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ABSTRACT This article solves the problem caused by high level current feedback gain setting for fast
responsiveness of magnetic levitation systems considering the current dynamics and presents advanced
nonlinear positioning technology without plant parameter information. The main features of this study are
summarized as follows: First, current control demonstrates current ripple reduction and overall performance
guarantee through a low feedback gain in the steady state, including a dynamic feedback loop increased by
an error variable magnitude in the transient period. Second, the plant parameter information-free velocity
observer replaces the observer output error integral action with the disturbance estimation action to improve
the closed-loop performance. The simulation results reveal the practical advantages derived from the
contributions of this study.

INDEX TERMS Magnetic levitation, positioning, variable cut-off frequency, velocity observer, disturbance
observer.

NOMENCLATURE
PLANT VARIABLES
M ,ML Masses of electromagnet and load.
g,K Gravitational acceleration and

electromagnetic
force coefficient.

Rc,Lc Coil resistance and inductance.
M0,K0,Rc,0,Lc,0 Norminal parameter values.
w̄p, w̄c The uncertain time varying

disturbances.

The associate editor coordinating the review of this manuscript and

approving it for publication was Philip Pong .

p, vp, ic,V Position, velocity, current, voltage
of MAGLEV system.

p∗, i∗c Desired position and coil current.
pref , ic,ref Reference position and coil current.
ωc, ωp Cut-off frequencies.

CONTROLLER VARIABLES
ep, ev Estimation errors of position and velocity.
dp, d̂p, dc, d̂c Lumped disturbance and disturbance

estimation.
lv,i Design parameters of velocity observer.
zref Control input variable.
p̃ pref − p error.
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bd,p, ldp Observer-based DOB gains in outer loop.
1i∗c ,1ic ic,ref − i∗c and i

∗
c − ic errors.

ω̂c Boosted cut-off frequency.
κωc , ςωc Dynamic feedback loop gains.
bd,c, ldc Observer-based DOB gains in inner loop.

I. INTRODUCTION
Mass positioning tasks can be accomplished by the elec-
tromagnetic force caused by the coil current, which paly a
vital role in magnetic levitation (MAGLEV) technique-based
industrial trains. MAGLEV trains have been considered an
alternative to conventional engine-based systems because
of their decreased pollution and noise levels and increased
durability [1]–[5].

The current and position dynamics are coupled with
a nonlinear relationship in the presence of mismatched
disturbances by the sudden increase/decrease in the number
of passengers, which makes it nontrivial to solve the
positioning problem of MAGLEV systems [6]–[8]. More-
over, variations in the coil inductance and resistance value
are also problematic, leading to inconsistent closed-loop
performance over a wide operating region. The lineariza-
tion technique can transform nonlinear dynamics into an
unstable linear system with limited admissibility, which
helps in solving the positioning problem using a simple
proportional-integral (PI) controller [9]. State-feedback con-
trol with feed-forward compensation terms has been pre-
sented as another linearization-based solution with improved
closed-loop performance assignability via the pole placement
technique [9], [10]. The resultant closed-loop performance
obtained from these linear controllers can be limited
when considering the feasibility of parameter-dependent
linearized system dynamics for a given operating point.
The gain scheduler requiring online membership tests can
be considered a solution to this problem [10]. Additional
advanced mechanisms, including optimization [11], [12] and
adaptation [13] have been adopted for the feedback gains
and feed-forward terms used for the state-feedback con-
troller. The recent online parameter estimation techniques as
in [14]–[17] can alleviate the parameter dependence level of
these results.

In addition to linearization techniques, nonlinear
techniques, including fuzzy [18], sliding mode [19], back-
stepping [20], adaptation [21], and coordinate transfor-
mation [22] have been applied to solve the positioning
problem by handling the nonlinearity without operating point
dependency. This has required the additional feedback and
feed-forward loops to incorporate the sensors, which can
be addressed by utilizing the observers as in [23]–[26].
The disturbance observer (DOB) estimates the lumped
disturbances from the deviation between the system model
and the actual system such that it yields the feed-forward
compensation terms to secure improved closed-loop robust-
ness [27]. The combination of simple proportional-type
control was presented through a back-stepping process,

forming a multi-loop structure [28]. Active damping-based
multi-loop controllers incorporating DOBs solved the system
parameter dependence problem [29]. The elimination of
the velocity sensor was accomplished using a recent DOB-
based proportional-derivative (PD) controller, including
the parameter-independent velocity observer [30] with
convergence and closed-loop behavior analysis.

The above-mentioned resultsmust set the current dynamics
to be sufficiently fast to secure an acceptable positioning per-
formance during both the transient and steady-state periods.
During the transition periods, high current feedback gains
are required for fast responsiveness. However, this high-level
current feedback gain setting expands the undesirable current
ripple and reduces the relative stability margin. This study
considers this practical concern as the main problem in this
work and proposes a solution to this problem with a few
contributions given by
• Dynamic current feedback mechanism in closed form
without numerical retrieval to ensure the desired per-
formance by boosting and restoring the feedback gain
value;

• Improvement of closed loop performance by using a
model-free proportional-type velocity observer includ-
ing a disturbance estimator;

which constitutes the novel multi-loop positioning con-
troller adopting the active damping to the inner loop for
order-reduction from the pole-zero cancellation. Section II
introduces a nonlinear induction equation for MAGLEV, and
Section III presents the dynamic current cutoff frequency
techniques and controller design for inner/outer loops.
Section IV presents the pole-zero cancellation approaches
and the stability analysis of the inner and outer loops, and
Section V validates the practical benefits of simulating with
MATLAB/Simulink through various scenarios for position
tracking and regulation. Section VI presents conclusions and
future work.

