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ABSTRACT Subjective accommodation refractive error models are essential for implementing adaptive
vision correction devices that utilize varifocal optics. This article describes compact empirical models
of subjective accommodative refractive errors in subjects with advanced presbyopia. The models are
based on measurements of subjective refractive errors from fifteen presbyopes over the age of 45 using
commercially available focus-tunable eyeglasses under three different illumination conditions over a 3.08D
accommodation stimulus range. The resulting average residual root-mean-squared (RMS) error values for
the best fitting 8-parameter model was 0.25D compared to an average RMS error of 0.4D for the conventional
DDF and HHG models. The RMS error for the best-fitting model is below the average refractive error of the
human eye.

INDEX TERMS Presbyopia, adaptive optics, vision correction, smart eyewear, autofocusing eyeglasses.

I. INTRODUCTION
Presbyopia is an age-related refractive disorder caused by
the loss of focal tunability of the eye crystalline lens. The
tunability loss manifests as an inability to focus on nearby
objects and an overall object distance-dependent defocusing
error. According to recent surveys [1], [2], more than a quarter
of the world’s population is affected by presbyopia and this
number is slated to increase with an improvement in the life
expectancy of the global population.

Current presbyopia mitigation devices such as multifocal
and progressive lenses do not restore normal vision. Instead,
these devices fragment the field of view into zones of dif-
ferent but fixed object distance. Therefore, these mitigation
devices reduce the in-focus field-of-view resulting in major
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reductions in the visual acuity when averaged over the entire
view field.

Fundamentally the restoration of normal vision in pres-
byopes requires not fixed but variable/ tunable focus lenses
that can adjust their optical power and cancel out the presby-
ope refractive error at all object distances. Recent advances
in adaptive optical systems [3]–[6] suggest that adaptive
smart eyewear systems can be implemented in lightweight
form and contact lens configurations [7], [8]. Autofocus-
ing eyewear like smart-eyeglasses for example can provide
automatic accommodation correction and potentially restore
near-normal vision in presbyopes [5], [9]–[13]. Such devices
hold great promise as they can potentially restore normal
vision and improve the lives of billions of people affected by
presbyopia.

The restoration of normal vision with these devices essen-
tially requires detailed knowledge of a particular presbyope
accommodative response (AR) curve. The accommodative
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response curve is defined as the change in the optical power
of the crystalline lens a function of the object distance. The
object distance is specified by the accommodation stimu-
lus (AS) parameter, which is the reciprocal of the object
distance [14]. The difference between the AS and the AR
is often termed as accommodative lead (positive difference,
over-accommodation) and accommodative lag (negative dif-
ference, under-accommodation) or, more generally, accom-
modative error (AE = AS − AR). This curve must be
measured for each individual and stored in one’s autofocus-
ing device. For all practical purposes, the empirical model
must be compact and developed using minimum number of
measurements and fitting parameters, thereby ensuring low
test costs.

A. OBJECTIVE AND SUBJECTIVE AR
The accommodative response can be measured in several
ways. Objective AR is measured optically using, for exam-
ple, an autorefractor instrument. However, the objective AR
[15]–[28] does not necessarily represent the presbyope’s
defocus perception as it does not take into account the
effects of the eye depth-of-focus under different lighting
and pupil aperture conditions, the static refractive errors like
myopia, hyperopia and astigmatism or any other higher order
aberrations. In this scenario, measurement of the subjective
accommodation response (AR), i.e., the refractive correction
required by an individual to perceive the clearest possible
focus at an object plane, provides better information about
real-world performance of the presbyopic eye. The subjective
accommodation error (AE) thus represents the optical correc-
tion which the autofocusing device would need to provide the
clearest vision in presbyopes.

In practical terms, to realize such correction, a compact
software mathematical model of the subjective AE would
need to be programmed into the autofocusing device to pro-
duce the appropriate optical power as a function of the object
distance and illumination I such that AE = f (AS, I ) as
shown in Fig. 1. At this juncture it is important to clarify
that this function is a purely empirical model extracted from
patient data, and it does not directly represent the underlying
phenomena responsible for presbyopia.

While this correction concept can, in principle, be per-
formed for any presbyope, the procedure requires detailed
measurement of the individual’s subjective AE as a function
of the object distance and lighting conditions.

