero false
positives. We generally measure the number of positive clas-
sifications with an increment in the rate of false positives.

As shown in Figure 9, the ROC curves overall each other
at the top-left corner. That means, our proposed architecture

68878 VOLUME 10, 2022

S. Ahmed et al.: Less Is More: Lighter and Faster Deep Neural Architecture for Tomato Leaf Disease Classification

TABLE 4. Per class precision, recall, F1-Score for the test set.

achieves a commendable performance for all 10 classes.
Among the classes, our model achieved an AUC score of
1 for Leaf Mold, Yellow Leaf Curl Virus, and Mosaic Virus.
Scores for the other classes are also fairly high, indicating a
satisfactory class separability.

E. COMPARISON WITH STATE-OF-THE-ART METHODS
Table 5 presents a comparison of our proposed architecture
with the state-of-the-art models of tomato leaf disease clas-
sification. Our model achieves a commendable accuracy of
99.30% while keeping the model size and the number of
operations low. Comparing it to the state-of-the-art models,
we can notice that only [40] achieved a mere 0.09% increase
in accuracy, having 2.4 times the model size and 59.27%
increase in FLOPs count. Our model’s smaller size and low
computational cost without sacrificing performance make it
suitable for low-end devices.

Some of the works mentioned in the table did not utilize
all the samples from the subset of the PlantVillage dataset,
which leaves a possibility of accidentally missing some crit-
ical samples [41], [43], [44], [47]. Additionally, some of the
models did not consider all the classes, which might lead to
the misclassification of unseen samples. For example, [37]
achieved an accuracy of 99.18%, but the experiment did not
include any healthy samples of tomato leaves. This results in
labeling a healthy leaf sample to any of the disease classes.

Further analysis shows that the space requirement of our
proposed architecture is only 9.6MB. In contrast, different
works in the existing literature required at least twice of
this storage space, if not more, to produce similar accuracy
(Fig. 10a). Although [45] has a smaller model size than that
of ours, the accuracy is far less. Fig. 10b shows that our
model significantly reduced the FLOPs requirement without
compromising the accuracy. Hence it removes the require-
ment for high-performance hardware along with reducing
the inference time of the model. It can be observed that
despite using deeper models, some works could not achieve
comparable performance to the state-of-the-art. This further

justifies the usefulness of the different components of our
proposed architecture.

F. QUALITATIVE ANALYSIS
1) FOCUSING ON THE DISEASED PORTION
To get an intuitive understanding of whether our model is
learning to correctly predict considering the relevant features
or not, we examine the Gradient-weighted Class Activation
Mapping (GradCAM) output for the correctly classified sam-
ples [60] (Figure 11). This visualization can show us how our
model classifies a diseased or healthy sample by highlighting
the region in which our model focuses while making the class
label decision.

As shown in Fig. 11(a) and 11(b), our model focused on
the diseased portion of the leaf image to provide the class
decision. Conversely, in the case of a healthy leaf (Fig. 11(c)),
themodel focuses on the entire leaf image finding no diseased
portion and then classifies the image as healthy. This goes to
show the capability of our model in understanding what to
look for in a leaf image to make the correct class decision.

2) ERROR ANALYSIS
According to the confusion matrix of our best performing
model (Figure 12), for half of the classes, our model was
able to predict all the unseen test samples correctly. For
the rest, the accuracy is comparable to other state-of-the-
art methods. However, the most misclassified samples were
from the ‘Early Blight’ class. A few of the misclassified
samples from this class were predicted as ‘Late Blight’. Upon
reviewing the misclassified samples, we identified visually
similar leaves from both classes. For example, in the original
dataset, the class label for Fig. 13(a) is ‘Early Blight’, which
was misclassified to ‘Late Blight’ class during inference.
The GradCAM output for the sample shows that our model
correctly focuses on the diseased region of the leaf image
(Fig. 13(a)).

However, in the training set of the Late Blight class,
there are several images (e.g. Fig. 13(b)) that are similar to
Fig. 13(a). Since during training, the model learns to classify

VOLUME 10, 2022 68879

S. Ahmed et al.: Less Is More: Lighter and Faster Deep Neural Architecture for Tomato Leaf Disease Classification

TABLE 5. Performance comparison with the State-of-the-Art models for tomato leaf disease classification.