II. MAGLEV NONLINEAR MOTION EQUATIONS
Fig. 1 illustrates the MAGLEV system configuration includ-
ing the actuator provided by the current controller. This
system is designed to maintain the desired gap (denoted as
p in Fig. 1) between the magnet (attached to the train body)
and the rail, which can be accomplished by themagnetic force
triggered by the coil current magnitude proportional to the
coil voltage. Consequently, from the perspective of system
engineering, the coil voltage and position correspond to the
input and output, respectively. Specifically, there is a set of
state variables, p (position in m), vp(:= ṗ) (velocity in m/s),
and ic (current in A) and control input, u (coil voltage in V),
which satisfies the nonlinear dynamical relationship [13]:

Mp̈ = (M +ML)g−K
i2c
p2
+ wp, (1)

Lc i̇c = −Rcic + u, ∀t ≥ 0, (2)

where the air spring causes the load force wp (in N ) to act as
an unknownmismatched disturbance. Meanwhile, the system
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FIGURE 1. MAGLEV system configuration.

parameters M , ML , g, K , Rc, and Lc represent the masses of
the electromagnet and load (in kg), gravitational acceleration
(9.8 in m/s2), electromagnet force coefficient (in N ·m2/A2),
and coil resistance and inductance (in� andH ), respectively.
Their known nominal parameter values from manufacturing
are denoted asM0, K0, Rc,0, and Lc,0.
The application of nominal parameters to the original

system dynamics (1) and (2) leads to the adoption of uncertain
time-varying disturbances w̄p and w̄c originating from the
parameter and load variations.

M0p̈ = M0g− K0
i2c
p2
+ w̄p, (3)

Lc,0 i̇c = −Rc,0ic + u+ w̄c, ∀t ≥ 0, (4)

which is used as the basis for devising the control law in the
following section.

III. CONTROL LAW
This study adopts a low-pass filter (LPF) [31] as the
performance index given by

P∗(s)
Pref (s)

=
ωp

s+ ωp
,

I∗c (s)
Ic,ref (s)

=
ωc

s+ ωc
, ∀s ∈ C, (5)

subject to the cutoff frequencies ωp = 2π fp and ωc =
2π fc (in rad/s), where P∗(s), Pref (s), I∗c (s), and Ic,ref (s)
represent the Laplace transforms of the desired position p∗,
its reference pref (constant), coil current i∗c , and its reference
ic,ref , respectively. The performance index (5) yields the
following time-domain expressions:

ṗ∗ = ωp(pref − p∗), (6)

i̇∗c = ωc(ic,ref − i
∗
c ), ∀t ≥ 0, (7)

which are considered to be the desired dynamics for position
and current. This derives the main control objective as
exponential convergence:

lim
t→∞

p = p∗, lim
t→∞

ic = i∗c . (8)

Note that the feedback gain ωc acting as the (inner)
current loop cutoff frequency must be tuned sufficiently

to enlarge the admissible range of the outer loop cutoff
frequency. The large constant inner-loop cutoff frequency
can magnify the unnecessary current ripple and degrade the
closed-loop robustness. The proposed technique alleviates
this limitation by incorporating a dynamic current feedback
gain mechanism into the control action.

A. OUTER LOOP
1) VELOCITY OBSERVER
The stabilization of the second-order position dynam-
ics (1) requires the feedback of the velocity (vp = ṗ).
The time-derivative process of the measurement p could
extract the velocity information perturbed by high-frequency
measurement noise, which could degrade the closed-loop
accuracy. This study attempts to devise an advanced velocity
observer with two merits: plant parameter independence and
disturbance estimator as a replacement for the observer output
error integral action, which is given by

˙̂p = v̂p + lv,1ep, (9)

żvp = −lv,2zvp + lv,2(v̂p + (lv,1 − lv,2)ep), (10)

v̂p = zvp + lv,2ep, ∀t ≥ 0, (11)

with respect to the observer state variables p̂ and zvp , output
v̂p, and error ep = p − p̂, the velocity estimation error
is defined as ev := vp − v̂p. The two design parameters
lv,i > 0 and i = 1, 2 determine the state update rates, the
roles of which are revealed in Section IV.

2) CONTROL LAW
Consider an equivalent expression of the open-loop position
dynamics (3) given by

p̈ = −cp
i2c
p2
+ g+ dp

= −
cp
p2
zref + φ(ic, zref )+ g+ dp, ∀t ≥ 0, (12)

with the known coefficient cp :=
K0
M0

, the newly defined
lumped disturbance dp := 1

M0
w̄p, the nonlinear function

φ(ic, zref ) :=
cp
p2
(zref − i2c), and the design variable zref

to be used as the control input to stabilize the open-loop
dynamics (12). The control law for updating zref is proposed
as:

zref =
p2

cp
((bd,p + ωp)v̂p − bd,pωpp̃+ g+ d̂p), (13)

∀t ≥ 0, which attempts to stabilize the error
p̃ := pref − p in accordance with the setting of the design
parameters bd,p > 0 and ωp > 0. The observer-based DOB
yields the disturbance estimate d̂p such that

żdp = −ldpzdp − l
2
dp v̂p + ldp (cp

i2c
p2
−g), (14)

d̂p = zdp + ldp v̂p, ∀t ≥ 0, (15)

where gain ldp > 0 determines the disturbance estimation
rate.
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Note that the observer-based feed-forward compensation
term bd,pv̂p injects additional damping to the closed loop,
where the gain bd,p adjusts this artificial damping intensity.
Moreover, the cooperation of bd,p and ωp renders the order of
the closed-loop position dynamics as1 (i.e., order reduction)
via pole-zero cancellation without involving any uncertainty
problems. For details, see Section IV.

