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ABSTRACT This study processes an autonomous indoor drone photographer that searches for and selects
a heuristic optimal viewpoint to obtain a well-composed photograph of a group of subjects. The subjects
on the drone’s camera screen are represented by a Gaussian mixture model. When there are four or more
subjects, they are represented by a Gaussian mixture model with clustering by variational Bayes. The
Kullback–Leibler divergence is evaluated between the Gaussian mixture model and a user-defined reference
composition, and it is defined as the composition evaluation value. The reference composition is pre-set
by the user based on the basic composition rules, such as the three-section method. The drone searches for
a viewpoint in a 3D space to optimize the composition evaluation value using particle swarm optimization
(PSO). A Gaussian process is used to facilitate the PSO search. This enables the drone to significantly reduce
the search time and successfully capture a photograph with a well-balanced composition.

INDEX TERMS Autonomous drone, robot photographer, real-time search, Gaussian process, particle swarm
optimization.

I. INTRODUCTION
One of the typical applications of the drones is to capture
photographs or video from the air. Industrial drones have been
used for broadcasting sports events or inspecting construction
sites, such as bridges, which are difficult for humans to
access. In addition, photography drones are being increas-
ingly used for hobbies owing to a reduction in their size and
price. Drones have made it possible to obtain high-quality
aerial images at a low cost [1]. In addition, recent progress
in Artificial Intelligence (AI) techniques has allowed for
autonomous flight, which is used to identify and track specific
people and objects using a camera mounted on a drone [2].
However, current photography drones still require a skilled
operator to select the best shooting viewpoint and time from
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an aesthetic perspective. Autonomous photographer will be
applicable to wide range of scenes such sports broadcast and
filming as well as hobby use. In this work, we do not argue
what makes a photograph aesthetic but evaluate the balance
of composition in a photograph displayed on a camera screen.
An example of a well-balanced composition has been dis-
cussed in a previous work on the robot photographers. How-
ever, it is limited to the evaluation function corresponding
to the rule of thirds, which is the conventional composition
rule [3].

Therefore, in this paper, we propose an optimal viewpoint
selection method for an indoor photography drone with the
aim of capturing an image with a well-balanced compo-
sition in the 3D space. As GPS is not available for the
indoor drone, visual SLAM is employed for the position
control. A photograph of subjects is obtained, and its com-
position is evaluated using a 2D Gaussian mixture model.
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The variational Bayes method is used to cluster of the group
of subjects as a Gaussian mixture model. The mean vectors
and the covariance matrices of each mixture element are
updated according to the change in the position and viewpoint
of the drone. The reference composition is also a 2DGaussian
mixture model; however, its layout can be defined according
to a user’s preferences to obtain a user-specific photo.

In our previous work, we have developed a ground
mobile robot photographer with a similar scheme, where
the Kullback–Leibler (KL) divergence is employed as a
composition evaluation function based on an image-based
2D Gaussian mixture model and that of the user-defined
reference composition [4]. The robot explores a shooting
viewpoint such that the KL divergence is minimized. In this
study, this approach is applied to the drone photographer, but
significant extension is required.

To the best of the authors’ knowledge, the conventional
work on robot photographers is limited to the ground robots
[5]–[8]. In this study, the use of a drone allows us to obtain
photographs from more viewpoints compared to previous
studies. However, the problem with this method is that con-
siderable time is required to evaluate the composition a pho-
tograph obtained in a 3D search space.

A number of methods have been studied for efficiently
finding the optimum viewpoint. In this study, particle swarm
optimization (PSO) [9] is employed, which is one of a meta-
heuristic algorithm. PSO is derived from the behavior of a
flock of birds finding food [10], [11], and it is a multipoint
distributed search algorithm that converges rapidly. However,
the merit of PSO diminishes when a single drone explores a
space. Optimizationmethods that employ Gaussian processes
have been used in various fields [12]. The combination of
PSO and a Gaussian process is an effective approach [13].
A Gaussian process is a nonlinear regression model that
estimates an unsearched area using PSO.Hence, it is expected
to predict the photographic composition of an entire 3D space
using a small number of observations and reduce exploration
time.