FIGURE 10. Performance comparison with state-of-the-art tomato leaf disease classification architectures based on model size and FLOPs count.

these images as of the class ‘Late Blight’, it is expected that
similar images from the test set will also be classified in the
same class.

To conclude, after analyzing the misclassified samples,
we found some inter-class similarities in the infected regions
among some of the diseases. A few of the leaves were

68880 VOLUME 10, 2022

S. Ahmed et al.: Less Is More: Lighter and Faster Deep Neural Architecture for Tomato Leaf Disease Classification

FIGURE 11. Qualitative results showing GradCam output for correctly
classified samples.

FIGURE 12. Confusion matrix. Here, 0 = Bacterial spot, 1 = Early blight,
2 = Late Blight, 3 = Leaf Mold, 4 = Septoria Leaf Spot, 5 = Two-spotted
Spider Mite, 6 = Target Spot, 7 = Yellow Leaf Curl Virus, 8 = Tomato
Mosaic Virus, 9 = Healthy.

severely damaged by the virus, which eventually restricted
the model from extracting meaningful features leading to
misclassification.

FIGURE 13. Misclassified sample with visually similar samples of the
predicted class.

V. CONCLUSION
Fast and accurate recognition of leaf diseases can go a long
way to meeting the ever-increasing demand in food produc-
tion. In this regard, we have proposed a lightweight deep
neural network by combining a fine-tuned pretrained model
and a classifier network. The utilization of the adaptive con-
trast enhancement technique has eliminated the illumination
problem persistent in the dataset. Runtime data augmentation
techniques have been applied to address the class imbalance
issue while avoiding data leakage. All these components of
the pipeline enabled the model to focus on the disease spots
and extract high-level features leading to an accuracy of
99.30%. We achieved this performance with a significantly
smaller model size and FLOPs count compared to the state-
of-the-art models. This makes the proposed pipeline a suit-
able choice for building applications for low-end devices.

However, one of the limitations of the PlantVillage dataset
is that the samples are taken in laboratory conditions. Fur-
ther experiments can be performed with tomato leaf images
with varying backgrounds taken from the field. Such images
might contain occlusion and background clutter. Advanced
segmentation techniques can be taken into account to locate
the infected regions before classification. Moreover, only a
single disease can be found in each of the samples used
in our experiment. Identifying multiple diseases within a
single leaf will be another challenging task to solve. The
classification goal can also include detection of the severity
of infection on leaves, which intelligent systems can utilize to
decide the amount of pesticide to be used. Finally, this work
can be extended to classify diseases from a broader range
of crops.

VOLUME 10, 2022 68881

S. Ahmed et al.: Less Is More: Lighter and Faster Deep Neural Architecture for Tomato Leaf Disease Classification

ACKNOWLEDGMENT
The authors would like to thank A.B.M. Ashikur Rahman,
Mohammad Ishrak Abedin, and Shahriar Ivan, Department
of Computer Science and Engineering, Islamic University
of Technology, and Nura Jahan, Department of Entomology,
Bangabandhu Sheikh Mujibur Rahman Agricultural Univer-
sity for their valuable time and support in making this study
possible.

CONFLICT OF INTEREST
The authors declare that there is no conflict of interest.

REFERENCES
[1] Tridge Co., Ltd. (2020). Global Production of Tomato.

Accessed: Aug. 12, 2021. [Online]. Available: https://www.tridge.
com/intelligences/tomato/production

[2] S. Panno, S. Davino, A. G. Caruso, S. Bertacca, A. Crnogorac, A. Mandić,
E. Noris, and S. Matić, ‘‘A review of the most common and economically
important diseases that undermine the cultivation of tomato crop in the
Mediterranean basin,’’ Agronomy, vol. 11, no. 11, p. 2188, Oct. 2021.
[Online]. Available: https://www.mdpi.com/2073-4395/11/11/2188

[3] L. Li, S. Zhang, and B. Wang, ‘‘Plant disease detection and
classification by deep learning—A review,’’ IEEE Access, vol. 9,
pp. 56683–56698, 2021. [Online]. Available: https://ieeexplore.ieee.org/
abstract/document/9399342