B. INNER LOOP
The proposed inner loop aims to devise an exponential
convergent current controller, such that limt→∞ ic = i∗c
leadsto limt→∞ φ(ic, zref ) = 0. For this purpose, we define
the coil current reference using the outer loop control
law (13) as ic,ref :=

√zref , such that φ(ic,ref , zref )(=

φ(ic, zref )

∣∣∣∣
ic=ic,ref

) = 0, where the outer loop control signal

zref is defined in (13).

1) DYNAMIC FEEDBACK LOOP
To implement the dynamic feedback loop, consider a slight
modification of (7) as

i̇∗c = ω̂c(ic,ref − i
∗
c ), ∀t ≥ 0, (16)

subject to a feedback loop update mechanism [32]:

˙̂ωc = κωc ((1i
∗
c )

2
+ ςωc ω̃c), ∀t ≥ 0, (17)

where 1i∗c := ic,ref − i∗c ; the gains κωc > 0 and ςωc > 0
determine the feedback gain boosting and restoring rates.
The initial condition is given by ω̂c(0) = ωc for a constant
base cutoff frequency ωc. Issues related to stability (owing to
the nonlinear term (1i∗c )

2) and the cutoff frequency boosting
property ω̂c ≥ ωc, ∀t ≥ 0, are addressed in Section IV.

2) CONTROLLER
The error 1ic := i∗c − ic yields the dynamics:

1i̇c = −
1
Lc,0

u+ dc, ∀t ≥ 0, (18)

where the newly defined lumped disturbance dc := i̇∗c +
Rc,0
Lc,0

ic − 1
Lc,0

w̄c. The control law for updating the coil voltage
u is proposed as:

u = Lc,0((bd,c + kc)1ic + bd,ckc

∫ t

0
1icdτ + d̂c), (19)

∀t ≥ 0, which attempts to stabilize the error 1ic = i∗c − ic
in accordance with the setting of the design parameters
bd,c > 0 and kc > 0. The DOB continuously adjusts the
variable d̂c to exponentially estimate the actual disturbance
dc such that

żdc = −ldczdc − l
2
dc1ic + ldc (

1
Lc,0

u), (20)

d̂c = zdc + ldc1ic, ∀t ≥ 0, (21)

where gain ldc > 0 determines the disturbance estimation
rate. Fig. 2 illustrates the proposed cascade feedback system
structure.

FIGURE 2. Proposed cascade feedback system structure.

Remark 1: The feed-forward compensation term −bd,cic
injects additional damping to the closed-loop system where
the gain bd,c adjusts this artificial damping intensity. More-
over, the combination of the design parameters bd,c and kc
renders the order of closed-loop position dynamics as 1 (i.e.,
order reduction) via pole-zero cancellation without involving
any uncertainty problems. See Section IV for further
details. ♦

IV. ANALYSIS
This section shows the accomplishment of the control
objective by proving the exponential convergence (8) by
considering the closed-loop error and auxiliary system
dynamics. To this end, Section IV-A begins with an inner loop
analysis.

A. INNER LOOP
In this section, we prove the accomplishment of the control
objective for the current loop (limt→∞ ic = i∗c ) and
exponential convergence limt→∞ ic = ic,ref such that
limt→∞ φ = 0.

1) AUXILIARY SYSTEMS
Lemma 1 and 2 analyze the closed-loop behaviors of
subsystems (16) and (17).
Lemma 1: The dynamic feedback gain ω̂c always achieves

a lower bound at its initial value ωc, that is,

ω̂c ≥ ωc, ∀t ≥ 0. (22)

♦
Proof: The equation
ω̂c = e−κωcςωc tωc +

∫ t
0 e
−κωcςωc (t−τ )(κωcςωcωc +

κωc (1i
∗
c )

2)dτ satisfies the update rule (17), which has a lower
bound at ω̂c due to κωcςωcωc + κωc (1i

∗
c )

2 > 0, ∀t ≥ 0. This
completes this proof. �
Result (22) plays an important role in proving the

exponential convergence limt→∞1i∗c = ic,ref in Theorem 2.
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Lemma 2 analyzes the closed-loop stability of a time-varying
system (16).
Lemma 2: The subsystem comprising (16) and (17)

guarantees that there exists ai > 0, i = 1, 2, such that

|1i∗c | ≤ a1e
−a2t , ∀t ≥ 0, ∀|1i∗c | ≥

2δic,ref
ω̂c

,

where |i̇c,ref | ≤ δic,ref , ∀t ≥ 0. ♦
Proof: Consider the error dynamics for (16) and (17) as

follows:

1i̇∗c = −
ωc

2
1i∗c +

ω̃c

2
1i∗c −

ω̂c

2
1i∗c + i̇c,ref ,

˙̃ωc = −κωc ((1i
∗
c )