II. PROPOSED METHOD
The proposed system is as shown in Fig.1. The system con-
sists of 5 process modules.

In the Image Processing module, an image is acquired
by a drone camera. A subject in the image is detected via
object recognition using You Only Look Once (v3 Darknet).
The camera information acquired by the image-processing
module is used for self-position estimation and composition
evaluation.

The Position Estimation module estimates the position of
the drone using visual SLAM. An Augmented Reality (AR)
marker is used to convert a coordinates to the horizontal
coordinate system.

The Composition Evaluation module acquires the coordi-
nates and size of a subject detected on the camera screen
and evaluates the degree of similarity between the pho-
tographic composition shown on the drone camera and

FIGURE 1. System architecture of the drone photographer.

the predefined reference composition based on the KL
divergence.

The Viewpoint Selection module implements a search
and optimal viewpoint selection by combining PSO and a
Gaussian process. The Gaussian process estimates the com-
position function value given by the KL divergence in an
unsearched area; thus, a smooth evaluation field is created.
PSO is applied in this area.

The Flight Control module is used for position control,
and it is based on ORB-SLAM. After a subject is detected
by the image-processing module, visual feedback control is
performed so that the subject does not move outside the frame
of the camera screen.

FIGURE 2. Self-position estimation by ORB-SLAM.

III. POSITIONING OF INDOOR DRONE USING ORB-SLAM
A. SELECTION OF SLAM
Self-position estimation in a non-GPS environment is neces-
sary for positioning an indoor drone [14]. An indoor mapping
system based on geographic information system is available;
however, it is expensive. As an alternative approach, we adopt
ORB-SLAM [15], which is based on the feature points in
visual SLAM. Visual SLAM is a method to detect the land-
marks from camera images and grasp the drone position and
surrounding 3D position information. Since the distance scale
is not identified only with a monocular camera mounted on
the drone, scaling the map with a known object size such as
an ARmarker is required to improve the accuracy of the map.
An example of ORB-SLAM is shown in Fig.2. ORB-SLAM
has the highest accuracy among visual SLAM techniques, and
it can be operated in real time. Furthermore, it is and open
source and easy to implement.
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FIGURE 3. Matching coordinate system of the drone.

B. TRANSFORMATION OF SLAM COORDINATES
When visual SLAM is applied to the drone camera, the height
from the ground is unknown because the position and ori-
entation estimated by ORB-SLAM is in the local coordinate
system. To address this, the local coordinate system of the
camera viewpoint is transformed to the global coordinate
system with the floor surface as the origin, which is marked
by an AR marker. The AR marker is also used to adjust the
scale of the SLAM coordinate system to the physical space.
Fig.3 shows the position and the coordinate system of the AR
marker setting for the experiment.

Let the drone’s position in the local coordinate system be
localp ∈ R3, and that in the global coordinate system be
globalp ∈ R3. The coordinates systems are right handed,
where the z-axis represents the vertical upward direction,
as shown in the Fig.3. The rotation matrix for convertiong
the drone’s local coordinate system to the global coordinate
system, globallocal R ∈ R3×3, is expressed below, where (φ, θ, ψ)
are the angles of rotation of the drone around the X, Y, and Z
axes, respectively.

global
local R =

 cθcψ sφsθcψ − sψcφ sφsψ + sθcφcψ
sψcθ cφcψ + sφsθ sψ sθ sψcφ − sφcψ
−sθ sφcθ cφcθ

 (1)

The global coordinate system is expressed as follows
using (1) and the translation vector, globallocal t ∈ R3:

globalp =globallocal Rlocalp+globallocal t (2)

This a coordinate transformation is updated sequentially, and
the drone is controlled using the correct position and orienta-
tion in the global coordinate system.