[4] K. Liakos, P. Busato, D. Moshou, S. Pearson, and D. Bochtis, ‘‘Machine
learning in agriculture: A review,’’ Sensors, vol. 18, no. 8, p. 2674, 2018.
[Online]. Available: https://www.mdpi.com/1424-8220/18/8/2674

[5] A. Kamilaris and F. X. Boldú, ‘‘Deep learning in agriculture: A sur-
vey,’’ Comput. Electron. Agricult., vol. 147, pp. 70–90, Apr. 2018.
[Online]. Available: https://www.sciencedirect.com/science/article/abs/
pii/S0168169917308803

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Advances in Neural
Information Processing Systems, vol. 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds. Red Hook, NY, USA: Curran
Associates, 2012. [Online]. Available: https://proceedings.neurips.
cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-
Abstract.html

[7] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ‘‘Densely
connected convolutional networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 2261–2269. [Online]. Available:
https://ieeexplore.ieee.org/document/8099726

[8] M. Tan and Q. Le, ‘‘EfficientNet: Rethinking model scaling for con-
volutional neural networks,’’ in Proc. 36th Int. Conf. Mach. Learn., in
Proceedings of Machine Learning Research, vol. 97, K. Chaudhuri and
R. Salakhutdinov, Eds., Jun. 2019, pp. 6105–6114. [Online]. Available:
http://proceedings.mlr.press/v97/tan19a.html

[9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with
convolutions,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2015, pp. 1–9. [Online]. Available: https://ieeexplore.
ieee.org/document/7298594/

[10] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional neural
networks for mobile vision applications,’’ 2017, arXiv:1704.04861.

[11] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
‘‘MobileNetV2: Inverted residuals and linear bottlenecks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2018, pp. 4510–4520. [Online]. Available: https://ieeexplore.ieee.
org/document/8578572

[12] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, ‘‘Learning transfer-
able architectures for scalable image recognition,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 8697–8710. [Online].
Available: https://openaccess.thecvf.com/content_cvpr_2018/html/Zoph_
Learning_Transferable_Architectures_CVPR_2018_paper.html

[13] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learn-
ing for image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pat-
tern Recognit. (CVPR), Jun. 2016, pp. 770–778. [Online]. Available:
https://ieeexplore.ieee.org/document/7780459

[14] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and
K. Keutzer, ‘‘SqueezeNet: AlexNet-level accuracy with 50x fewer param-
eters and <1MB model size,’’ 2016, arXiv:1602.07360.

[15] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ in Proc. 3rd Int. Conf. Learn. Represent.
(ICLR), Y. Bengio and Y. LeCun, Eds., 2015.

[16] L. Torrey and J. Shavlik, ‘‘Transfer learning,’’ in Handbook of Research
on Machine Learning Applications and Trends: Algorithms, Methods,
and Techniques. Hershey, PA, USA: IGI Global, 2010, pp. 242–264.
[Online]. Available: https://www.igi-global.com/chapter/transfer-learning/
36988

[17] D. P. Hughes and M. Salathé, ‘‘An open access repository of images on
plant health to enable the development of mobile disease diagnostics,’’
2015, arXiv:1511.08060.

[18] S. P. Mohanty, D. P. Hughes, and M. Salathé, ‘‘Using deep learn-
ing for image-based plant disease detection,’’ Frontiers Plant Sci.,
vol. 7, p. 1419, Sep. 2016. [Online]. Available: https://www.frontiersin.
org/articles/10.3389/fpls.2016.01419/full

[19] Z. Rehman, M. A. Khan, F. Ahmed, R. Damasevicius, S. R. Naqvi,
M. W. Nisar, and K. Javed, ‘‘Recognizing apple leaf diseases using a
novel parallel real-time processing framework based on MASK RCNN
and transfer learning: An application for smart agriculture,’’ IET Image
Process., vol. 15, no. 10, pp. 2157–2168, 2021. [Online]. Available:
https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/ipr2.12183

[20] O. O. Abayomi-Alli, R. Damaševičius, S. Misra, and R. Maskeliūnas,
‘‘Cassava disease recognition from low-quality images using enhanced
data augmentation model and deep learning,’’ Expert Syst., vol. 38,
no. 7, p. e12746, 2021. [Online]. Available: https://onlinelibrary.
wiley.com/doi/abs/10.1111/exsy.12746