2
+ ςωc ω̃c), ∀t ≥ 0,

and Lyapunov function candidate V1 := 1
2 (1i

∗
c )

2
+

1
4κωc

ω̃2
c ,

which results in

V̇1 = 1i∗c (−
ωc

2
1i∗c +

ω̃c

2
1i∗c )

+1i∗c (−
ω̂c

2
1i∗c + i̇c,ref )−

ω̃c

2
((1i∗c )

2
+ ςωc ω̃c)

≤ −
ωc

2
(1i∗c )

2
−
ςωc

2
ω̃2
c − (

ω̂c

2
−
δic,ref

|1i∗c |
)(1i∗c )

2

≤ −α1V1, ∀t ≥ 0,∀|1i∗c | ≥
2δic,ref
ω̂c

, (23)

where α1 := min{ωc, 2ςωcωc}, which completes the proof
based on the comparison principle in [33]. �
Remark 2: Considering the cutoff frequency magni-

fication property (22), it is reasonable to assume that
2δic,ref
ω̂c

≈ 0 yielding V̇1 ≤ −α1V1, ∀t ≥ 0, for some
settings of κωc and ςωc used for the update rule (17), which is
employed in the following convergence analysis. ♦

Lemma 3 clarifies the disturbance estimation behavior
fromDOB (20) and (21) by investigating its output dynamics.
Lemma 3: The DOB comprising (20) and (21) ensures that:

˙̂dc = ldc (dc − d̂c), ∀t ≥ 0. (24)

♦
Proof: Consider the time derivative of the output (21)

using (20), such that

˙̂dc = żdc + ldc1i̇c

= −ldc (d̂c − ldc1ic)− l
2
dc1ic + ldc (

1
Lc,0

u)+ ldc1i̇c

= ldc (1i̇c +
1
Lc,0

u− d̂c) = ldc (dc − d̂c), ∀t ≥ 0,

where the last equality is obtained using the equation
dc = 1i̇c + 1

Lc,0
u from (18). This completes this proof. �

Remark 3:Two implications can be derived from the results
in (24):
• (DOB gain tuning) D̂c(s)

Dc(s)
=

ldc
s+ldc

with Dc(s) and

D̂c(s) representing the Laplace transforms of dc and d̂c,
respectively, which indicates that the DOB gain can be
tuned as the cutoff frequency (ldc = 2π fdc rad/s) of LPF
from the input dc to the output d̂c.

• (estimation error dynamics) the disturbance estimation
error dynamics for edc := dc − d̂c:

ėdc = −ldcedc + wdc , ∀t ≥ 0, (25)

with wdc := ḋc and |wdc | ≤ δdc , ∀t ≥ 0, which is used
in the following convergence analysis.

♦

2) CONTROL LAW
As can be seen from the combination of (18) and (17), the
inner loop system seems to be governed by second-order
dynamics owing to the first-order integral action of the
control law (19). Interestingly, the combination of the active
damping coefficient bd,c and the design parameter structure
results in first-order closed-loop dynamics owing to the order
reduction property of active damping. For details, refer to
Lemma 4.
Lemma 4: The inner-loop system shown in Fig. 2 controls

the coil current, such that

1i̇c = −kc1ic + edc + edc,F , (26)

with filtering dynamics

ėdc,F = −ac,1edc,F − ac,2edc , ∀t ≥ 0, (27)

for some ac,i > 0, i = 1, 2. ♦
Proof: Substituting (19) into (18) yields the closed-loop

current dynamics:

1i̇c = −bd,c1ic + kc(r −1ic)+ bd,ckc

∫ t

0
(r −1ic)dτ

+ edc , ∀t ≥ 0,

where r = 0 and edc := dc − d̂c. Its vector form for
xc :=

[
1ic ζc

]T with ζc := bd,ckc
∫ t
0 1icdτ is given by

ẋc = Acxc + bc,1r + bc,2edc , (28)

yc = ccxc(= 1ic), ∀t ≥ 0, (29)

whose matrices are defined as Ac :=
[
−(bd,c + kc) 1
−bd,ckc 0

]
,

bc,1 :=
[
kc bd,ckc

]T , bc,2 := [
1 0

]T , and cc :=[
1 0

]
. This yields the input-output relationship through the

Laplace transform to the system of (28) and (29) as

1Ic(s) = cc(sI − Ac)−1bc,1R(s)

+ cc(sI − Ac)−1bc,2Edc (s),

=
kc

s+ kc
R(s)+

s
(s+ kc)(s+ bd,c)

Edc (s),

∀s ∈ C, (30)

where the combination of design parameters bd,c and kc
results in order reduction given as follows:

cc(sI − Ac)−1bc,1R(s) =
kc(s+ bd,c)

(s+ kc)(s+ bd,c)
=

kc
s+ kc

,

∀s ∈ C. Then, it follows from (30) and the relationship
s

(s+bd,c)
= 1− bd,c

s+bd,c
that:

(s+ kc)1Ic(s) = kcR(s)+ Edc (s) + Edc,F (s), ∀s ∈ C,
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where Edc,F = −
bd,c
s+bd,c

Edc (s). This completes the proof of
this lemma by considering the inverse Laplace transform on
both sides above. �
Theorems 1 and 2 present the main results of this

subsection. Theorem 1 provides a property related to
the control objective accomplishment by employing the
subsystem analysis results.
Theorem 1: The inner-loop system shown in Fig. 2

guarantees that there exist bi > 0, i = 1, 2,

|1ic| ≤ b1e−b2t , ∀t ≥ 0, ∀|edc | ≥
2δdc
ldc

. (31)