IV. COMPOSITION EVALUATION USING KL DIVERGENCE
A. COMPOSITION EVALUATION FUNCTION
A subject in the drone camera is represented by a 2D
Gaussian distribution in the pixel coordinates of the image.
The arrangement of multiple subjects can be expressed as a
2D mixed Gaussian distribution. The photographic compo-
sition is evaluated by estimating the similarity between this
2D mixed Gaussian distribution and the 2D mixed Gaussian
distribution with the reference composition using KL diver-
gence. The drone searches for the viewpoint in the 3D space
to minimize the KL divergence.
Suppose the number of human subjects is L. The center

coordinates of the subject l are expressed by a vector, µl =
(xl, yl)T . The width and height of the area are expressed as

a variance–covariance matrix, 6l ∈ R2×2. The 2D mixed
Gaussian distribution, P(a|µ,6), of the L subjects at an
arbitrary position, a = (x, y)T , on the camera screen is
defined below, where the weight of the subject l is πl and∑L

l=1 πl = 1, 0 ≤ πl ≤ 1. Let the set of the mean vector and
the variance–covariance matrix be 6 = {61, · · ·,6L},µ =

{µ1, · · ·,µL}.

P(a|µ,6) =
L∑
l=1

πlN (a|µl,6l)

=

L∑
l=1

πl

2π |6l |
1
2

exp
{
−
1
2
(a− µl)

T6−1l (a− µl)
}

(3)

The composition evaluation value is given by the KL diver-
gence for the distribution (3) and the user-defined reference
composition distribution, Q(a;µ′,6′), on the screen, which
is defined as follows:

Dc = −
∫∫

H
P(a|µ,6) log

Q(a|µ′,6′)
P(a|µ,6)

dH . (4)

where H is the range of the pixel screen in the photo-
graph. The photographic composition improves as Dc ≥
0 decreases. The calculation of the KL divergence in a mul-
tivariate mixed Gaussian distribution requires an approxima-
tion of the distribution, and it is given in [16], [17]. Based
on this approximation, the KL divergence is calculated in
accordance with a previous work [4].

Next, we perform an experiment on the composition evalu-
ation. Fig.4(a) shows the reference composition in the case of
2 subjects. Figs.5(a) and 5(b) are the images that evaluate the
composition based on the reference composition of Fig.4(a).
The results calculated using the (4) are shown in the upper
left of each image, where Dc = 6.53 for Fig.5(a) and Dc =
1.07 for Fig.5(b). As shown in these figures, the case where
Dc is smaller shows a better composition in terms of the
reference composition of Fig.4(a).

FIGURE 4. Reference composition.

B. CLUSTERING SUBJECTS BASED ON VARIATIONAL
BAYES
The number of classes for the reference 2D mixed Gaussian
distribution is set as K = 3 for simplicity. If there are numer-
ous subjects, the group of (3) is clustered and represented as
a single mixture element.

69974 VOLUME 10, 2022



T. Yokomatsu, K. Sekiyama: Optimal Viewpoint Selection by Indoor Drone Using PSO and Gaussian Process

FIGURE 5. Composition evaluation value Dc .

Therefore, in this work, we use variational Bayes to clas-
sify all the subjects into 1 ∼ 4 groups according to
their arrangement on the drone’s camera screen and their
position and posture. It is possible to obtain a flexible dis-
tribution. Therefore, in the proposed system, all subjects
are classified into one of several classes according to the
pixel position. Variational Bayes is an approximate solution
for Bayesian estimation of probabilistic models. Variational
Bayes is applied to determine the latent posterior distribu-
tion in the closed form when the probability problem is
difficult. In this experiment, a subject is represented by a
2D mixed Gaussian distribution for evaluating the photo-
graphic composition. Therefore, variational Bayes can be
used for clustering the subjects. The specific implementation
method is as follows. The mixed Gaussian distribution with
K = 4 contains a D = 2 dimensional Gaussian distribu-
tion as a mixed element. Additionally, the observation data,
a = (x, y), are mixed with the probability of belonging to
class k . In variational Bayes clustering, the initial value is
K = 4. However, in most cases, the class distribution is
smaller than K . The 2D mixed Gaussian distribution with
multiple subjects optimized using variational Bayes is eval-
uated on the basis of the KL divergence with the reference
composition distribution, in the same manner as that used
in (4). The specific calculation procedure is performed with
reference to [19].