B. CONVENTIONAL MODELS OF OBJECTIVE AR
Two theoretical models of objective AR viz., Donders-Duane-
Fincham (DDF) model and the Helmholtz-Hess-Gullstrand
(HHG)model have been discussed extensively in literature so
far, which originate from the two major variants of the lentic-
ular theory [29], [30]. In the HHG theory, the loss in accom-
modation is completely attributed only to the morphological
changes in the human eye’s crystalline lens capsule. This
model shows a near-ideal response to stimulus over the man-
ifest zone and then a sharp transition into a hard saturation

FIGURE 1. Schematic of an accommodation correction system. The
accommodation error model is programmed into the correction device.
The variable-focus lenses vary their optical power in real-time based on
the programmed accommodation error (AE) model for the individual
wearing the correction device. Variables d and I represent the object
distance and illumination, respectively.

region, where the lens can no longer accommodate. The AR
curve corresponding to HHG theory is shown in Fig. 2(a).
In contrast, DDF theory attributes loss in accommodation
with age to changes in only the bio-mechanical properties of
ciliary muscle which controls the crystalline lens. The DDF
model exhibits a linear response between the objective AR
and the applied stimulus, with the slope of the line reducing
progressively with age, until it is nearly flat and stagnated
for advanced presbyopes. Fig. 2(b) shows the corresponding
accommodation characteristics of DDF model.

To our knowledge, no studies have been conducted to date
to model the subjective AE of presbyopes at various object
distances and under various illumination levels.

The objective of this paper is the development of
individual-specific compact empirical models of subjective
AE as functions of object distance and illumination, for use in
autofocusing eyewear to provide adequate vision correction
for presbyopes. The models are constructed from subjective
AE data collected from a group of advanced presbyopes in
a registered clinical study. For each of these presbyopes the
model is fitted to the presbyope data using as few parameters
as possible. We also compare the RMS fitting errors of these
models in relation to accommodation restoration using smart
autofocusing eyewear technologies.

C. IMPACT OF DEFOCUS AE ON VISUAL ACUITY
Visual Acuity (VA) is a unit less number that quantifies the
clarity of vision and rates the ability of the human visual
system to recognize/ resolve small details with precision. It is
measured in terms of the logarithm of the minimum angle of
resolution (MAR) or logMARs [31]–[35]. Standard vision is
defined as logMAR of 0.0 (Snellen 20/20), and it helps to
define normal vision. Positive logMAR values indicate vision
loss, while negative values denote normal or better visual
acuity. It is well known that the visual acuity deteriorates in
presence of defocus errors [36]. A simple empirical model,
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FIGURE 2. Comparison of accommodation response characteristics from
the (a) Helmholtz-Hess-Gullstrand and the (b) Duane-Donders-Fincham
models [29]. The black line is the ideal accommodation response. Neither
model fits actual individual AD characteristics adequately for performing
a good AD correction with adaptive smart corrective eyewear.

suggested by Blendowske [37], relates the defocus error and
deterioration in the visual acuity as:

V
Vbc
=

1
1+ D2 (1)

where V is the deteriorated decimal visual acuity. Vbc is the
best corrected decimal visual acuity andD is the defocus error
in diopters. For example, a defocus error of 1.0D reduces the
visual acuity by 50%, thereby degrading the visual acuity by
0.3 logMAR. Any model used for restoration of the subject-
specific AE curve must ideally be sufficiently accurate to
minimize the reduction of visual acuity at all object distances
and under all illumination conditions.

In practical terms, patient-specific AE models with low
RMS errors will have to be programmed into autofocusing
eyewear devices to avoid over- or under-compensation and
avoid related deterioration in the vision of the presbyope.
We have shown the implementation of one of the models in a
recently published article which demonstrates the design and
implementation of a pair of smart autofocusing, liquid-lens
eyeglasses to mitigate presbyopia [13].

II. COMPACT MODEL DEVELOPMENT
Every individual’s eye behavior is characterized by their
AR(AS). Ideally, the AR curve should be a line of unity slope,
but as presbyopia progresses, the curve flattens to lower
optical powers [14], [29], [38]–[42] as shown in Fig. 3.

In this article, we seek to develop compact empirical equa-
tions that fit the subjective AR curve for a particular eye
of an individual with the smallest number of parameters.
Several types of models were fitted to patient data based on
the underlying physics and pure empirical observations of
the patient data. These models are discussed in the sections
below.