♦
Proof: Consider the positive definite function Vedc :=

1
2e

2
dc,F+

ζdc
2 e

2
dc with ζdc > 0 whose time derivative is obtained

by (using (25), (27), and Young’s inequality (e.g., xy ≤ ε
2x

2
+

1
2ε y

2, ∀ε > 0))

V̇edc = edc,F (−ac,1edc,F − ac,2edc )−
ηdc ldc
2

e2dc

− ηdc (
ldc
2
e2dc − edcwdc )

≤ −
ac,1
2
e2dc,F −

1
2
(ηdc ldc −

a2c,2
ac,1

)e2dc ,

∀t ≥ 0, ∀|edc | ≥
2δdc
ldc

. Setting ζdc =
1
ldc
(
a2c,2
ac,1
+ 1), we obtain:

V̇edc ≤ −
ac,1
2
e2dc,F −

1
2
e2dc

≤ −αedcVedc , ∀t ≥ 0, ∀|edc | ≥
2δdc
ldc

, (32)

where αedc := min{ac,1, 1
ζdc
}, The result (26) and inequal-

ity (32) render the positive definite function V1ic :=
1
21i

2
c +

ηedcVedc with ηedc > 0 as follows:

V̇1ic = 1ic(−kc1ic + edc + edc,F )+ ηedc V̇edc

≤ −
kc
3
1i2c − (ηedcαedc −

8
3kc

max{1,
1
ζdc
})Vedc ,

∀t ≥ 0, ∀|edc | ≥
2δdc
ldc

. The coefficient ηedc :=

1
αedc

( 8
3kc

max{1, 1
ζdc
} + 1) gives the upper bound of V̇1ic as:

V̇1ic ≤ −
kc
2
1i2c − Vedc

≤ −α1icV1ic , ∀t ≥ 0, ∀|edc | ≥
2δdc
ldc

, (33)

where α1ic := min{kc, 1
ηedc
}. This confirms the result of this

theorem by using the comparison principle in [33]. �
The result (31) shows exponential convergence (control

objective (8)):

lim
t→∞

ic = i∗c

with the condition 2δdc
ldc
≈ 0 (DOB gain setting), which

concludes the control objective (8) and is assumed to derive

the useful inequality from (33):

V̇1ic ≤ −α1icV1ic , ∀t ≥ 0, (34)

for the remaining convergence analysis.
Theorem 2 proves the exponential convergence of the

actual coil current error ĩc := ic,ref − ic based on the
inequality (34), which acts as the rationale for assuming that
limt→∞ φ = 0.
Theorem 2: The inner-loop system shown in Fig. 2

guarantees the property:

lim
t→∞

ic = ic,ref , (35)

exponentially. ♦
Proof: The actual error ĩc = ic,ref − ic satisfies ĩc = 1i∗c +

1ic (equivalently, 1i∗c = ĩc −1ic), which shows that:

˙̃ic = 1i̇∗c +1i̇c
= −ω̂c1i∗c + i̇c,ref − kc1ic + 1T edc
= −ω̂c ĩc + c1ic + 1T edc + i̇c,ref , ∀t ≥ 0,

where c := ω̂c − kc. Consequently, the positive definite
function Vc := 1

2 ĩ
2
c + η1icV1ic with η1ic > 0 shows that

V̇c = ĩc(−
ω̂c

2
ĩc + c1ic + 1T edc )− ĩc(

ω̂c

2
ĩc − i̇c,ref )

+ η1ic V̇1ic

≤ −
ωc

3
ĩ2c − (η1icα1ic −

4c̄2

3ωc
−

4
ωcηedc

)V1ic

− (
ω̂c

2
−
δic,ref

|ĩc|
)ĩ2c

≤ −
ωc

3
ĩ2c − V1ic , ∀t ≥ 0, ∀|ĩc| ≥

2δic,ref
ω̂c

,

where the first inequality is obtained from the result (22) and
Young’s inequality, and the coefficient η1ic :=

1
α1ic

( 4c̄
2

3ωc
+

4
ωcηedc

+ 1) justifies the second inequality. The assumption
made in Remark 2 concludes that

V̇c ≤ −αcVc, ∀t ≥ 0, (36)

where αc := min{ 2ωc3 ,
1
η1ic
}, which completes the proof. �

Remark 4: The result (35) implies the exponential
convergence of the nonlinear function φ(ic, zref ) such that
limt→∞ φ(ic, zref ) = φ(ic,ref , zref ) = 0, which provides a
rationale for assuming that

φ̇ = −αφφ, ∀t ≥ 0, (37)

for some αφ > 0, corresponding to one of the main results in
this subsection. ♦

B. WHOLE LOOP
This section aims to prove the accomplishment of the main
control objective (limt→∞ p = p∗) by analyzing the outer
loop dynamics and employing the main inner loop analysis
result (37).
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1) OUTER LOOP AUXILIARY SYSTEMS
Lemma 5 clarifies the velocity estimation behavior of the
observer (9)–(11) by investigating its output dynamics.
Lemma 5: The observer comprising (9)–(11) ensures that:

˙̂vp = lv,2(vp − v̂p), ∀t ≥ 0, (38)