[21] A. Waheed, M. Goyal, D. Gupta, A. Khanna, A. E. Hassanien, and
H. M. Pandey, ‘‘An optimized dense convolutional neural network
model for disease recognition and classification in corn leaf,’’
Comput. Electron. Agricult., vol. 175, Aug. 2020, Art. no. 105456.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0168169920302180

[22] S. Zhang, S. Zhang, C. Zhang, X. Wang, and Y. Shi, ‘‘Cucumber
leaf disease identification with global pooling dilated convolutional
neural network,’’ Comput. Electron. Agricult., vol. 162, pp. 422–430,
Jul. 2019. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0168169918317976

[23] B. Liu, C. Tan, S. Li, J. He, and H. Wang, ‘‘A data augmentation method
based on generative adversarial networks for grape leaf disease identifica-
tion,’’ IEEE Access, vol. 8, pp. 102188–102198, 2020. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9104723/

[24] X. Zhang, Y. Qiao, F. Meng, C. Fan, and M. Zhang, ‘‘Identification
of maize leaf diseases using improved deep convolutional neural net-
works,’’ IEEE Access, vol. 6, pp. 30370–30377, 2018. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8374024

[25] U. P. Singh, S. S. Chouhan, S. Jain, and S. Jain, ‘‘Multilayer convolution
neural network for the classification of mango leaves infected by anthrac-
nose disease,’’ IEEE Access, vol. 7, pp. 43721–43729, 2019. [Online].
Available: https://ieeexplore.ieee.org/document/8675730

[26] Y. Lu, S. Yi, N. Zeng, Y. Liu, and Y. Zhang, ‘‘Identification
of rice diseases using deep convolutional neural networks,’’ Neuro-
computing, vol. 267, pp. 378–384, Dec. 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925231217311384

[27] U. Mokhtar, N. El-Bendary, A. E. Hassenian, E. Emary, M. A. Mahmoud,
H. A. Hefny, and M. F. Tolba, ‘‘SVM-based detection of tomato leaves
diseases,’’ in Intelligent Systems’2014: Proceedings of the 7th IEEE
International Conference Intelligent Systems IS’2014, September 24-26,
2014, Warsaw, Poland, Volume 2: Tools, Architectures, Systems, Appli-
cations (Advances in Intelligent Systems and Computing), vol. 323,
D. P. Filev, J. Jablkowski, J. Kacprzyk, M. Krawczak, I. Popchev,
L. Rutkowski, V. S. Sgurev, E. Sotirova, P. Szynkarczyk, and S. Zadrozny,
Eds. Cham, Switzerland: Springer, 2015, pp. 641–652. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-319-11310-4_55

[28] U. Mokhtar, M. A. Ali, A. E. Hassanien, and H. Hefny, ‘‘Identifying
two of tomatoes leaf viruses using support vector machine,’’ in Infor-
mation Systems Design and Intelligent Applications (Advances in Intel-
ligent Systems and Computing), J. Mandal, S. Satapathy, S. Kumar,
P. Sarkar, and A. Mukhopadhyay, Eds. New Delhi, India: Springer,
vol. 339, 2015, pp. 771–782. [Online]. Available: https://link.springer.
com/chapter/10.1007/978-81-322-2250-7_77

68882 VOLUME 10, 2022

S. Ahmed et al.: Less Is More: Lighter and Faster Deep Neural Architecture for Tomato Leaf Disease Classification

[29] U. Mokhtar, M. A. S. Ali, A. E. Hassenian, and H. Hefny,
‘‘Tomato leaves diseases detection approach based on support
vector machines,’’ in Proc. 11th Int. Comput. Eng. Conf. (ICENCO),
Dec. 2015, pp. 246–250. [Online]. Available: https://ieeexplore.ieee.org/
abstract/document/7416356

[30] A. E. Hassanien, T. Gaber, U. Mokhtar, and H. Hefny, ‘‘An improved
moth flame optimization algorithm based on rough sets for
tomato diseases detection,’’ Comput. Electron. Agricult., vol. 136,
pp. 86–96, Apr. 2017. [Online]. Available: https://www.sciencedirect.
com/science/article/abs/pii/S0168169916308225