A. SIGMOID MODEL
The typical subjective AR curve displays a saturation type
of response with flat regions at low and high accommoda-
tion stimuli and an approximately uniform slope in between
(Fig. 3). Empirical data [14], [29], [39]–[41], [43]–[48] of
AR in the literature exhibits a typical ‘‘S’’-shaped or sig-
moid curve that can be modelled using the sigmoid function

FIGURE 3. Example of typical subjective accommodation response curve
for the human eye. The curve progressively flattens for higher powers
with age [29], [38].

family [49]. The simplest continuous static sigmoid function
[50] is the shifted logistics equation

ARsig =
a

1+
(
e−k·[AS−b]

) − d (2)

where a, b, d and k are fitting parameters. a is the maximum
subjective accommodative amplitude, k represents the range
of AS for which the AR exhibits a linear response and b
represents the shift along the horizontal axis. The parameter
d represents any vertical shift in the subjective AR due to the
presence of other refractive errors.

B. PIECEWISE LINEAR MODEL
The subjective AR in Fig. 3 can also be modeled with simple
piecewise linear models with one or two breakpoints, using
the Heaviside step function H(x). We can define a ramp
function R

R (x, S, α) ≡ (x − α) · S ·H (x − α) (3)

where S is the slope of the ramp function. Using these def-
initions, we can approximate the curve with one breakpoint
piecewise linear model

ARPWL1 = R (AS, k1, 0)+ R (AS, k2, x0)+ f (4)

where, k1, k2, are slopes of the two segments and are fitting
parameters and x0 is the location of the breakpoint. Similarly,
a two- breakpoint piecewise linear model can be constructed
as:

ARPWL2 = R (AS, k1, 0)+ R (AS, k2, x0)

+R (AS, k3, x1)+ f (5)

where, k1, k2, k3 are the slopes the three segments, respec-
tively and x0, x1 are the locations of the two breakpoints and
f is an initial offset. We choose to limit the number of break-
points used in the piecewise linear models to a maximum of
two since any more breakpoints would increase the number
of fitting parameters beyond the number of observations.

C. ILLUMINATION DEPENDENCE
The eye pupil changes diameter with different illumination
levels to control the light intensity at the retina. At high
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illumination the pupil constricts to a smaller diameter.
This increases the depth-of-focus of the visual system and
improves vision. Thus, the subjective AR will correspond-
ingly vary under different illumination levels. Recent studies
have shown that the subjective AR of presbyopes bears a
linear relation with the logarithm of luminance levels [51] and
the slope of the AR curve decreases with reduction in object
luminance [52]. Since luminance is proportional to illumina-
tion (in lux) we modify the sigmoid model of Eq. (2) as

ARsig (AS, I ) =

(
a

1+
(
e−k·[AS−b]

) − d) · log (I ) (6)

where I is the illumination in lux. Similarly, the illumination
dependence is included in the piecewise models as a multi-
plicative factor.

ARPWL1,I = ARPWL1 · log (I ) ,

ARPWL2,I = ARPWL2 · log (I ) (7)

Since the range of the illumination parameter in our recorded
observations was narrow and approximately within the same
orders of magnitude (75–800 lux), we also utilized a simple
exponential function to model the illuminance dependence on
the subjective AR. Accordingly, using Eq. (2), (4) and (5) the
sigmoid and piecewise linear models can be expressed as:

ARsig (AS, I , β) =

(
a

1+
(
e−k·[AS−b]

) − d) · Iβ (8)

and the piecewise approximations

ARPWL1,I = ARPWL1 · Iβ ,ARPWL2,I = ARPWL2 · Iβ (9)

where β is an empirical exponent.
In addition, we also utilized a piecewise linear model with

one breakpoint with slopes and breakpoints that are linear
functions of the illumination

fI = f00 + f01 · I , (10)

xI = x00 + x01 · I , (11)

kI1 = k10 + k11 · I , (12)

and,

kI2 = k20 + k21 · I (13)

where f00, f01, x00, x01, k10, k11, k20 and k21 are fitting param-
eters. The linear dependence of parameters appears to fit the
characteristics of the patient data and it is purely empirical.