♦
Proof: Consider the time derivative of the observer

output (11) along (9) and (10) such that

˙̂vp = żvp + lv,2ėp
= −lv,2(v̂p − lv,2ep)+ lv,2(v̂p + (lv,1 − lv,2)ep)

+ lv,2(ev − lv,1ep) = lv,2ev, ∀t ≥ 0,

This completes the proof. �
Remark 5:Two implications can be derived from the results

in (38):
• (observer gain tuning) V̂p(s)

Vp(s)
=

lv,2
s+lv,2

with Vp(s) and

V̂p(s) representing the Laplace transforms of vp and v̂p,
respectively, which indicates that the observer lv,2 can
be tuned as the cutoff frequency (lv,2 = 2π fv,2 rad/s)
of LPF from the input vp to the output v̂p. After this
setting for lv,2, the remaining observer gain lv,1 should be
adjusted for ep and ev to be convergent as fast as possible.

• (estimation error dynamics) Consider the desired veloc-
ity estimate v∗p such that e

∗
v = −lv,2e

∗
v with e

∗
v := vp−v̂∗p.

Then, the performance error e := v̂∗p − v̂p satisfies
ė = ˙̂v∗p − ˙̂vp = lv,2e∗v + v̇p − lv,2ev = −lv,2e + wvp
with wvp := v̇p and |wvp | ≤ δvp , ∀t ≥ 0, which yields for
V := 1

2e
2 that V̇ = − lv,2

2 e
2
+e(− lv,2

2 e+wvp ) ≤ −
lv,2
2 e

2,

∀t ≥ 0, ∀|e| ≥
2δvp
lv,2

. This validates the exponential
convergence limt→∞ v̂p = v̂∗p (performance recovery)

with the observer gain setting
2δvp
lv,2
≈ 0. Therefore, it is

reasonable to assume that

ėv = −lv2ev, ∀t ≥ 0, (39)

by the proposed observer (9)-(11), which is used in the
remaining convergence analysis.

♦
Similar to the proof of Lemma 3, Lemma 6 derives

the disturbance estimation behavior of the observer-based
DOB (14) and (15) using dynamics (39).
Lemma 6: The DOB driven by (14) and (15) ensures that:

˙̂dp = ldp (dp − d̂p)+ ldp lv,2ev, ∀t ≥ 0. (40)

♦
Proof: The proof is omitted because it is identical to the

proof of Lemma 3 using the outputs (15), (14), and dp = ẍ +

cp
i2c
p2
− g (from (12), and (39)). �

Remark 6: Two implications can be derived from the
result (40) by setting ev = 0.
• (DOB gain tuning) D̂p(s)

Dp(s)
=

ldp
s+ldp

with Dp(s) and

D̂p(s) representing the Laplace transforms of dp and d̂p,

respectively, which indicates that the DOB gain can be
tuned as the cutoff frequency (ldp = 2π fdp rad/s) of LPF
from the input dp to the output d̂p.

• (estimation error dynamics) the disturbance estimation
error dynamics for edp := dp − d̂p:

ėdp = −ldpedp − ldp lv,2ev + wdp , ∀t ≥ 0, (41)

with wdp := ḋp and |wdp | ≤ δdp , ∀t ≥ 0, which is used
in the following convergence analysis.

♦

2) WHOLE SYSTEM DYNAMICS
As can be seen from the combination of (12) and (13),
the outer-loop system seems to be governed by second-
order dynamics. Interestingly, the combination of the active
damping coefficient bd,p and the design parameter structure
results in first-order closed-loop dynamics, owing to the order
reduction property. For details, refer to Lemma 7.
Lemma 7:The proposed outer-loop system, shown in Fig. 2

controls the position such that

ṗ = ωpp̃+ eF , (42)

with filtering dynamics

ėF = −ap,1eF + ap,2(qev + φ + edp ), ∀t ≥ 0, (43)

for some ap,i > 0, i = 1, 2, and q > 0. ♦
Proof: Substituting (13) into (12) yields the closed-loop

position dynamics:

p̈ = −(bd,p + ωp)v̂p + bd,pωpp̃+ edp + φ

= −bd,pṗ+ ωp(ṗref − ṗ)+ bd,pωpp̃+ qev + φ + edp ,

∀t ≥ 0, where q := bd,p + ωp and edp := dp − d̂p, which
shows that:

ṗ = −bd,pp+ ωp(pref − p)+ bd,pωp

∫ t

0
p̃dτ

+wev + wφ + wedp , ∀t ≥ 0,

with wev :=
∫ t
0 qevdτ , wφ :=

∫ t
0 φdτ , and wedp :=

∫ t
0 edpdτ .