[31] H. Sabrol and K. Satish, ‘‘Tomato plant disease classification in digi-
tal images using classification tree,’’ in Proc. Int. Conf. Commun. Sig-
nal Process. (ICCSP), Apr. 2016, pp. 1242–1246. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/7754351

[32] L. C. Ngugi, M. Abdelwahab, and M. Abo-Zahhad, ‘‘Tomato leaf seg-
mentation algorithms for mobile phone applications using deep learning,’’
Comput. Electron. Agricult., vol. 178, Nov. 2020, Art. no. 105788.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0168169920306529

[33] J. Liu and X. Wang, ‘‘Tomato diseases and pests detection
based on improved YOLO v3 convolutional neural network,’’
Frontiers Plant Sci., vol. 11, p. 898, Jun. 2020. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fpls.2020.00898

[34] Y. Zhang, C. Song, and D. Zhang, ‘‘Deep learning-based object detection
improvement for tomato disease,’’ IEEE Access, vol. 8, pp. 56607–56614,
2020. [Online]. Available: https://ieeexplore.ieee.org/document/9044330

[35] F. Alvaro, Y. Sook, K. Sang, and P. Dong, ‘‘A robust deep-learning-
based detector for real-time tomato plant diseases and pests recog-
nition,’’ Sensors, vol. 17, no. 9, p. 2022, 2017. [Online]. Available:
https://www.mdpi.com/1424-8220/17/9/2022

[36] J. Liu and X. Wang, ‘‘Early recognition of tomato gray leaf
spot disease based on MobileNetv2-YOLOv3 model,’’ Plant
Methods, vol. 16, no. 1, pp. 1–16, Dec. 2020. [Online]. Available:
https://pubmed.ncbi.nlm.nih.gov/32523613

[37] M. Brahimi, K. Boukhalfa, and A. Moussaoui, ‘‘Deep learning
for tomato diseases: Classification and symptoms visualization,’’
Appl. Artif. Intell., vol. 31, no. 4, pp. 299–315. [Online]. Available:
https://www.tandfonline.com/doi/abs/10.1080/08839514.2017.1315516

[38] A. Fuentes, D. H. Im, S. Yoon, and D. S. Park, ‘‘Spectral analysis
of CNN for tomato disease identification,’’ in Artificial Intelligence
and Soft Computing (Lecture Notes in Computer Science), vol. 10245,
L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L. A. Zadeh,
and J. M. Zurada, Eds. Cham, Switzerland: Springer, 2017, pp. 40–51.
[Online]. Available: https://link.springer.com/chapter/10.1007/978-3-319-
59063-9_4

[39] G. Yang, G. Chen, Y. He, Z. Yan, Y. Guo, and J. Ding, ‘‘Self-supervised col-
laborative multi-network for fine-grained visual categorization of tomato
diseases,’’ IEEE Access, vol. 8, pp. 211912–211923, 2020. [Online]. Avail-
able: https://ieeexplore.ieee.org/abstract/document/9264241/

[40] V. Maeda-Gutiérrez, C. E. Galván-Tejada, L. A. Zanella-Calzada,
J. M. Celaya-Padilla, J. I. Galván-Tejada, H. Gamboa-Rosales,
H. Luna-García, R. Magallanes-Quintanar, C. A. G. Méndez, and
C. A. Olvera-Olvera, ‘‘Comparison of convolutional neural network
architectures for classification of tomato plant diseases,’’ Appl. Sci.,
vol. 10, no. 4, p. 1245, Feb. 2020. [Online]. Available: https://www.
mdpi.com/2076-3417/10/4/1245

[41] Q. Wu, Y. Chen, and J. Meng, ‘‘DCGAN-based data augmenta-
tion for tomato leaf disease identification,’’ IEEE Access, vol. 8,
pp. 98716–98728, 2020. [Online]. Available: https://ieeexplore.ieee.org/
abstract/document/9099295

[42] A. K. Rangarajan, R. Purushothaman, and A. Ramesh, ‘‘Tomato crop
disease classification using pre-trained deep learning algorithm,’’ Proc.
Comput. Sci., vol. 133, pp. 1040–1047, Jan. 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050918310159