III. METHODS
A. STUDY DESIGN
Many researchers have explicitly studied objective AR or AE
in order to analyze the effects of age on the morphological
changes observed within the eye and how the AR changes
with age [15], [16], [24]–[28], [40], [43]–[48], [53], [54].
Such objective AR and AE are measured using sophisticated,
computer controlled optometers, retinoscopes and aberrome-
ters. In these studies, the pupil diameter is tightly controlled

FIGURE 4. A presbyope undertaking a visual task at 1m chart distance.

with the help of phenylephrine [55] in order to decouple the
effects of the depth of field on the AR/AE measurements.
Therefore, such measurements cannot be directly or easily
converted to subjective AR/AE [15], [16], [19]–[23], [27],
[56], [57] for practical use in autofocusing eyewear.

The focus of this study is to develop AEmodels which can
be directly used in smart autofocusing eyewear algorithms for
personalized corrections. In order to simulate the real-world
conditions inwhich such algorithms and systemswill be used,
we measured the subjective accommodative errors which
the presbyopic subjects exhibited during their visual task
at different distances as described in the subsections below.
The methodology used in this study resembles the ‘‘push-
up’’ method of analyzing accommodation amplitude, where
the target or an eye chart is moved progressively closer to
the subjects’ eyes till a blurry image is reported [24], [26].
In our method, the distance is fixed at a few locations away
from the observer and the image at each location is made
subjectively as clear as possible utilizing a set of commer-
cially available tunable power eyeglasses which cancel the
distance-dependent subjective refractive error. Additionally,
we utilize calibrated ETDRS charts for various chart dis-
tances in which the angular detail of the optotypes is main-
tained [31]–[35]. The details of the experimental method used
is described in the sections below.

B. HUMAN STUDY PARTICIPANTS AND EXCLUSION
CRITERIA
Human study approval was acquired from the University
of Utah Institutional Review Board (IRB 00114415), and
experiments were performed according to the ethical stan-
dards laid down in the Declaration of Helsinki, 1964. A total
of 15 advanced presbyopia subjects ages 45-68 years, with
a mean age of 54.6 (S.D. = 6.8) years, were recruited
from a population of patients from the University of Utah
Moran Eye Center and associated clinics. Since emmetropes
and early presbyopes generally exhibit a non-zero objective
accommodation amplitude, they were not considered for this
study. All subjects provided informed, signed consent before
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entry into the study. A record on clinical trials performed in
this study has been registered with ClinicalTrials.gov [58]
(NCT03911596). Individuals with astigmatism > 1.0D, arti-
ficial intraocular lenses, or those having any ocular pathology
that would inhibit accommodation of their natural lenses were
excluded. The recruited subjects had prescriptions between
−1.5 D and +2.5 D and were correctable to logMAR 0.0
(Snellen 20/20).

C. STUDY CONDITIONS
Testing was carried out in a light proofed optometry exam
room at theUniversity ofUtahMoran EyeCenter. Chart retro-
illumination was not used. In order to explore the effects of
illumination on the accommodative insufficiency, we con-
ducted the study under 3 chart illumination levels- 75 lux to
simulate dark conditions, 500 lux to simulate normal indoor
lighting conditions and 800 lux to simulate outdoor condi-
tions [59]. Chart illumination was controlled using an LED
studio lighting system which also provided diffused lighting
for the exam room. The correlated color temperature of the
lighting system was fixed at 5000 K. Chart illumination was
kept constant while measuring the accommodation insuffi-
ciency. Fig. 4 shows a subject undertaking a visual task.

D. STUDY PROCEDURE
The visual task consisted of reading optotypes on 7 differ-
ent Early Treatment Diabetic Retinopathy Study (ETDRS)
charts calibrated for 7 distances (4 m, 2 m, 1 m, 70 cm,
50 cm, 40 cm and 30 cm) under 3 chart illumination con-
ditions (75 lux, 500 lux and 800 lux). We utilized a com-
mercially available manually-tunable variable-focus Adlens
Hemisphere eyeglasses to assess the subjective AE. The stan-
dard deviation of the eyeglasses optical power was 0.03 D.
Subjects were assisted by the study staff in manually tuning
the eyeglasses until they could correctly identify, to the best
of their ability, the optotypes corresponding to logMAR 0.0
(Snellen 20/20) line on the ETDRS charts. Each lens in the
eyeglasses was monocularly tuned before patients undertook
the visual task, binocularly, under every test distance and
illumination condition. Once optimum subjective refraction
was reached, the visual acuity of the subjects was measured
in logMAR. This was done to verify if the variable-focus
eyeglasses provided the optimum correction necessary for
subjects during all the visual tasks. The eyeglasses were then
taken from the subjects and their optical power was measured
using a Thorlabs WFS150C-AR Shack-Hartmann wavefront
sensor. Subjects who were unable to completely identify the
optotypes corresponding to logMAR 0.0 line, were instead
asked to identify the optotypes on the previous line (logMAR
0.1) and their visual acuity was recorded accordingly. Those
who could correctly identify the optotypes corresponding
to the logMAR 0.0 line were then asked to identify opto-
types on the logMAR −0.1 line and their visual acuity was
recorded accordingly. Calibrated ETDRS charts, which were
placed at distances of 1 m, 70 cm, 50 cm and 30 cm, were
carefully designed and printed on high quality optical white