This gives an equivalent vector form for xp :=
[
p ζp

]T with
ζp := bd,pωp

∫ t
0 p̃dτ :

ẋp = Apxp + bp,1pref + bp,2(wev + wφ + wedp ), (44)

yp = cpxp(= p), ∀t ≥ 0, (45)

whose matrices are defined as Ap :=
[
−(bd,p + ωp) 1
−bd,pωp 0

]
,

bp,1 :=
[
ωp bd,pωp

]T , bp,2 := [
1 0

]T , and cp :=[
1 0

]
. The remaining proof is omitted since it is identical

to the proof of Lemma 4 using the representation of (44)
and (45). �
Theorem 3 concludes this section by proving a closed-loop

property related to the main control objective (8) based on the
results of (37), (42), and (43).
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Theorem 3: The multi-loop feedback system shown in
Fig. 2 guarantees that there exists ci > 0, i = 1, 2 such that

|1p| ≤ c1e−c2t , ∀t ≥ 0, ∀|edp | ≥
2δdp
ldp

, (46)

with a performance error 1p := p∗ − p. ♦
Proof: The definition eφ :=

[
eF φ

]T reads the
dynamics from (37) and (39) that

ėφ = Aφeφ + bφ,1edp + bφ,2ev, ∀t ≥ 0, (47)

with Aφ :=
[
−ap,1 ap,2
0 −αφ

]
, bφ,1 :=

[
ap,2
0

]
, and bφ,2 :=[

ap,2q
0

]
. The stability of system matrix Aφ solves the matrix

equation ATφPφ + PφAφ = −I for an unique Pφ > 0, which
turns the positive definite function

Vφ :=
1
2
eTφPφeφ +

η1

2
e2dp +

η2

2
e2v,

ηi > 0, i = 1, 2, ∀t ≥ 0,

into (using Young’s inequality)

V̇φ = eTφPφ(Aφeφ + bφ,1edp + bφ,2ev)

+ η1edp (−
ldp
2
edp − ldp lv,2ev)− η2lv2e

2
v

− η1(
ldp
2
e2dp − edpwdp )

≤ −
1
3
‖eφ‖2 − (

η1ldp
2
−

3‖Pφ‖2‖bφ,1‖2

4
−

1
2
)e2dp

− (η2lv2 −
3‖Pφ‖2‖bφ,2‖2

4
−

η21l
2
dp l

2
v,2

2
)e2v,

∀t ≥ 0, ∀|edp | ≥
2δdp
ldp

. Settings η1 := 2
ldp

( 3‖Pφ‖
2
‖bφ,1‖2

4 + 1)

and η2 := 1
lv2
( 3‖Pφ‖

2
‖bφ,1‖2

4 +
η21 l

2
dp
l2v,2

2 +
1
2 ) yield

V̇φ ≤ −
1
3
‖eφ‖2 −

1
2
e2dp −

1
2
e2v

≤ −αeφVφ, ∀t ≥ 0, ∀|edp | ≥
2δdp
ldp

, (48)

where αeφ := min{ 2
3λmin(Pφ )

, 1
η1
, 1
η2
}. Now, consider the

dynamics for the performance error1p = p∗−p as (using (6)
and (42)):

1ṗ = −ωp1p− eT1 eφ, ∀t ≥ 0,

where e1 :=
[
1 0

]T , which gives the time derivative of
the composite-type Lyapunov function candidate V1p :=
1
21p

2
+ ηφVφ with ηφ > 0 (together with (48) and Young’s

inequality).

V̇1p = 1p(−ωp1p− eT1 eφ)+ ηφV̇φ

≤ −
ωp

2
1p2 − (ηφαφ −

1
ωpλmin(Pφ)

)Vφ

≤ −α1pV1p, ∀t ≥ 0, ∀|edp | ≥
2δdp
ldp

,

with the setting ηφ := 1
αφ
( 1
ωpλmin(Pφ )

+ 1) and a positive

constant α1p := min{ωp, 1
ηφ
}. This completes this proof. �

The result (46) shows exponential convergence (control
objective (8)):

lim
t→∞

p = p∗

with the DOB gain setting
2δdp
ldp
≈ 0, which concludes control

objective (8).

V. SIMULATIONS
This section demonstrates the performance improvement
from the closed-loop analysis results in Section IV using
numerical simulations based on MATLAB/Simulink. The
nonlinear differential equations (1) and (2) emulated the
MAGLEV system dynamics for the position, velocity, and
coil current through Simulink programming in a continuous
time setting, where the system coefficients are set to M =
725 kg, ML = 1000 kg (initial load), K = 5.45 × 10−3 N ·
m2/A2, Rc = 4.4 �, and Lc = 908 mH . These values
were obtained from an actual experimental test bed in [13].
The control algorithms were coded using C programming
in the S-function environment, which was executed for each
sampling and control period 1 ms and implemented using the
nominal system parameter settingM0 = 0.7M , K0 = 1.5 K ,
Rc,0 = 1.3 Rc, and Lc,0 = 0.5 Lc.

The design parameter tuning results for the proposed
controller are summarized as: (outer loop) fp = 0.5 Hz
(for ωp = 2π0.5 rad/s), bd,p = 2000, fdp = 300 Hz (for
ldp = 2π300 rad/s), fv,1 = 200 Hz (for lv,1 = 2π200 rad/s),
fv,2 = 1000 Hz (for lv,2 = 2π1000 rad/s), (inner loop) fc = 8
Hz (for ω̂c(0) = ωc = 2π8 rad/s), bd,c = 2000, kc = 1900,
fdc = 1000 Hz (for ldc = 2π1000 rad/s), κωc = 5, and ςωc =
1
κωc

. A comparison analysis was conducted to clarify the
practical advantage with the back-stepping controller (BSC)
compensated by the active damping terms and DOBs
such that: (position loop) vp,ref = ωpp̃, (velocity loop)

ic,ref =

√
p2
cp
(bd,vvp − ωvṽp − bd,vωv

∫ t
0 ṽpdτ + g+ d̂v)

(ṽp := vp,ref − vp), żv = −ldpzv − l2dpvp + ldp (cp
i2c
p2
−g),

d̂v = zv + ldpvp, (current loop) u = Lc,0(−bd,cic + ωc ĩc +
bd,cωc

∫ t
0 ĩcdτ − d̂c), żc = −ldczc− l

2
dc ic− ldc (

u
Lc,0

), and d̂c =
zc+ldc ic. Numerous shared design parameters, such asωp,ωc,
ldp , ldc , bd,v, and bd,c were chosen to be the same as those of
the proposed controller. The velocity cutoff frequency was set
as fv = 5 Hz (for ωv = 2π5 rad/s) for the best performance.
The load force wp was set to be sinusoidal such that

wp = 2× 103 sin(2π3t), ∀t ≥ 0, for all simulations to verify
the disturbance rejection performance.