C. VERIFICATION OF VIEWPOINT BY CHANGING
REFERENCE COMPOSITION
We examine whether a change in the reference composition
affects the optimal viewpoint position. Fig.6(a) shows the
change in the reference composition of Fig.4(a), and Fig.6(b)
shows the resultant change in the optimal viewpoint. It is
confirmed that the optimal viewpoint position corresponding
to Fig.6(a) is obtained from the photograph shown in Fig.6(b).
These results demonstrate that the proposed method can be
applied to different viewpoints by setting various reference
compositions in advance.

V. OPTIMAL VIEWPOINT SELECTION
A. EVALUATION VALUE PREDICTION BY GAUSSIAN
PROCESS
The flow of the optimal viewpoint search is explained. The
viewpoint selection method is presented in Algorithm 1.

FIGURE 6. Changes in camera viewpoint due to changes in reference
composition.

Algorithm 1 Optimal Viewpoint Selection Method
Require: Observation data X, y
Ensure: Optimal photo viewpoint position(x ′n, y

′
n, z
′
n)

1: while n 5 6 do
2: Randomly observed and create a data set (6)
3: end while
4: while After 120s or until the observed values converge

do
5: Create a predicted distribution (15), (16) from a deta

set (6)
6: Find the maximum point of (17)
7: PSO search by (19) using the maximum value of (17)
8: if Difference between current position and next obser-

vation point d < 0.1 then
9: Add observation data (6)
10: end if
11: end while

As only one drone is used in the experiment, PSO cannot
perform a wide-area search and tends to lead to a local
solution. Therefore, a Gaussian process [19] is used to com-
pensate for the small number of observations. The Gaussian
process is used to interpolate the unsearched area. The mean
and variance for each observation point are the predicted out-
puts. Therefore, the ambiguity of prediction can be expressed.
As an example, the composition evaluation value at the third
observation position is predicted when the number of obser-
vations is N = 2. Therefore, the input is the drone position,
x = (x, y, z) ∈ R3, and the output is the composition
evaluation value, y = u ∈ R. The orientation of the drone
with respect to the subjects and the angle of the camera should
be considered as inputs for the Gaussian process. However,
in this experiment, the direction of the drone’s viewpoint is
controlled by the visual feedback for the subjects. Hence, the
drone is always oriented toward the subjects during flight.
Observations are obtained when the center of a subject is
within a certain area on the camera screen. In addition, the
camera angle of the drone is fixed for capturing a photo.
Therefore, the prediction of the camera direction is not con-
sidered, and only the shooting position of the drone is con-
sidered. The linear model is expressed by the (5) with the
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regression coefficient b ∈ R3.

y = Xb[
u1
u2

]
=

[
x1 y1 z1
x2 y2 z2

]b1b2
b3

 (5)

The regression coefficient is assumed to follows a Gaussian
distribution, p(b) = N (b | 0, σ 2

b). Then, the linear model (5)
is extended to a nonlinear model using the kernel method.
φ(X) is a design matrix that represents a function in a non-
linear space. A nonlinear mapping, X → φ(X), of the set,
X = {xn|1 5 n 5 N }, of the drone position, xn =
(xn, yn, zn)T ∈ R3, after n times provides the following
nonlinear regression model:

y = φ(X)b (6)

Let σ 2
ij be the kernel function K , as given by (7).

σ 2
ij = σ

2
b φ(xi)φ(xj)

T

= K (xi, xj)
(7)

The RBF kernel is used as a kernel function, as given by (8).

K (xi, xj) = exp
{
−
θ

2
||xi − xj||2

}
(8)

Furthermore, in practice, measurement error of e is consid-
ered in (6). Assuming that the measurement error is inde-
pendent of the observation position and follows p(e) =
N (e|0, σ 2

e ), the nonlinear regression model (6) is given
by (9).

t = y+ e (9)

Themean vector,µt , of t and the variance–covariance matrix,
6t , are as expressed follows:

µt = 0 (10)

6t =

[
σ 2
b x1x

T
1 + σ

2
e σ 2

b x1x2
σ 2
b x2x

T
1 σ 2

b x2x2 + σ
2
e

]
(11)

The covariance is 0 because e is independent of the observa-
tion position.