paper. Subjects were tested under chart illumination levels of
500 lx, 800 lx and 75 lx, sequentially. The study was paused
after changes in the illumination levels till the subjects were
comfortable with their visual experience. The study sessions
lasted between 1.5–3 hours in duration for each subject.

E. MODEL FITTING
The subjective AEmodels were surface-fitted to the recorded
subjective AE data for each eye of every subject with the
Python 3.8 SciPy 1 optimization library [60]. We utilized
the Levenberg-Marquardt nonlinear least squares method
for surface-fitting Eq. (6)–(9) to the AE data [61]–[63]
using the k ′s, x ′s and f as fitting parameters. The
independent variables-AS and the illumination were not
bounded during the surface-fitting process as the simple
Levenberg-Marquardt method does not handle bounds on the
independent variables [63], [64]. The surface-fitting process
produced a separate characteristic equation and a surface for
every eye of every subject. The surface-fits were analyzed
and compared with each other using the R2 metric (goodness
of fit/ coefficient of determination) and the residual RMS
errors exhibited by the models. It is important to note that
thesemodels are going to be used for personalized corrections
using autofocusing eyewear and hence the fitting parameters
extracted from the curve fitting process would vary from eye
to eye.

IV. RESULTS AND DISCUSSION
A. ACCOMMODATION ERRORS
The observed subjective AEs of the subjects were plotted
against the AS. The recorded data has been made available in
Data File 1. Figs. 5 – 7 show the observed AE for 15 subjects
(30 eyes) under chart illumination levels 75, 500 and 800 lux,
respectively. The solid lines with circular markers represent
the right eye and the dashed lines with square markers rep-
resent the left eye. The size of the markers is proportional to
the standard deviation of the measurement instrument. The
markers are 5x the standard deviation for better visibility.

It can be clearly seen from the plots that the subjective AE
kept increasing with increasing stimulus, under all illumina-
tion conditions. All subjects required higher positive addi-
tions to perform near vision tasks at AS of 2.5 D and 3.33 D,
corresponding to chart distances of 40 cm and 30 cm, respec-
tively, when compared to far vision tasks at AS of 0.25 D
and 0.5 D corresponding to chart distances of 4m and 2m,
respectively. This trend is consistent with the existing theories
of presbyopia [29] and subjective/ objective AR data reported
throughout literature [14], [29], [39]–[42], [44]–[48], [54]
where the AR reduces or stagnates irrespective of the increase
in the stimulus and causes AE to increase with increasing
stimulus. It can also be seen from Figs. 5 – 7 that the recorded
AE in the left and the right eyes of all subjects are very similar
under all illumination conditions, except for subject #5 whose
right AE is significantly higher compared to their left AE.
This could be attributed to the presence of a high-power static
refractive error in one of their eyes.
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FIGURE 5. Measured accommodation error for 15 subjects (30 eyes)
under 75 lux chart illumination. The markers show the recorded data
from the subjects. The solid lines with circular markers and the dashed
lines with square markers represent subjective AE in the right and left
eye, respectively. The size of the markers is 5 times the standard
deviation of the manually tunable eyeglasses, for better visibility.

B. AE AND ILLUMINATION
We also explored the dependence of subjective AE on the
illumination levels. Fig. 8. shows the average of the absolute
subjective AE for 30 eyes under 3 different illumination con-
ditions of 75, 500 and 800 lux. The blue bars represent the left
eyes while the purple bars represent the right eyes. A trend
can be seen from the plots where the average subjective AE
progressively decreases with illumination for most subjects.
However, this trend cannot be quantified in this study for two
main reasons-(a) the AE was studied under only 3 illumina-
tion levels and (b) only 15 presbyopes (30 eyes) were studied,
which are insufficient to conduct any meaningful statistical
analysis.