A. POSITION TRACKING COMPARISON
This subsection tests the closed-loop improvement under
the position-tracking mission for the pulse reference with
a minimum 1 cm and a maximum 3 cm, which were
performed three times with increasing position-loop cutoff
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FIGURE 3. Position tracking performance changes for cutoff frequencies
fp = 0.5, 2, and 3 Hz.

FIGURE 4. Coil current response comparison under position tracking test
for cutoff frequencies fp = 0.5, 2, and 3 Hz.

frequencies of fp = 0.5, 2, and 3 Hz. Fig. 3 presents the
closed-loop position responses driven by the proposed and
BSC techniques; the proposed control action successfully
eliminates the overshoots while maintaining the desirable
closed-loop performance given as the cutoff frequency fp,
which comes from the dynamic feedback gain behavior
presented in the right side of Fig. 5. Fig. 4 compares the
coil current responses under this tracking mission. Unlike the
BSC, the proposed controller featuring the dynamic cutoff
frequency mechanism removes current ripples, unlike the
BSC. This merit would lead to a power efficiency improve-
ment in actual implementation during steady-state operation.
The proposed observer estimates the actual velocity with
satisfactory estimation error elimination behavior, which is
presented on the left side of Fig. 5. The DOB responses
are shown in Fig. 6, and their rapid disturbance estimation
performance contributes to this significant improvement in
the closed-loop performance.

B. POSITION REGULATION COMPARISON
This subsection changes the test mode by adopting a constant
position reference of 2 cm, three sudden load mass increases,

FIGURE 5. Velocity estimation error and current cutoff frequency
responses under position tracking test for cutoff frequencies fp = 0.5, 2,
and 3 Hz.

FIGURE 6. DOB responses under position tracking test for cutoff
frequencies fp = 0.5, 2, and 3 Hz.

and restoring scenarios such that ML = 1000 (initial
load mass) → 2000/3000/4000 → 1000 kg. The
remaining controller design parameters were kept identical
to those in the previous test with the initial setting of the
position cutoff frequency fp = 0.5 Hz. Fig. 7 confirms a
significant closed-loop performance improvement from both
the quantitative and qualitative perspectives. The proposed
technique reduces the position ripple level and results
in consistent performance despite the different operating
conditions in the first two load mass variation scenarios.
In the third scenario, the BSC fails to stabilize the closed-loop
system when the load mass is suddenly increased from
ML = 1000 to 4000 kg; however, stabilization was
successful via the proposed controller. As shown in Fig. 8,
coil current ripple reduction was obtained by the pro-
posed technique. The dynamic current cutoff frequency
magnification properties presented in Fig. 9 offers these
benefits.

C. NUMERICAL PERFORMANCE COMPARISON RESULTS
This subsection presents the numerical performance compari-
son results for evaluating the position error and current ripple-
reduction levels. For this purpose, the performance metric is
defined as

J =

√∫
∞

0
|pref − p|2 + |ic,ref − ic|2dt,
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FIGURE 7. Position regulation performance changes for three load
variation scenarios; ML : 1000 → 2000/3000/4000 → 1000 kg.

FIGURE 8. Coil current response comparison under position test for three
load variation scenarios; ML : 1000 → 2000/3000/4000 → 1000 kg.

FIGURE 9. Current cutoff frequency responses under position regulation
test for three load variation scenarios;
ML : 1000 → 2000/3000/4000 → 1000 kg.

TABLE 1. Numerical performance comparison result.

which collects the resultant data during the two opera-
tions in Sections V-A and V-B. This evaluation includes

further comparisons of advanced proportional nonlinear
controllers [28] including self-tuner to demonstrate the
effectiveness of the proposed controller. Table. 1 shows the
comparison result with the performance metric function J
value. In summary, the comparison results show an average
closed-loop performance improvement of 52 % for BSC
and 35 % for advanced nonlinear controllers. This result
implies that the proposed technique can be considered a
reasonable alternative to conventional techniques because of
its significant performance improvement in actual systems.

VI. CONCLUSION
This study incorporated a dynamic feedback loop mechanism
into the control law to derive practical merits by increasing
and decreasing the current-loop feedback gain according
to the operating mode. Moreover, a plant parameter-
information-free velocity observer was devised to enable the
implementation of a pole-zero cancellation control action
with active damping. The numerical simulation results con-
firmed the practical advantages of the proposed technique.
However, there were numerous design parameters for the
introduced auxiliary subsystems, which will be automatically
determined through the offline optimization process devel-
oped in a future study. Furthermore, we will extend our
study based on the neuro-adaptive control method combining
neural networks to demonstrate robust performance against
complex model uncertainties and nonlinearities.
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