Then, the composition evaluation value, u3, at the third
observation position is predicted. In other words, we deter-
mine the conditional distribution, p(u3|y), of u3 given y.
Therefore, p(u3|y) can be transformed into (12).

p(u3|y) =
p(u3, y)
p(y)

(12)

The mean,m′, and the variance–covariance matrix,6′, of the
joint distribution, p(y, u3) = p(y′), are obtained using the
matrix of kernel function (13).

k =
[
K (x1, x3) K (x2, x3)

]T (13)

m′ = 0, 6′ =

[
6t k
kT K (x3, x3)+ σ 2

e

]
(14)

Therefore, as the joint distribution (14) and the prior distribu-
tions(10) and (11) are obtained, the conditional distribution

can be derived based on [19]. The mean and variance of the
conditional distribution are

m(X3) = k6−1t t (15)

σ 2(X3) = K (x3, x3)+ kT6−1t k (16)

When the observation data are obtained by performing such
a calculation, the photographic composition evaluation value
of un unobserved point is expressed by the mean and the
variance of the Gaussian distribution.

B. CREATION OF COMPOSITION EVALUATION MAP
3D SPACE
The composition evaluation function, M (X ′,m, σ 2) is cre-
ated using the expected value, m(X ′), and the variance,
σ 2(X ′), of the predicted distribution of the KL divergence at a
certain unobserved pointX ′ using the Gaussian process given
in (15) and (16).

M (X ′,m, σ 2) =
1

1+ eαM (m/σ 2−βM )
(17)

αM and βM are the coefficients of the sigmoid function; and
αM = 0.1 and βM = 10 in this study. In addition, EKL
is obtained by dividing the expected value, m, of the pre-
dicted distribution of the KL divergence by variance σ 2. This
is used to reduce the uncertainty of evaluating observation
points even if the predicted photographic composition evalu-
ation value is small. As the composition evaluation function,
M (X ′,m, σ 2), increases, the KL divergence and variance
decrease. Therefore, a good composition can be expected.

FIGURE 7. 3D photographic composition evaluation map.

FIGURE 8. Composition map projected on XY plane.

Fig.7 shows the 3D composition map created by the
Gaussian process in the actual experiment. The drone search
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range, (x:-1.5 to 1.5m, y:-0.75 to 0.75m, z: 0.8 to 1.8m),
is divided into 10×10×10 points, and each point is used as the
drone observation point. The composition evaluation value at
an observation point is expressed using color, which changes
from blue to red. M (X ′,m, σ 2) increases as the red color
becomes stronger. It is difficult to evaluate the composition of
the entire search space in the 3D compositionmap. Therefore,
M (X ′,m, σ 2) is marginalized in the Z direction to create a
2D composition map projected onto the XY plane. The 2D
composition map is shown in Fig.8. The colors denote the
composition map obtained M (X ′,m, σ 2). Hence, the darker
the red color, the more reliable the point where a photograph
with a good composition can be obtained.

As the evaluation values of the Z axis are averaged, they are
slightly different between the 2D and 3D composition maps.
However, as the composition map is used only to simplify
the composition evaluation, we use the 2D composition map
to evaluate the composition evaluation.

C. SEARCH UPDATE BY PSO
The point in the drone search area is the input, x =
(x, y, z) ∈ R3, and the objective function is the composition
evaluation value. As the basic calculation of PSO, the n +
1 search point update formula (position: x(n + 1), speed:
v(n + 1)) is given by (18a) and (18b). The parameters are
w, ρ1 and ρ2. p is the personal best, and g is the global best.

x(n+ 1) = x(n)+ v(n) (18a)

v(n+ 1) = wv(n)+ ρ1(p− x(n))+ ρ2(g− x(n)) (18b)

Only one drone is used in this experiment. Based on this, the
n+ 1 search point update formula with PSO is defined by

x(n+ 1) = g+
C × ρ

1+ eα×{m(g)−β}
. (19)

ρ is a random number and coefficient C = 0.5. The
parameters of the sigmoid function are α = 10 and β = 0.5.
In addition, g ∈ R3 is the observation position of the drone
(global best) [18], which is predicted to obtain the photograph
with the best composition. Subsequently, m(g) is the com-
position evaluation value predicted by g. We use a sigmoid
function that inputs m(g) to the search update. This makes it
easier for the search to converge as it approaches the optimal
viewpoint. In this study, it is possible to efficiently search
for a viewpoint even with a single drone by interpolating and
predicting the unobserved points using the Gaussian process
for the wide-area search of PSO.