The depth of field of the human eye is dependent on the
pupil diameter [65] and the pupil diameter is a function of
the illumination levels. With increasing illumination levels,
the pupil size decreases [66], thereby increasing the depth-
of-focus of the visual system and reducing the required

FIGURE 6. Measured accommodation errors for 15 subjects (30 eyes)
under 500 lux chart illumination. The markers show the recorded data
from the subjects. The solid lines with circular markers and the dashed
lines with square markers represent subjective AE in the right and left
eye, respectively. The size of the markers is 5 times the standard
deviation of the manually tunable eyeglasses, for better visibility.

amplitude of accommodation to focus on an object. One
of the principal reasons why presbyopes tend to squint is
because doing so improves their visual acuity at the expense
of much lower brightness. At lower illumination levels, the
pupil size increases, reducing the depth of field and requir-
ing more accommodation amplitude [53]. It has also been
shown that accommodation depends on cone activity [67],
which ceases completely under low illumination conditions.
These factors can help explain why a majority of the subjects
exhibited decreasing average AE with increasing illumina-
tion. Fig. 8 also shows that for few participant’s eyes, the
AE at 800 lux was greater than that at 500 lux. This seems
counter-intuitive as accommodation error decreases under
higher object illumination levels due to improved depth-
of-focus [68]. However, there are some clues to explain
this discrepancy. As light enters the eye, part of its energy
is scattered in the crystalline lens [69] and gives rise to
a phenomenon called disability glare [70], [71]. Disability
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FIGURE 7. Measured accommodation errors for 15 patients (30 eyes)
under 800 lux chart illumination. The markers show the recorded data
from the subjects. The solid lines with circular markers and the dashed
lines with square markers represent AE in the right and left eye,
respectively. The size of the markers is 5 times the standard deviation of
the manually tunable eyeglasses, for better visibility.

glare is a physiological glare which generally impairs vision,
decreases visual acuity without causing any discomfort [72]
and decreases contrast sensitivity [73]. Due to anatomical
changes in the visual system with age [74]–[77], senior
people were found to be more sensitive to glare [78]–[81].
This could possibly explain why some eyes in this study
exhibit higher accommodation error amplitudes at 800 lux
chart illumination compared to those at 500 lux chart illu-
mination. Detailed analyses of subjective AE with respect to
the illumination levels is beyond the scope of this work.

C. MODEL FITTING RESULTS AND DISCUSSION
At any given fixed power, the crystalline lens in the human
eye has an average RMS wavefront error of 0.35 µm [82].
This is roughly equivalent to a natural refractive defocus of
0.3D [83]–[86] at a pupil size of 6 mm diameter, for healthy,
young individuals and steadily increases with age [86],
[87] which cannot be corrected by conventional eyeglasses.

FIGURE 8. Average accommodation errors for 15 subjects (30 eyes).
A majority of subjects show decreasing AE with increasing illumination
levels. Subplots (a)–(o) shows the average accommodation errors for
Subjects 1-15, respectively.

FIGURE 9. RMS fitting errors for 15 subjects corresponding to the older
(a) DDF and (b) HHG models in literature and the (c) proposed best fitting
one-break PWL model with illumination dependent parameters (PWL-IL).
The blue bars represent the left eye and the purple bars represent the
right eye. RMS fitting errors for the one-break PWL-IDP models are
significantly smaller compared to the older model.

Therefore, in order to restore pre-presbyopic accommodation
we seek subjectiveAEmodels with average errors< 0.3D and
any model that meets this criterion is sufficient for describing
the AE. To find such model we have fitted each of our
proposed AE models for each of the 30 eyes considered in
this study, and from the RMS errors for each fit we report the
averaged RMS error for the eye set. The model fitting plots
and the fitting parameters for 15 subjects (30 eyes) and all
proposed models are available in the supplemental document.
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FIGURE 10. Average corrected visual acuities (VA) of 15 subjects recorded
under various chart illumination conditions. The bars represent one
standard deviation. Average corrected VA of all 15 subjects is less than
+0.1 logMAR. The blue and green dashed lines correspond to spherical
refractive errors of 0.5 D and 0.25 D, respectively. Subplots (a)–(o) shows
the average corrected VA for Subjects 1-15, respectively.

TABLE 1. Average RMS fitting errors for 15 subjects (30 eyes).