[43] K. Zhang, Q.Wu, A. Liu, andX.Meng, ‘‘Can deep learning identify tomato
leaf disease?’’ Adv. Multimedia, vol. 2018, pp. 1–10, Sep. 2018. [Online].
Available: https://www.hindawi.com/journals/am/2018/6710865/

[44] A. Abbas, S. Jain, M. Gour, and S. Vankudothu, ‘‘Tomato plant dis-
ease detection using transfer learning with C-GAN synthetic images,’’
Comput. Electron. Agricult., vol. 187, Aug. 2021, Art. no. 106279.
[Online]. Available: https://www.sciencedirect.com/science/article/abs/
pii/S0168169921002969

[45] H. Durmuş, E. O. Güneş, and M. Kırcı, ‘‘Disease detection on the
leaves of the tomato plants by using deep learning,’’ in Proc. 6th
Int. Conf. Agro-Geoinform., Aug. 2017, pp. 1–5. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8047016

[46] P. Tm, A. Pranathi, K. SaiAshritha, N. B. Chittaragi, and
S. G. Koolagudi, ‘‘Tomato leaf disease detection using convolutional
neural networks,’’ in Proc. 11th Int. Conf. Contemp. Comput. (IC3),
Aug. 2018, pp. 1–5. [Online]. Available: https://ieeexplore.ieee.org/
abstract/document/8530532/

[47] P. Bir, R. Kumar, and G. Singh, ‘‘Transfer learning based tomato leaf
disease detection for mobile applications,’’ in Proc. IEEE Int. Conf. Com-
put., Power Commun. Technol. (GUCON), Oct. 2020, pp. 34–39. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/9231174

[48] N. V. Chawla, K. W. Bowyer, L. O. Hall, andW. P. Kegelmeyer, ‘‘SMOTE:
Synthetic minority over-sampling technique,’’ J. Artif. Intell. Res.,
vol. 16, no. 1, pp. 321–357, 2002. [Online]. Available: https://www.jair.
org/index.php/jair/article/view/10302

[49] J. L. Leevy, T. M. Khoshgoftaar, R. A. Bauder, and N. Seliya, ‘‘A sur-
vey on addressing high-class imbalance in big data,’’ J. Big Data,
vol. 5, no. 1, pp. 1–30, Dec. 2018. [Online]. Available: https://link.springer.
com/article/10.1186/s40537-018-0151-6

[50] Y. Li, H. Lu, J. Li, X. Li, Y. Li, and S. Serikawa, ‘‘Underwater image
de-scattering and classification by deep neural network,’’ Comput. Elect.
Eng., vol. 54, pp. 68–77, Aug. 2016. [Online]. Available: https://www.
sciencedirect.com/science/article/abs/pii/S0045790616302075

[51] S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz,
T. Greer, B. T. Haar Romeny, J. B. Zimmerman, andK. Zuiderveld, ‘‘Adap-
tive histogram equalization and its variations,’’ Comput. Vis., Graph.,
Image Process., vol. 39, no. 3, pp. 355–368, 1987. [Online]. Available:
https://www.sciencedirect.com/science/article/abs/pii/S0734189X8780
186X

[52] S. Kaufman, S. Rosset, C. Perlich, and O. Stitelman, ‘‘Leakage in
data mining: Formulation, detection, and avoidance,’’ ACM Trans.
Knowl. Discovery From Data, vol. 6, no. 4, pp. 1–21, 2012, doi:
10.1145/2020408.2020496

[53] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ in Proc. 32nd Int. Conf.
Mach. Learn. (ICML), in Proceedings of Machine Learning Research,
vol. 37, F. Bach and D. Blei, Eds., Lille, France, Jul. 2015, pp. 448–456.
[Online]. Available: http://proceedings.mlr.press/v37/ioffe15.html

[54] X. Glorot, A. Bordes, and Y. Bengio, ‘‘Deep sparse rectifier neural net-
works,’’ in Proc. 14th Int. Conf. Artif. Intell. Statist., in Proceedings
of Machine Learning Research, vol. 15, G. Gordon, D. Dunson, and
M. Dudík, Eds., Fort Lauderdale, FL, USA, Apr. 2011, pp. 315–323.
[Online]. Available: http://proceedings.mlr.press/v15/glorot11a.html