VI. EXPERIMENT ON OPTIMAL VIEWPOINT SELECTION
METHOD
A. EXPERIMENTAL SETTINGS
This section validates the Gaussian process and the 3D view-
point selection method using PSO through actual machine
experiments. The Parrot BEBOP2 drone is used in the exper-
iments. It is assumed that images are obtained in an indoor
environment, and there is no disturbance due to wind. The
reason for conducting the experiment indoors is to minimize

the error in photographic composition evaluation due to dis-
turbance caused by wind. Therefore, the shooting environ-
ment is not limited. In addition, there are no obstacles in the
search range of the drone. The subjects are 5 people, and
variational Bayes is employed. The subjects are static, and
there are no restrictions on the posture. The reference compo-
sition used for the optimal viewpoint is shown in Fig.4(a). The
search range is set from the origin of the SLAM coordinate
system (x: -1.5 to 1.5m, y: -0.75 to 0.75m, z: 0.8 to 1.8m).
This range is selected from a sufficient range that can be
ensured in our laboratory; the autonomous imaging system
used in this study is not limited to this range. The condition
for completing the process up to shooting is to obtain the
log-likelihood from the actual composition evaluation value
and the mean and variance of the Gaussian process. The
value exceeds a certain standard, and the observed value is
predicted. It is assumed that the data fit within the 1σ interval
for 5 consecutive times or 120s have passed since the start of
the search.

TABLE 1. Subject distribution information for each class(n = 15).

B. EXPERIMENTAL RESULTS
Fig.9(a) shows the observed KL divergence, number of
searches in the KL divergence predicted by the Gaussian
Process, and the change in the KL divergence. The 1σ inter-
val becomes smaller because the prediction accuracy of the
Gaussian process increases with the number of searches.
The results for n = 15 at the optimal viewpoint show that the
proposed method makes it possible to search for a viewpoint
with a better composition compared to the start of the search.
Furthermore, the observation results indicated by the green
line converge to the viewpoint with a smaller KL divergence
as the number of searches increases. It is considered that the
KL divergence during the search is due to the observation
error in the position control of the drone or the deviation due
to the random search of PSO. It is also possible that the prob-
abilistic prediction is wrong. Figs.9(c) and 9(d) show the pho-
tographic composition for n = 4, 15 in the Fig.9(a). The
composition of the photograph obtained at n = 15 at the end
of the search is similar to the reference composition, and the
entire subject is well balanced. The distribution information
clustered by variational Bayes for n = 15 is summarized
in Table.1. The responsibility of mixed elements negligibly
affects the composition evaluation and is omitted. The mean
and variance vectors of the distribution clustered by varia-
tional Bayes are represented by a pixel coordinate system on
the drone camera screen. The variance vector is expressed by
the major and minor axis of the ellipse. These results confirm
that the variational Bayes clustering is accurate. The black
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FIGURE 9. Optimal viewpoint selection experiment using variational Bayes.

FIGURE 10. PSO search trajectory of the drone.

dots drawn on the 2D composition map in Fig.9(b) represent
the observation points in the drone search. The white star
mark represents the optimal viewpoint position for n = 15.
The dispersion of these observation points shows that the
drone can search over a wide area. The drone search route
is shown in Fig.10. The red cross and red square indicates the
starting point and optimal viewpoint position, respectively.
These observation points show that the search is does not fall
into a local solution and that the composition evaluation value
is predicted over the entire search range by combining PSO
and the Gaussian process.