Table 1 shows the averaged RMS error over the 30 eyes
for each of our models. The last line shown in the table
corresponds to individual fits for each illumination level.

Out of the 7 proposed models investigated, 3 models
featuring an exponential dependence on illumination param-
eter (S-E, 1-PWL-E and 2-PWL-E) and the illumination-
dependent parameters (PWL-IDP) model had RMS fitting
errors smaller than the 0.3D threshold. The fits with the most
fitting parameters have the lowest average RMS errors. The
best fitting PWL-IDPmodel displayed nearly half the average
RMS fitting error (0.25D) than the DDF (0.4D) and the HHG
models (0.4D). Neither the DDF and HHG models feature
illumination dependence.

Fig. 9 shows a comparison of the residual RMS fitting
errors obtained for 15 subjects (30 eyes) after fitting the older
DDF, HHGmodels and the one-break PWLwith illumination
dependent parameters (PWL-IDP). The blue bars represent

TABLE 2. Average corrected visual acuities of 15 subjects under 3 chart
illumination levels.

the left eyes while the purple bars represent the right eyes.
The red dashed line represents a 0.5D reference. Our best
illumination-dependent fitting model (PWL-IDP) exhibits
fitting errors less 0.3D, for 23 out of the 30 eyes (77%).
The PWL-IDP model outperforms the older DDF and HHG
models and, on the average, meet the acceptability threshold
<0.3D for our experimental data set.

D. VISUAL ACUITY MEASUREMENTS
The results of our study show that the corrected visual acuities
of all subjects were mostly equal to or better than +0.1 log-
MAR (Snellen 20/25) under all stimuli and illumination con-
ditions when we use the best fitting model, i.e., the piecewise
linear model with one breakpoint and illumination dependent
parameters (PWL-IDP). Visual acuities recorded at different
distances and chart illumination conditions for each partic-
ipant have been included (Data File 2). Fig. 10 shows the
average corrected visual acuities of the subjects under varying
accommodation stimuli and chart illumination levels. None
of the 15 subjects exhibited average corrected visual acuity
worse than +0.04 logMAR.

In order to better relate an individual’s visual acuity to
lens prescription, visual acuity scores corresponding to defo-
cus errors of 0.25D and 0.5D were calculated using the
simple relation of Eq. (1). More accurate VA formulas cor-
responding to spherical refractive errors are available in
literature [88] if the pupil size is known. The blue and
green lines in Fig. 10 show these calculated visual acuity
scores of 0.026 logMAR and 0.096 logMAR corresponding
to spherical refractive errors of 0.25D and 0.5D, respectively.
Corrected visual acuities falling within the blue region cor-
respond to an acceptable spherical refractive error between
0.25D and 0.5D, while those falling within the green region
correspond to a minimum desirable spherical refractive error
of< 0.25 D in the autofocusing eyewear. In optometry, visual
impairment is defined as visual acuity of worse than+0.3 log-
MAR (Snellen 20/40) [89]. Since the corrected visual acuities
of all subjects while wearing tunable eyeglasses were better
than or equal to +0.1 logMAR and the subjects responded
favorably after each optical adjustment, it can be concluded
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the subjects in this study were adequately corrected. It can
also be seen from Fig. 10 that a majority of the subjects were
properly corrected for their AE at 500 lux chart illumination
(VA =∼0.0 logMAR).
Table 2 shows the recorded visual acuity of the subjects,

averaged over all 7 distances, under the chart illumination
levels of 75, 500 and 800 lux. Overall, the corrections pro-
vided by the focus-tunable Adlens eyeglasses were able to
adequately compensate the subjective accommodation errors
present in the subjects’ eyes, resulting in an average corrected
VA of −0.01 logMAR for all eyes at 500 lux standard illumi-
nation condition [59].

V. CONCLUSION
We present new empirical models for presbyopes, which
relate their subjective accommodative errors to the object
distance and the illumination levels. Measured accommoda-
tion errors of all subjects under all illumination conditions
increased with a reduction in the test-chart distance, indi-
cating a loss in the accommodative abilities of their visual
system. The proposed subjective accommodation error mod-
els were surface-fitted to the measured data of 15 subjects
and the best fitting subjective accommodation error model
exhibited an RMS fitting error of less than 0.3D, the average
equivalent refractive error of a human eye, for a majority
(77%) of the eyes under examination. These empirical AE
models are sufficiently accurate for use in future personalized
adaptive optics based autofocusing devices.
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