[55] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, ‘‘Dropout: A simple way to prevent neural networks from overfitting,’’
J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, 2014. [Online].
Available: http://dl.acm.org/citation.cfm?id=2670313

[56] I. J. Goodfellow, Y. Bengio, and A. C. Courville,Deep Learning (Adaptive
Computation and Machine Learning). Cambridge, MA, USA MIT Press,
2016. [Online]. Available: http://www.deeplearningbook.org

[57] S. Khirirat, H. R. Feyzmahdavian, and M. Johansson, ‘‘Mini-batch
gradient descent: Faster convergence under data sparsity,’’ in Proc. IEEE
56th Annu. Conf. Decis. Control (CDC), Dec. 2017, pp. 2880–2887.
[Online]. Available: https://ieeexplore.ieee.org/abstract/document/
8264077

[58] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
in Proc. 3rd Int. Conf. Learn. Represent. (ICLR), Y. Bengio and Y. LeCun,
Eds., 2015.

[59] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei,
‘‘ImageNet large scale visual recognition challenge,’’ Int. J. Comput.
Vis., vol. 115, no. 3, pp. 211–252, 2015. [Online]. Available: https://link.
springer.com/article/10.1007/s11263-015-0816-y

[60] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, ‘‘Grad-CAM: Visual explanations from deep networks via
gradient-based localization,’’ in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 618–626. [Online]. Available: https://ieeexplore.
ieee.org/document/8237336

VOLUME 10, 2022 68883

http://dx.doi.org/10.1145/2020408.2020496

S. Ahmed et al.: Less Is More: Lighter and Faster Deep Neural Architecture for Tomato Leaf Disease Classification

SABBIR AHMED was born in Dhaka,
Bangladesh, in 1996. He received the B.Sc. Engg.
degree (Hons.) in computer science (CS) from the
Islamic University of Technology (IUT), Gazipur,
Bangladesh, in 2017, where he is pursuing the
M.Sc. degree in CS.

Since 2018, he has been working as a Lecturer
with the Department of Computer Science and
Engineering, IUT. His research interests include
pattern recognition, deep learning in computer

vision, and intelligent agriculture. He received the IUT Gold Medal for his
B.Sc. Engg. Degree.

MD. BAKHTIAR HASAN received the B.Sc.
Engg. and M.Sc. Engg. degrees in computer sci-
ence and engineering (CSE) from the Islamic Uni-
versity of Technology (IUT), in 2018 and 2022,
respectively.

Since 2019, he has been working as a Lecturer
with the Department of Computer Science and
Engineering, IUT. His research interests include
the use of deep learning and computer vision tech-
niques in human biometrics and smart agriculture.

Mr. Hasan received Huawei Seeds for the Future Scholarship, in 2018.
He was awarded IUT Gold Medal in recognition of his outstanding perfor-
mance in the pursuit of the B.Sc. Engg. degree, in 2018.

TASNIM AHMED was born in Kushtia,
Bangladesh, in 1997. He received the B.Sc.
degree in computer science and engineering from
the Islamic University of Technology, Gazipur,
Bangladesh, where he is currently pursuing the
M.Sc. degree.

Since 2020, he has been working as a full-time
Lecturer with the Computer Science and Engineer-
ingDepartment, IslamicUniversity of Technology.
His research interests include computer vision,

natural language processing, bioinformatics, and software engineering.

MD. REDWAN KARIM SONY received the
B.Sc. degree in computer science and engineer-
ing from the Islamic University of Technology
(IUT), in 2016. From 2017 to 2021, he was a Lec-
turer at the Department of Computer Science and
Engineering, IUT. He is now on study leave and
currently pursuing the Ph.D. degree with Michi-
gan State University, USA. His research interests
include facial biometrics, model visualization, and
the explainability of deep learning models.

MD. HASANUL KABIR (Member, IEEE)
received the B.Sc. degree in computer science and
information technology from the Islamic Univer-
sity of Technology, Bangladesh, and the Ph.D.
degree in computer engineering from Kyung Hee
University, South Korea.

He is currently a Professor with the Department
of Computer Science and Engineering, Islamic
University of Technology. His research interests
include feature extraction, visual question answer-

ing, and sign language interpretation by combining image processing,
machine learning, and computer vision.

68884 VOLUME 10, 2022