VII. EXPERIMENTAL ANALYSIS
A. ANALYSIS OF OPTIMAL VIEWPOINT POSITION
The experimental analysis of the proposed Gaussian process
and 3D viewpoint selection method with PSO is performed.
The experiment is performed multiple times for the same

subject positions and the initial position ((x, y, z) = (1.5m,
-0.75m, 0m)) of the drone, and the variation in the optimal
viewpoint is verified. The experiment is performed 10 times
with 3 static subjects. Fig.11(c) shows a diagram of the
optimal viewpoint positions. The optimal viewpoint position
is considerably scattered in three places. However, the most
common optimal viewpoint is on the left side with respect
to the origin of the global coordinate system. As the search
is performed under a time constraint of 120s, the optimal
viewpoint will vary more as the arrangement of subjects
become more complex and the number of subjects increases.
The optimal viewpoint can be selected more efficiently and
accurately by changing the search time according to the
arrangement and number of subjects.

It is verified whether the proposed method is a better than
only PSO. Fig.11(d) shows the optimal viewpoints obtained
using only PSO under the same experimental settings as
Fig.11(c). The initial position of the drone is set as the posi-
tion of the red square in Fig.11(d). In the case of a search
using only PSO, since only one drone is used, the search often
failed to converge within 120s. Convergence to the optimum
viewpoint position depends on the initial position in many
cases. It is confirmed that the proposed search method with
Gaussian process can find the optimum viewpoint without
depending on the initial position. Next, Table.3 shows the
average and variance of the composition evaluation value,Dc.
Dc is lower for the proposed method, and a better viewpoint
is obtained. As the value ofDc at the optimal viewpoint tested
10 times is also small, there is a slight bias in the search solu-
tion even after multiple experiments. The proposed method
supplements PSO and provides better viewpoint selection.
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TABLE 2. Comparison of Dc and convergence time.

FIGURE 11. Optimal viewpoint position and photographs in each
experiment.

TABLE 3. Mean and variance of Dc in each experiment.

FIGURE 12. Comparison of composition maps.

B. COMPOSITION MAP ANALYSIS
We verify whether the proposed optimal viewpoint selec-
tion method can derive the optimum viewpoint in a time-
efficient manner. The proposed method is compared with the

composition evaluation map and search time of the experi-
ment in which the entire range is observed over a wide area
(the search range is divided into 4×2×2 ). There are 3 static
subjects in the experiment. The composition maps obtained
using the proposed method and full-range search experiment
are shown in Figs.12(a) and 12(b), respectively.

Both composition maps are similar. This shows that a
wide-area search using PSO and interpolation using the
Gaussian process are possible. A summary of the search time
and the optimal viewpoint position is presented in Table.2.
The search time in the full-range search experiment is 120s.
In the case of proposed method, the average and shortest
search time are 95.7s and 64s, respectively. This demonstrates
that the proposedmethod is a time-efficient approach. Table.2
shows that the entire range is sufficiently predicted. This
confirms that the proposed method can perform a search
without hindering the prediction of the search range, even
though it is more time efficient than the full-range search
experiment.

VIII. CONCLUSIONS
An optimal viewpoint selection method is proposed for an
indoor drone photographer. The method is applied to a com-
mercially available drone without modification. The drone
can capture a photograph with a well-balanced composition
according to a user’s preference using ORB-SLAM for visual
feedback control. A group of subjects is visually classified
into a set of the clusters represented by a mixed Gaussian
distribution. The captured scene changes according to the
movement of the drone, but the clustering is dynamically
adjusted using variational Bayes. TheKL divergence between
the subjects’ distribution and the user-defined reference com-
position, which is represented as a Gaussian mixture model,
is defined as the composition evaluation value. PSO and a
Gaussian process are integrated in the drone’s search. This
enables the drone to predict the composition evaluation value
in an unobserved area. Hence, a time-efficient search is possi-
ble within a 120s in our experimental setting. Moreover, the
results are similar to those obtained in the entire search of
the space. However, the search should be energy efficient in
addition to being time efficient. Additionally, the proposed
system is limited to the static subjects, and collision avoid-
ance must be considered for practical use. As part of future
work, we are investigating a viewpoint selection method that
can track mobile subjects.
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